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Abstract

The beta transformation is the iterated map βx mod 1. The special case of
β = 2 is known as the Bernoulli map, and is exactly solvable. The Bernoulli map
provides a model for pure, unrestrained chaotic (ergodic) behavior: it is the full
invariant shift on the Cantor space {0,1}ω . The Cantor space consists of infinite
strings of binary digits; it is notable for many properties, including that it can
represent the real number line.

The beta transformation defines a subshift: iterated on the unit interval, it sin-
gles out a subspace of the Cantor space that is invariant under the action of the
left-shift operator. That is, lopping off one bit at a time gives back the same sub-
space.

The beta transform seems to capture something basic about the multiplication
of two real numbers: β and x. It offers insight into the nature of multiplication.
Iterating on multiplication, one would get β nx – that is, exponentiation; the mod 1
of the beta transform contorts this in strange ways.

Analyzing the beta transform is difficult. The work presented here is more-or-
less a research diary: a pastiche of observations and some shallow insights. One is
that chaos seems to be rooted in how the carry bit behaves during multiplication.
Another is that one can surgically insert “islands of stability” into chaotic (ergodic)
systems, and have some fair amount of control over how those islands of stability
behave. One can have islands with, or without a period-doubling “route to chaos”.

The eigenvalues of the transfer operator seem to lie on a circle of radius 1/β in
the complex plane. Given that the transfer operator is purely real, the appearance
of such a quasi-unitary spectrum unexpected. The spectrum appears to be the limit
of a dense set of quasi-cyclotomic polynomials, the positive real roots of which
include the Golden and silver ratios, the Pisot numbers, the n-bonacci (tribonacci,
tetranacci, etc.) numbers.

1 Introduction
The last three or four decades of mathematical research has seen dramatic advances
in the theory of subshifts. This text is mostly not about that, except to point out that
this theory has very broad and important impact on many branches of physics and
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mathematics. From the perspective of the amateur enthusiast, the theory of subshifts
finally exposes and makes clear some of the mysterious and intriguing behavior of
fractals and of chaotic dynamical systems.

This text focuses almost entirely on just one particular map of the unit interval, the
β -transform, defined as the iterated map βx mod 1. As such, it is an example of an
iterated map on the unit interval of the real number line. Such maps have the form

f : [0,1]→ [0,1]

and the topic is the exploration of the consequence of iterating the map by composing:

f n(x) = ( f ◦ f ◦ · · · ◦ f )(x) = f ( f (· · · f (x) · · ·))

Such one-dimensional iterated maps have been heavily studied, and there is a large
body of results, interconnecting many different concepts and results from mathematics,
and so having a particularly broad range.

This text attempts to report some brand-new results on the β -transform. This is
perhaps surprising, as one might think that the β -transform is sufficiently simple so as
to be well-studied and well-understood, it being among the very simplest of iterated
one-dimensional maps. This text also attempts to report these results in a naive and
unsophisticated fashion, in the hope that this makes the text readable for the interested
student and casual enthusiast.

Thus, although the author is personally excited by the advances in the field, this
text is neither a survey of known results on the β -transform, nor does it much glance
at most of the typical avenues that are available for studying one-dimensional maps.
This text does focus extensively on the spectrum of the transfer operator (the “Ruelle
Perron Frobenius operator”), and thus it contributes to the general “Koopmania”. Little
prior knowledge is assumed, and the needed concepts are introduced in a very casual
and informal way. This will, no doubt, completely discourage and dismay the formally
trained mathematician. The best I can offer is to reiterate: “new results”, off the beaten
track.

This text begins with some pretty pictures, showing the iterated tent and logistic
maps, so as to remind the reader as to why this is an interesting problem to study. The
fact is that the β -transformation is far more dry and abstract than the rather sexy logistic
map, or its complex cousin, the Mandelbrot set. The hope is that the β -transformation
is also simpler, and therefore, perhaps, easier to understand. The reader will soon
discover that there is nothing particularly easy about it, and that, at every turn, one
bumps into other interesting areas of mathematics that could, perhaps should shed some
light, but don’t actually seem to do so, in practice.

The most fun for the casual reader might be chapter 5, on the periodic orbits, where
the quasi-cyclotomic polynomials appear; these are polynomials of the form pn (z) =
zk+1− b0zk− b1zk−1−·· ·− bk−1z− 1 for the b j being binary bits (zero or one). Also
quite fun is the section on the islands of stability, which sheds light on how one can take
a purely ergodic (chaotic) system, and surgically insert, as desired, islands of stability.
The point here is that the classic logistic map attracted interest precisely because of its
interleaving of chaos and stability; it turns out, one can manufacture such systems, at
will.
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Perhaps the most surprising aspect of iteration (surprising to me) is that the invari-
ant measure consists of flat plateaus. Or perhaps this is not surprising; after all, for the
full shift, β = 2, the invariant measure is a straight line, and this is equivalent to saying
that the real numbers are aboslutely evenly distributed, or that the toss of a perfectly
fair coin is a perfectly even, random sequences of heads and tails. Flatness implies an
even distribution. So flatness is not surprising. But look at it a different way: the digit
sequences are wildly and ergodically different, yet none-the-less manage to sum to ex-
actly the same value, when summed in an analytic series! Why should crazy-different,
crazy-chaotic sequences yeild identical summations? That they do should be consid-
ered to be the “fundamental theorem of analytic ergodics”. (I use the word “analytic”
here in the same sense as “analytic number theory” or “analytic combinatorics”. Given
a sequence of values, one explores the analytic properties of its generating functions.)
If this theorem has ever been clearly stated before, or if it has been proven (for any case
other than the Bernoulli shift), I do not know. It seems terribly important for analyzing
subshifts.

A word about the format of this paper: this is a de facto “research diary”, not a
formal report. This, it contains various unfinished corners and notes-to-self.

1.1 Bernoulli shift
The Bernoulli shift (aka the bit-shift map) is an iterated map on the unit interval, given
by iteration of the function

b(x) =

{
2x for 0≤ x < 1

2
2x−1 for 1

2 ≤ x≤ 1
(1)

The symbolic dynamics of this map gives the binary digit expansion of x. That is, write

bn(x) = (b◦b◦ · · · ◦b)(x) = b(b(· · ·b(x) · · ·))

to denote the n-fold iteration of b and let b0(x) = x. The symbolic dynamics is given
by the bit-sequence

bn (x) =

{
0 if 0≤ bn(x)< 1

2
1 if 1

2 ≤ bn(x)≤ 1
(2)

Of course, the symbolic dynamics recreates the initial real number:

x =
∞

∑
n=0

bn (x)2−n−1

All of this is just a fancy way of saying that a real number can be written in terms of
it’s base-2 binary expansion. That is, the binary digits for x are the bn = bn (x), so that

x = 0.b0b1b2 · · ·

The Bernoulli shift has many interesting properties, connecting it to the Cantor
set and to many self-similar fractals. I have explored these in many other texts, as
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have other authors, and will not repeat these here. The author is too lazy to provide a
bibliography; the reader is directed at search engines.

The current task is to attempt to see how many of these properties still hold in
slightly more complex systems, and whether any of the tools used to analyze and solve
the Bernoulli shift can be applied to these systems.

1.2 Shift space
The use of the word “shift” here deserves a small bit of formality. A “shift space” can
be formally defined to be a set of infinite sequences of a set of N letters (or symbols),
together with a shift operator T that takes each sequence, and lops off the left-most
symbol. For the Bernoulli shift, there are N = 2 letters, taken from the set {0,1}.
For the Bernoulli shift, one is typically interested in the set of all possible infinite
sequences: this is the “full shift”. One writes {0,1}ω for this shift space, ω denoting
countable infinity. For the Bernoulli shift, the map b(x) is the shift operator: it just lops
of the left-most symbol.

In general, a shift space does not have to include every possible sequence of sym-
bols; it does, however, by definition, have to be shift-invariant. That is, given some set
S of infinite sequences of N symbols, the set S is a shift space if and only if, by loping
off the leading symbol of each string, one regains S again. In formulas, a shift space S
must obey

T S = S

For example, S = {000 · · · ,111 · · ·} contains only two elements: the string of all
zeros, and the string of all ones; loping off the leading digit just returns S again. In
general, shift spaces may contain a finite, or a countable, or an uncountable number of
elements. In general, one defines the “full shift” as the space Nω of all possible strings
of N symbols. Subsets that are shift spaces are called “subshifts”.

The words “symbolic dynamics” also deserve some mention: given one specific
sequence x out of the shift space, one can ponder “where it goes to”, as one lops off a
symbol at a time. This gives the “symbolic dynamics” or the “point dynamics” of the
sequence. The “orbit” is defined as the set {T mx | integer m≥ 0}– that is, the set of all
places that x goes to. There are several possibilities: one is that x is a fixed point, so that
T x = x. Another is that x is a repeating sequence of symbols, in which case iteration
repeats as well: T mx = x holds whenever the repeat length is m; this is a periodic
orbit. Most importantly, there usually uncountably many non-periodic sequences or
orbits. That is, the number of periodic orbits is always countable: one merely arranges
them in lexicographic order, and one is done. As Cantor famously demonstrated (and
Hilbert so carefully expanded on) this cannot be done for the non-periodic orbits: they
are uncountable.

In what follows, the text will in general confine itself to uncountable case. Periodic
orbits exist, but will be ignored; in a certain strict sense, they constitute a set of measure
zero. A number of glosses like this will be made: for example, the real numbers, and
the Cantor space {0,1}ω are both uncountable; however, they are not in one-to-one
correspondence, as some real numbers can have two different representations as bit
sequences. Specifically, these are the fractions (2n+1)/2m for positive integers m,n –
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they can be validly represented by bit-sequences ending in all-zeros, or all-ones. There
are countably many such fractions, termed the dyadic fractions. For the most part, this
difference between the real number line, and the Cantor space will be ignored.

1.3 Beta shift
The beta shift is similar to the Bernoulli shift, replacing the number 2 by a constant
real-number value 1 < β ≤ 2. It can be defined as

Tβ (x) =

{
βx for 0≤ x < 1

2
β
(
x− 1

2

)
for 1

2 ≤ x≤ 1
(3)

This map, together with similar maps, is illustrated in figure 5 below.
Just as the Bernoulli shift generates a sequence of digits, so does the beta shift:

write

kn =

{
0 if 0≤ T n

β
(x)< 1

2

1 if 1
2 ≤ T n

β
(x)≤ 1

(4)

Given the symbolic dynamics, one can reconstruct the original value whenever 1 < β

as

x =
k0

2
+

1
β

(
k1

2
+

1
β

(
k2

2
+

1
β

(
k3

2
+

1
β
(· · ·)

)))
That is, one clearly sees that Tβ (x) acts as a shift on this sequence:

Tβ (x) =
k1

2
+

1
β

(
k2

2
+

1
β

(
k3

2
+

1
β

(
k4

2
+

1
β
(· · ·)

)))
In this sense, this shift is “exactly solvable”: the above provides a closed-form solution
for iterating and un-iterating the sequence.

Multiplying out the above sequence, one obtains the so-called “β -expansion” of a
real number x, namely the series

x =
1
2

∞

∑
n=0

kn

β n (5)

That is, the bit-sequence that was extracted by iteration can be used to reconstruct the
original real number. Setting β = 2 in eqn 2 gives the Bernoulli shift. Explicitly, one
has T2 (x) = b(x).

Unlike the Bernoulli shift, not every possible bit-sequence occurs in this system. It
is a subshift of the full shift: it is a subset of {0,1}ω that is invariant under the action
of Tβ . This is explored in greater detail in a later section.

1.4 Associated polynomial
The iterated shift can also be written as a finite sum. This is noted here; it will be useful
in later sections. Observe that

Tβ (x) = β

(
x− k0

2

)
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and that

T 2
β
(x) = β

2x− β

2
(βk0 + k1)

and that

T 3
β
(x) = β

3x− β

2
(
β

2k0 +βk1 + k2
)

The general form is then:

T p
β
(x) = β

px− β

2

p−1

∑
m=0

kmβ
p−m−1 (6)

Since the km depend on both β and on x, this is not a “true” polynomial; however, it
will be useful in analysis, later.

1.5 Density Visualizations
Why is the beta transform interesting to explore? This can be partly illustrated with
some graphs. Shown in figure 2 is the “bifurcation diagram” for the beta transform. It
visualizes the long-term dynamics of the beta shift. Comparing to the usual bifurcation
diagram, e.g. for the Feigenbaum logistic map (shown in figure 4) one thing becomes
immediately apparent: there are no actual “bifurcations”, no “islands of stability”, no
period-doubling regions. Although there are periodic orbits, these form a set of mea-
sure zero: the iteration produces purely chaotic motion for all values of β . Thus, the
beta transform provides a clean form of “pure chaos”,1 without the pesky “islands of
stability” popping up intermittently.

The visualization of the long-term dynamics is done by generating a histogram, and
then taking the limit, as follows. One divides the unit interval into a fixed sequence of
equal-sized bins; say a total of N bins, so that each is 1/N in width. Pick a starting x,
and then iterate: if, at the n’th iteration, one has that j/N ≤ bn

β
(x) < ( j+ 1)/N, then

increment the count for the j’th bin. After a total of M iterations, let c( j;M) be the
count in the j’th bin. This count is the histogram. In the limit of a large number of
iterations, as well as small bin sizes, one obtains a distribution:

ρ(y;x) = lim
N→∞

lim
M→∞

c( j;M)

M
for

j
N
≤ y <

j+1
N

This distribution depends on the initial value x chosen for the point to be iterated; a
“nice” distribution results when one averages over all starting points:

ρ(y) =
∫ 1

0
ρ(y;x)dx

Numerically, this integration can be achieved by randomly sampling a large number of
starting points. Observe that ρ(y) is a probability distribution:

1 =
∫ 1

0
ρ(x)dx

1Formal mathematics distinguishes between many different kinds of chaotic number sequences: those
that are ergodic, those that are weakly or strongly Bernoulli, weakly or strongly mixing. The beta transform
is known to be ergodic,[1] weakly mixing[2] and weakly Bernoulli.[6]
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This probability distribution is an eigenstate of the transfer operator for the beta trans-
form; the definition of the transfer operator of the beta transform is given later. Prob-
ability distributions are the same thing as measures; this particular distribution is in-
variant under iteration, and thus is often called the invariant measure, or sometimes the
Haar measure.

For each fixed β , one obtains a distinct distribution ρβ (y). The figure 1 illustrates
some of these distributions. Note that, for β < 1, the distribution is given by ρβ (y) =
δ (y), a Dirac delta function, located at y = 0.

The general trend of the distributions, as a function of β , can be visualized with
a Feigenbaum-style “bifurcation diagram”, shown in figure 2. This color-codes each
distribution ρβ (y) and arranges them in a stack; a horizontal slice through the diagram
corresponds to ρβ (y) for a fixed value of β . The term “bifurcation diagram” comes
from its use to visualize the logistic map iterator.

1.6 Tent Map
The tent map is a closely related iterated map, given by iteration of the function

vβ (x) =

{
βx for 0≤ x < 1

2
β (1− x) for 1

2 ≤ x≤ 1

Its similar to the beta shift, except that the second arm is reflected backwards, forming
a tent. The bifurcation diagram is shown in figure 3. Its is worth contemplating the
similarities between this, and the corresponding beta shift diagram. Clearly, there are a
number of shared features.

1.7 Logistic Map
The logistic map is related to the tent map, and is given by iteration of the function

fβ (x) = 2βx(1− x)

It essentially replaces the triangle forming the tent map with a parabola of the same
height. That is, the function is defined here so that the the same value of β corresponds
to the same height for all three maps. Although the heights of the iterators have been
aligned so that they match, each exhibits rather dramatically different dynamics. The
β -transform has a single fixed point for β < 1, and then explodes into a fully chaotic
regime above that. By contrast, the logistic map maintains a single fixed point up to
β = 3/2, where it famously starts a series of period-doubling bifurcations. The onset
of chaos is where the bifurcations come to a limit, at β = 3.56995/2 = 1.784975.
Within this chaotic region are “islands of stability”, which do not appear in either the
β -transform, or in the tent map. The tent map does show a period-doubling regime,
but in this region, there are no fixed points: rather, the motion is chaotic, but confined
to multiple arms. At any rate, the period doubling occurs at different values of β than
for the logistic map.

The bifurcation diagram is shown in figure 4. Again, it is worth closely examining
the similarities between this, and the corresponding tent-map diagram, as well as the
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Figure 1: Beta-shift Density Distribution
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The above figure shows three different density distributions, for ρ1.2(y), ρ1.6(y) and
ρ1.8(y), calculated numerically. This is obtained by histogramming a large number
of point trajectories, as described in the text. The small quantities of jitter are due
to a finite number of samples. To generate this figure, a total of M = 4000 iterations
were performed, using randomly generated arbitrary-precision floats (the Gnu GMP
package), partitioned into N = 800 bins, and sampled 24000 times (or 30 times per
bin) to perform the averaging integral. It will later be seen that the discontinuities in
this graph occur at the “iterated midpoints” mp = T p

β
(β/2). The flat plateaus really are

flat, and this is perhaps the one of the most amazing aspects of this figure; ths will be a
recurring theme throughout the text.
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Figure 2: Beta-shift Bifurcation Diagram

This figure shows the density ρβ (y), rendered in color. The constant β is varied from 0
at the bottom to 2 at the top; whereas y runs from 0 on the left to 1 on the right. Thus, a
fixed value of β corresponds to a horizontal slice through the diagram. The color green
represents values of ρβ (y) ≈ 0.5, while red represents ρβ (y) & 1 and blue-to-black
represents ρβ (y) > 0.25. The diagram is “interesting” only for 1 < β ; for smaller β ’s,
one has that ρβ (y) = δ (y), indicated by the column of red pixels on the left side of
the image. The lines forming the fan shape are not actually straight, they only seem to
be; in fact, they have a slight curve. This means that one cannot apply simple-minded
guess-work to discover the overall diagram shown here.
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Figure 3: Tent Map Bifurcation Diagram

The bifurcation diagram for the tent map. The value of β runs from 1 at the bottom
of the image, to 2 at the top. The color scheme is adjusted so that green represents the
average value of the distribution, red represents areas of more than double the average
value, while blue shows those values that are about half the average value. Note that
this is a different color scheme than that used in figure 2; that scheme would obliterate
the lower half of this figure in red.
The black areas represent parts of the iterated range that are visited at most a finite
number of times. To the left, a straight line indicates that after one iteration, points in
the domain β/2 ≤ x ≤ 1 are never visited. To the right, points in the domain 0 ≤ x ≤
β (1−β/2) are never visited more than a finite number of times.
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Figure 4: Logistic Map Bifurcation Diagram

The logistic map bifurcation diagram. The value of β runs from 1.75 at the bottom of
the image, to 2 at the top. The color scheme is adjusted so that green represents the
average value of the distribution, red represents areas of more than double the average
value, while blue shows those values that are about half the average value. Clearly, the
orbits of the iterated points spend much of their time near the edges of the diagram.

β -transform diagram. Naively, it would seem that the general structure of the chaotic
regions are shared by all three maps. Thus, in order to understand chaos in the logistic
map, it is perhaps easier to study it in theβ -transform.

The general visual similarity between the figures 2, 3 and 4 should be apparent,
and one can pick out and find visually similar regions among these three illustrations.
Formalizing this similarity is a bit harder, but it can be done: there is a way to make all
three of these maps be “topologically conjugate” to one-another. This is perhaps sur-
prising to some readers, but is based on the observation that the “islands of stability”
in the logistic map are countable, and are in one-to-one correspondence with certain
“trouble points” in the iterated beta transformation. These are in turn in one-to-one
correspondence with rational numbers. With a slight distortion of the beta transforma-
tion, the “trouble points” can be mapped to the islands of stability, in essentially the
same way that “phase locking regions” or “Arnold tongues” appear in the circle map.
But this is all for a later section, again, mentioned here only to whet the appetite.

1.8 Beta Transformation
After exactly one iteration of the beta shift , all initial points β/2 ≤ x ≤ 1 are swept
up into the domain 0 ≤ x < β/2, and never leave. Likewise, the range of the iterated
beta shift is 0 ≤ x < β/2. Thus, an alternative representation of the beta shift, filling
the entire unit square, can be obtained by dividing both x and y by β/2 to obtain the
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function

tβ (u) =

{
βu for 0≤ u < 1

β

βu−1 for 1
β
≤ u≤ 1

(7)

which can be written more compactly as tβ (x) = βx mod 1. In this form, the function
is known as the beta transform, and is often called the β -transformation, presenting
a typesetting challenge to search engines when used in titles of papers. The orbit of
a point x in the beta shift is identical to the orbit of a point u = 2x/β in the beta
transformation. Explicitly comparing to the beta shift of eqn 3:

T n
β
(x) =

β

2
tn
β

(
2x
β

)
The beta shift and the β -transformation are essentially “the same function”; this text
works almost exclusively with the beta shift, and is thus idiosyncratic, as it flouts the
much more common convention of working with the β -transformation. There is no
particular technical reason for this; it is rather due to happenstance.

After a single iteration of the tent map, a similar situation applies. After one iter-
ation, all initial points β/2 ≤ x ≤ 1 are swept up into the domain 0 ≤ x < β/2. After
a finite number of iterations, all points 0 < x ≤ β (1−β/2) are swept up, so that the
remaining iteration takes place on the domain β (1−β/2)< x< β/2. It is worth defin-
ing a “sidetent” function, which corresponds to the that part of the tent map in which
iteration is confined. It is nothing more than a rescaling of the tent map, ignoring those
parts outside of the above domain that “wander away”. The sidetent is given by

sβ (u) =

{
β (u−1)+2 for 0≤ u < β−1

β

β (1−u) for β−1
β
≤ u≤ 1

Performing a left-right flip on the side-tent brings it closer in form to the beta-transformation.
The flipped version, replacing u→ 1−u is

fβ (u) =

{
βu for 0≤ u < 1

β

2−βu for 1
β
≤ u≤ 1

The tent map (and the flipped tent) exhibits fixed points (periodic orbits; mode-
locking) for the smaller values of β . These can be eliminated by shifting part of the
tent downwards, so that the diagonal is never intersected. This suggests the “sidetarp”:

aβ (u) =

{
βu for 0≤ u < 1

β

β (1−u) for 1
β
≤ u≤ 1

The six different maps under consideration here are depicted in figure 5. It is interesting
to compare three of the bifurcation diagrams, side-by-side. These are shown in figure
6.
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Figure 5: Iterated piece-wise linear maps

The beta shift map, shown in the upper left, generates orbits that spend all of their time
in the shaded area: a box of size β

2 ×
β

2 . Enlarging this box to the unit square gives
the β -transformation. The tent map resembles the beta shift, except that one arm is
flipped to make a tent-shape. After a finite number of iterations, orbits move entirely
in the shaded region; enlarging this region to be the unit square gives the sidetent map.
Flipping it left-right gives the fliptent map. Although it is not trivially obvious, the
fliptent map and the sidetent map have the same orbits, and thus the same bifurcation
diagram.

The bottom three maps all have fixed points and periodic orbits, essentially be-
cause the diagonal intersects the map. The top three maps have no periodic orbits, and
are purely chaotic, essentially because the diagonal does not intersect them. Note tht
the slopes and the geometric proportions of all six maps are identical; they are merely
rearrangents of the same basic elements.
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Figure 6: Beta transform and Side-tent

The left figure shows the bifurcation diagram for the β -transform, as it is normally
defined as the βx mod 1 map. It is the same map as the beta shift, just rescaled to
occupy the entire unit square. In all other respects, it is identical to 2.

The middle figure is a similarly-rescaled tent map, given the name “side tent”
in the main text. It is essentially identical to 3, with the middle parts expanded and
the sides removed. In both figures, β runs from 1 at the bottom to 2 at the top. The
right-hand-side figure is the “sidetarp”, clearly its an oddly-folded variant of the beta
transform.

1.9 Beta Transformation Literature Review and References
The β -transformation, in the form of tβ (x) = βx mod 1 has been well-studied over
the decades. The beta-expansion 4 was introduced by A. Renyi[1], who demonstrates
the existence of the invariant measure. The ergodic properties of the transform were
proven by W. Parry[2], who also shows that the system is weakly mixing.

An explicit expression for the invariant measure was independently obtained by
A.O. Gel’fond[3] and by W. Parry[2], as

νβ (y) =
1
F

∞

∑
n=0

εn (y)
β n (8)

where εn is the digit sequence

εn (y) =

{
0 if tn

β
(1)≤ y

1 otherwise

and F is a normalization constant.
In the same way that a dyadic rational p/2n has two different binary expansions,

one ending in all-zeros, and a second ending in all-ones, so one may also ask if and
when a real number x might have more than one β -expansion (for fixed β ). In gen-
eral, it can; N. Sidorov shows that almost every number has a continuum of such
expansions![4]

Conversely, the “univoke numbers” are those values of β for which there is only
one, unique expansion for x = 1. These are studied by De Vries.[5]
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The β -transformation has been shown to have the same ergodicity properties as
the Bernoulli shift.[6] The fact that the beta shift, and its subshifts are all ergodic is
established by Climenhaga and Thompson.[7]

An alternative to the notion of ergodicity is the notion of universality: a β -expansion
is universal if, for any given finite string of bits, that finite string occurs somewhere in
the expansion. This variant of universality was introduced by Erdös and Komornik[8].
Its is shown by N. Sidorov that almost every β -expansion is universal.[9] Conversely,
there are some values of β for which rational numbers have purely periodic β -expansions;[10]
all such numbers are Pisot numbers.[11]

The symbolic dynamics of the beta-transformation was analyzed by F. Blanchard[12].
A characterization of the periodic points are given by Bruno Maia[13]. A discussion
of various open problems with respect to the beta expansion is given by Akiyama.[14]

When the beta expansion is expanded to the entire real-number line, one effectively
has a representation of reals in a non-integer base. One may ask about arithmetic prop-
erties, such as the behavior of addition and multiplication, in this base - for example, the
sum or product of two β -integers may have a fractional part! Bounds on the lengths of
these fractional parts, and related topics, are explored by multiple authors.[15, 16, 17]

Certain values of β - generally, the Pisot numbers, generate fractal tilings,[18, 19,
20, 10, 14] which are generalizations of the Rauzy fractal. An overview, with common
terminology and definitions is provided by Akiyama.[21] The tilings, sometimes called
(generalized) Rauzy fractals, an be thought of as living in a direct product of Euclidean
and p-adic spaces.[22]

The set of finite beta-expansions constitutes a language, in the formal sense of
model theory and computer science. This language is recursive (that is, decidable by a
Turing machine), if and only if β is a computable real number.[23]

The zeta function, and a lap-counting function, are given by Lagarias[24]. The
Hausdorff dimension, the topological entropy and general notions of topological pres-
sure arising from conditional variational principles is given by Daniel Thompson[25].
A proper background on this topic is given by Barreira and Saussol[26].

None of the topics or results cited above are made use of, or further expanded on, or
even touched on below. That’s mostly because what follows below is just a ... different
perspective on the topic. Not intentionally so; it just happened to come out that way.

2 Symbolic Dynamics
The Bernoulli shift corresponds to the sequence of binary digits of a real number. Such
sequences can be imagined to belong to the space of all possible sequences of binary
digits, the Cartesian product of infinitely many copies of the set containing two ele-
ments:

{0,1}×{0,1}×{0,1}× ·· ·= {0,1}ω = 2ω

This space has a natural topology, the product topology, which differs sharply from the
natural topology on the real-number line. Essentially all of the strange phenomena of
fractals and of iterated functions follows from the product topology on this sequence.

One notable effect that can be explained in terms of the product topology is the
fractal self-similarity of many kinds of fractals: this arises from the self-similarity of
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the product space under the action of a shift: specifically, the left-shift, which discards
the left-most digit, and shifts the rest over by one. The shift operator itself is that
operator that performs this shift; self-similar fractals can be seen to be eigenstates of
the shift operator.

Another notable effect is the close proximity of the Cantor set to the proceedings. In
a certain sense, the Cantor set can be understood to be the most basic manifestation of
the product space. When attuned to its presence, it can be seen everywhere throughout
the proceedings.

A third byproduct is the manifestation of the infinitely-deep binary tree. This arises
when the set {0,1} of the product space is re-interpreted as the set {L,R} of left-right
moves. At each point in a binary sequence, one can make a choice of one of two things:
to move left or right. This naturally suggests a binary decision tree.

A fourth byproduct is the presence of some implicit, ambient hyperbolic space.
The infinite binary tree, when drawn on flat two-dimensional space, simply “runs out
of room”, as each subsequent branching pushes closer together. The infinite binary
tree can be embedded in the simplest hyperbolic space, the Poincaré disk or upper-
half-plane, in such a way that the distance, the spacing between two neighboring nodes
is always the same. Visually, this takes the form of some prototypical M.C. Escher
drawing, of a repeated fractal form moving out to the edge of a disk. This makes the
self-similar shape of the infinite binary tree manifest: as one moves from one location to
another, one always sees “the same thing” in all directions: the space is homogeneous.

The rational numbers play a very special role in the infinite binary tree. Dyadic
rationals, of the form (2p+1)/2n for integers p and n correspond to bit sequences
(eqn 2) that terminate in all-zeros after a finite number of moves. That is, after an
initial “chaotic” sequence, they settle down to a fixed point of period one. General
rational numbers p/q behave similarly, in that after an initial “chaotic” sequence, they
settle down to periodic orbits of some fixed period. The bit-sequence becomes cyclic.
This cyclic behavior implies that most of classical number theory can be dragged into
the proceedings. Any particular statement that classical number theory makes with
regard to rational numbers, or even modular forms, can be promptly ported over to a
statement about the bit-sequences and the orbits of the Bernoulli shift, usually taking
on a strange and unrecognizable form.

All of these things go together, like hand in glove: whenever one is manifest and
visible, the others are lurking right nearby, in the unseen directions. All of these things
can be given a formal and precise definition, and their explicit inter-relationships artic-
ulated. This has been done by a wide variety of authors over the last four decades; a
proper bibliography would be overwhelming. I have written on all of thee topics, trying
to present them in the simplest, most jargon-free way that I can, in a dozen different
texts available wherever you found this one. The ideas will not be repeated here; they
are not immediately useful to the current proceedings. None-the-less, the general in-
terplay between all of these concepts is extremely important to understand, and burbles
constantly under the surface of the current proceedings. In essence, shifts and subshifts
are interesting precisely because they touch on so any different topics; and, conversely,
so many different areas of mathematics can inform the subshift.
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2.1 Symbolic Dynamics
Given that iteration can generate strings of binary digits, and that these can be reassem-
bled back into real numbers, it is interesting to ask what those mappings look like. To
firm up the notation, let(bn) = (b0,b1,, · · ·) denote a sequence of bits (or symbols) and
write

xβ ((bn)) =
1
2

∞

∑
n=0

bn

β n

as the real number generated from that sequence. Conversely, given a real number x,
let
(
kn;β (x)

)
denote the sequence of bits obtained by iterating the beta shift on x with

constant β ; that is, the sequence generated by eqn. 4. The bit sequence for (kn;2 (x)) is
just the bit sequence (bn (x)) generated by eqn 2. The transformations between symbol
sequences and real numbers make sense only when 1 < β ≤ 2.

Two interesting functions can be considered. One is the compressor

cprβ (y) = x2
((

kn;β (y)
))

and the other is the expander

pdrβ (y) = xβ ((kn;2 (y))) (9)

The terms “compressor” and “expander” are being invented here to indicate negative
and positive Lyapunov exponents associated with the two functions. For almost all y,
the compressor function is pushing nearby points closer together; the total measure of
the range of the compressor function is less than one. Likewise, for almost all y, the
expander function is pushing nearby points apart. These two functions are illustrated
in figures 7 and 8.

The two functions are adjoint; specifically, one has that pdrβ

(
cprβ (y)

)
= y but

that cprβ

(
pdrβ (y)

)
6= y. The former relation is equivalent to eqn. 5. Not all possi-

ble sequences of bit strings appear in the beta shift sequence
(
kn;β (x)

)
; that is, this

function is not a surjection onto {0,1}ω . This manifests itself as the gaps in the range
of the compressor function, clearly visible in figure 7. If a sequence of bits is viewed
as a sequence of left-right moves walking down a binary tree, this implies that some
branches of the tree are never taken, and can be pruned. Only branches on the right are
ever pruned: That is, there can be arbitrarily long sequences of zeros in the expansion,
but the longest possible sequence of 1’s is always bounded. The longest run of 1’s
possible is the largest value of n that satisfies

2≥ 1+β +β 2 + · · ·β n−1

β n−1

Solving, the bound is

n = 1+
⌊
− log(2−β )

logβ

⌋
(10)
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Figure 7: Compressor Function
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This illustrates the compressor function for various values of β . As should be clear,
almost all input values are mapped to a set of discrete output values.

Figure 8: Expander Function
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This illustrates the expander function for various values of β . As should be clear,
almost all neighboring input values are mapped to wildly different output values.
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That is, every n’th right branch is pruned from the binary tree. For example, a run
of three 1’s in a row is possible only for β ≥

(
1+
√

5
)
/2 = 1.618034 · · · the Golden

Ratio. The range of cprβ (y) is most of, but not all of the Cantor set. The figure 9
visualizes the range of the compressor as a function of β .

2.2 Shifts with holes
Viewed as a shift space, as opposed to a cut-down binary tree, the trimming can be
thought of as a punching of holes into the full shift. This requires a bit of mental gym-
nastics. Let (a,c) be an (open) interval on the real number line: (a,c) = {x |a < x < c}.
Given the Bernoulli shift b(x) = T2 (x) from eqns 1 or 3, consider the set

I (a,c) = {x |bn (x) /∈ (a,c) for any n≥ 0}

That is, as one iterates on some fixed x, one requests that no iterate bn (x) ever lands
in the interval (a,c). In essence, one has punched a hole in the unit interval; this
corresponds to a “hole” in the full Bernoulli shift. The set I (a,c) is what remains
after punching such a hole.

How can this be visualized? Considering the case n = 0, its clear that I (a,c)
cannot contain (a,c). That is, I (a,c)∩ (a,c) = /0. For n = 1, the interval (a,c) can
come from one of two places: either from

( a
2 ,

c
2

)
or from

( a+1
2 , c+1

2

)
, and so neither

of these can be in I (a,c). Continuing, for n = 2, the intervals
( a

4 ,
c
4

)
,
( a+1

4 , c+1
4

)
,( a+2

4 , c+2
4

)
and

( a+3
4 , c+3

4

)
must also be gone. Continuing in this fashion, one proceeds

with an infinite hole-punch: to obtain I (a,c), one just cuts out (a,c) and everything
that iterates to (a,c). For the holes, write

H (a,c) =
∞⋃

n=0

2n−1⋃
k=0

(
a+ k

2n ,
c+ k

2n

)
and for the interval with the holes punched out:

I (a,c) = [0,1]\H (a,c)

where
⋃

denotes set-union and \ denotes set subtraction. It is not hard to see that,
in the end, this forms a contorted Cantor set, using the standard midpoint-subtraction
algorithm, but with different endpoints. The canonical Cantor set is built by taking
(a,c) =

( 1
3 ,

2
3

)
.

Note that both H (a,c) and I (a,c) are subshifts: applying the left-shift to them
just returns the same set again. Bot are invariant under the action of the shift operator.
In formulas,

bH (a,c) = H (a,c)

and
bI (a,c) = I (a,c)

where, for notational simplicity, the parenthesis are not written, so that for the set S,
write bS = b(S). As shifts, its more appropriate to view both as sets of bit-sequences,
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Figure 9: Range of the compressor

This figure illustrates a color coded visualization of the range of the compressor func-
tion. As before β varies from 0 at the bottom to 2 at the top, and y varies from 0 on
the left to 1 on the right. In general, the compressor function maps intervals of the
real number line to single points; the color corresponds to the size (the measure) of the
intervals that were mapped to that particular point. Blue corresponds to a compression
of the measure by about 1, green to a compression of about 2-3, and yellow-red to a
compression greater than that.
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so that the proper relationship between one and the other should have been written as

I (a,c) = {0,1}ω \H (a,c)

How should these subshifts be visualized as strings? Let (bn (x)) be the bit sequence
generated by x, for some a < x < c. The cut operation states that such strings can never
occur anywhere in I (a,c). Explicitly, I (a,c) never contains sequences of the form
d0d1d2 · · ·dkb0 (x)b1 (x)b2 (x) · · · for any arbitrary leading bits d0d1d2 · · ·dk.

How should these subshifts be visualized as binary trees? The simplest case to
visualize is to take a = m/2n and c = (m+1)/2n being dyadic rationals, for some
integers m,n. In this case, one takes the bit-expansion for both have the same n leading
bits: one starts at the root of the tree, and walks down the binary tree, making left-right
moves in accordance with this sequence, and after n moves, arrives at a node above a
subtree. Just cut out this subtree, in it’s entirety. That’s the first cut. Now repeat the
process, for the left and right subtrees, from off the root, ad infinitum. For a and c not
dyadic rationals, the process is more complicated. If a and c are ordinary rationals, thus
having a repeating bit-sequence, one performs in the same way, but cyclically walking
down the side branches of subtrees. For a and c irrational, the algorithm is considerably
more complicated, and is left as an exercise for the reader :-).

A general classification of shifts with holes, for the beta transform, was performed
by Lyndsey Clark[27].

2.3 Generalized compressors and expanders
The range of the compressor function is a shift with a hole. Specifically, for a given
β , the range of cprβ is I

(
β

2 ,
1
2

)
. The construction for shifts with holes can then be

applied to construct generalized compressor and expander functions. One way, which
is really rather cheesy, but it works, is to define the function

dcprβ ,γ (a;x) =
∞

∑
n=0

[
1

γn+1

2n−1

∑
k=0

δ

(
x− a+ k

β n

)]

and then define the generalized compressor as

cpr(a;x) =
∫ x

0
dcpr(a;y)dy

That is, as one walks along the unit interval, from left to right, one picks up points with
weights on them, obtaining a generalized Devil’s staircase (Cantor-Vitali) function.
This generalization does not seem to be terribly useful here, and is left to rot.

2.4 Self-similarity
Subshifts are, by definition, self-similar. If S is a subshift, and T is the shift operator,
then T S = S is a part of the definition of the subshift. It is fun to see how this actually
manifests itself on the unit interval.
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So, the two functions cpr and pdr are self-similar. The pdr function demonstrates
classic period doubling self-similarity: namely, under g(x) = x/2, it behaves as(

pdrβ ◦g
)
(x) = pdrβ

( x
2

)
=

1
β

pdrβ (x)

while under reflection r(x) = 1− x, it behaves as(
pdrβ ◦ r

)
(x) = pdrβ (1− x) =

β

2(β −1)
−pdrβ (x)

Note that

lim
x→1

pdrβ (x) =
β

2(β −1)

The full dyadic monoid is generated by the generators g and r; see other posts from me
for lengthly expositions on the structure of the dyadic monoid and its relationship to
the Cantor set and a large variety of fractals.

Here, g is the generator that corresponds to the shift operator T . The notation g is
used only to stay consistent with other things that I’ve written. The generator r indicates
that the subshift is also invariant under reflection; in this case, under the exchange of
the symbols 0↔ 1 in the corresponding shift.

The function cpr also exhibits self-similarity, although it alters (expands) what hap-
pens on the x axis. Several self-similarities are apparent. First, for 0≤ x≤ 1, one has

cprβ

( x
2

)
=

1
2

cprβ

(
βx
2

)
Equivalently, for 0≤ y≤ β/2 one can trivially restate the above as

cprβ

(
y
β

)
=

1
2

cprβ (y) (11)

Although it follows trivially, this restatement helps avoid later confusion.
The left and right halves are identical to one-another, but offset:

cprβ

(
1
2
+

x
2

)
=

1
2
+ cprβ

( x
2

)
It follows that

cprβ

(
1
2
+

y
β

)
=

1
2
+

1
2

cprβ (y)

Combining the above results into one, one has that

cprβ

(
y
β

)
+ cprβ

(
1
2
+

y
β

)
=

1
2
+ cprβ (y)

This last form is interesting, as it makes an appearance in relation to the transfer oper-
ator, defined below.
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2.5 Other things with similar symmetry
The cpr curve is just one that belongs to a class of such curves. As an example, one
may construct a Takagi (blancmange) curve by iterating triangles whose peak is lo-
cated at 1/β . The Takagi curve is an example of a curve transforming under a 3-
dimensional representation of the dyadic monoid; the cpr curves transforms under a
two-dimensional representation. See my paper on the Takagi curve for details. Figure
10 shows such a curve. Denote by takβ ;w (x)a curve constructed in this fashion. The
transformation properties of this curve include self-similarity on the left, as

takβ ;w

(
x
β

)
= x+w takβ ;w (x)

for 0≤ x≤ 1 and self-similarity on the right, as

takβ ;w

(
1
β
+ x
(

1− 1
β

))
= 1− x+w takβ ;w (x)

Both of these properties follow directly from the construction of the curve; they can be
taken as the defining equations for the curve. That is, the curve can be taken as that
function which satisfies these two recursion relations.

The derivative of the skew Takagi curve is shown in figure 11, and, for lack of a
better name, could be called the skew Haar fractal wavelet. It can be defined as the
formal derivative

harβ ;w (x) =
d
dx

takβ ;w (x)

This formal derivative is well-defined, as the skew Takagi is smooth and piecewise-
linear almost everywhere; the places where it has corners is a dense set of measure
zero. That is, the derivative is defined everywhere, except on a set of measure zero,
which happens to be dense in the unit interval.

Note that the Haar fractal wavelet is piece-wise constant everywhere. It is con-
structed from a “mother wavelet” given by

hβ (x) =

{
β for 0≤ x < 1

β

−β

β−1 for 1
β
≤ x≤ 1

(12)

which is then iterated on to form the fractal curve harβ ;w (x). The self symmetries are

harβ ;w

(
x
β

)
= β +w harβ ;w (x)

and

harβ ;w

(
1
β
+ x
(

1− 1
β

))
=− β

β −1
+w harβ ;w (x)
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Figure 10: Skew Takagi Curve
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This figure shows a skew Takagi curve, and the first four steps of its construction. The
initial triangle is of height 1; the apex is located at 1/β , for β = 1.6 in this figure.
Subsequent triangles obtain a height of w=0.7 above the apex point, and are similarly
skew.

Figure 11: Skew Haar Wavelet
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This figure shows the derivative of the skew Takagi curve. Note that it is piece-wise
constant everywhere. The mother wavelet is shown, as well as the fourth iteration. The
specific values graphed are β = 1.6 and w = 0.7.
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2.6 Fixed Points; Periodic Orbits
The Bernoulli shift, given by eqn 2, generates every possible bit-sequence. As was
observed in a previous section, not every possible bit-sequence occurs in the beta shift.
The longest sequence of all-ones possible was given by eqn 10. Arbitrary finite lengths
of zeros do appear; but are there fixed points, i.e. sequences that terminate in all-zeros?
Clearly, x = 1/2β n is such a fixed point: after n+1 iterations of eqn 3, x goes to zero,
and stays there. Is this the only such fixed point? The answer depends on β . If β

can be written in the form of β n = 2m+ 1 for some integers n and m, then the values
of x which can iterate down to zero in n+ 1 steps are dense in the interval [0,β/2].
Curiously, such values β are dense in the interval [1,2). A later chapter performs
explores periodic orbits in great detail.

3 Transfer operators
The discovery and study of invariant measures, as well as of decaying states can be
approached via the transfer operator, or, properly named, the Ruelle-Frobenius-Perron
operator. This is an operator that captures the behavior of a distribution under the action
of a map. The invariant measure is an eigenstate of this operator; indeed, it provides a
formal definition for what it means to be invariant under the action of the map.

Given an iterated map g : [0,1]→ [0,1] on the unit interval, the transfer operator
defines how distributions are acted on by this map. It is defined as

[Lg f ] (y) = ∑
x=g−1(y)

f (x)
|g′(x)|

The left adjoint of the transfer operator is the composition operator (Koopman opera-
tor). This is defined as

[Cg f ] (y) = f (g(y))

The Koopman operator is adjoint, in the sense that LgCg = 1 but that, in general,
CgLg 6= 1.

3.1 The β -transform Transfer Operator
The transfer operator for the beta shift map Tβ (x) is

[
Lβ f

]
(y) =

{
1
β

[
f
(

y
β

)
+ f

(
y
β
+ 1

2

)]
for 0≤ y≤ β/2

0 for β/2 < y≤ 1

or, written more compactly[
Lβ f

]
(y) =

1
β

[
f
(

y
β

)
+ f

(
y
β
+

1
2

)]
Θ

(
β

2
− y
)

(13)

where Θ is the Heaviside step function. The density distributions graphed in figure 1
are those functions satisfying [

Lβ ρ
]
(y) = ρ (y) (14)
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That is, the ρ(y) satisfies

ρ (y) =
1
β

[
ρ

(
y
β

)
+ρ

(
y
β
+

1
2

)]
Θ

(
β

2
− y
)

(15)

This is generally referred to as the Ruelle-Frobenius-Perron (RFP) eigenfunction, as
it corresponds to the largest eigenvalue of the transfer operator, and specifically, the
eigenvalue 1.

More generally, one is interested in characterizing the eigenspectrum[
Lβ ρ

]
(y) = λρ (y)

for eigenvalues |λ | ≤ 1 and eigenfunctions ρ(y). Solving this equation requires choos-
ing a space of functions in which to work. Natural choices include any of the Banach
spaces, and in particular, the space of square-integrable functions. Particularly inter-
esting is the space of almost-smooth functions, those having discontinuities at only a
countable number of locations, but otherwise being infinitely differentiable. Although
the discussion so far implicitly conditions one to restrict oneself to real-valued func-
tions, and to consider only real-valued eigenvalues, this is perhaps too sharp a restric-
tion. It will become clear in the following chapters that even the most basic form of
Lβ has a complex-valued spectrum. At any rate, it should be obvious that, whatever
the choice of function space, one must have that ρ (y) = 0 whenever β < 2y. This turns
out to be a rather harsh condition.

At least one basic fact is known: for at least some kinds of function spaces, the
RFP eigenfunction is given by Gel’fond and Parry, as shown in eqn 8. More precisely,
it is just the rescaled form ρ (x) = ν (2x/β ) for x < β/2 and zero otherwise. Changing
vocabulary, this is sometimes called the “invariant measure”; as it describes a measure
on the unit interval. That is, for the space of all possible measures on the unit interval,
the Gel’fond-Parry measure is one of the eigenfunctions of the transfer operator. Some
caution is advised here: for the special case of β = 2, that is, the Bernoulli shift, one has
as an eigenfunction the Minkowski measure[37]; it has eigenvalue 1, but is otherwise
quite pathological: it is continuous nowhere, zero on the rationals, and divergent on
the rest (i.e. on a “fat” Cantor set). There’s no particular reason to think that this holds
only for β = 2; measures can be, in general, very unusual functions.

A very minor simplification can be achieved with a change of variable. Let y =
β

2 − ε . Then the eigenequation becomes

λβρ

(
β

2
− ε

)
= ρ

(
1
2
− ε

β

)
+ρ

(
1− ε

β

)
The second term vanishes whenever β/2 < 1−ε/β or ε < β (1−β/2) and so one has
the simpler recurrence relation

λρ (y) =
1
β

ρ

(
y
β

)
(16)

whenever β (β −1)< 2y≤ β .
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The equations 15 and 16 can be treated as recurrence relations, defining the λ = 1
eigenstate. Recursing on these gives exactly the densities shown in figure 1. Computa-
tionally, these are much, much cheaper to compute, at least for β much larger than 1,
although convergence issues present themselves as β approaches 1. The resulting den-
sity may be called the Ruelle-Frobenius-Perron eigenstate; because it can be quickly
computed, it provides an alternative view of figure 1, free of stochastic sampling noise.

3.2 A note on complex eigenvalues
Since the operator Lβ is purely real, then if it has a complex spectrum, the eigenvalues
and eigenfunctions must come in complex-conjugate pairs. This can make numerical
searches and numerical convergence behave in unexpected ways, so some brief com-
mentary is in order.

Assume that there exists some complex-valued eigenfunction ρλ (x) for fixed, com-
plex eigenvalue λ . Write it’s real and complex components as

ρλ (x) = σ (x)+ iτ (x)

while also writing λ = a+ ib. Then[
Lβ σ

]
(x) =

1
2
[
Lβ (ρλ + ρ̄λ )

]
(x)

=
1
2
(
λρλ (x)+ λ̄ ρ̄λ (x)

)
=aσ (x)−bτ (x)

Both left and right sides of the above are real. If one had somehow stumbled upon σ (x)
numerically, as an eigenvector-candidate, then the above admixing of the imaginary
component would quickly throw one off the hunt. Thus, a numeric search for complex-
valued eigenfunctions must necessarily take into account eigenfunction pairs, with real
and imaginary components that mix together as above.

3.3 Almost-solutions
If one ignores the Heaviside step function in the definition 13, one easily finds a num-
ber of “almost solutions” to the transfer operator. These are most easily discussed by
defining the operator

[
Pβ f

]
(y) =

1
β

[
f
(

y
β

)
+ f

(
y
β
+

1
2

)]
Solving this operator is relatively straight-forward. Consider, for example, the mono-
mial f (y) = yn. Clearly,

[
Pβ yn

]
is a polynomial of degree n and that therefore, the

space of polynomials is closed under the action of Pβ . But this result is even stronger:
the monomials provide a basis in which Pβ is upper-triangular, i.e. solvable. It’s
eigensolutions in this basis are polynomials. The eigenspectrum is clearly discrete,
and is given by (β )−n−1 for integers n corresponding to the degree of the polynomial
eigensolution.
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This all goes horribly wrong if one instead considers Lβ and the almost-monomials

f (y) = ynΘ

(
β

2 − y
)

. This does not provide a basis that is closed under the action of
Lβ . Attempting to find the closure by iterating on Lβ generates a splatter of step
functions. This case is examined more closely in the next chapter.

Attempting some guess-work, the self-similarity of the cpr function suggests an
opening. Specifically, let eiβ (x) = cprβ (x)−1/2. The one finds that

[
Pβ eiβ

]
(y) =

1
β

[
eiβ

(
y
β

)
+ eiβ

(
y
β
+

1
2

)]
=

eiβ (y)
β

This is a non-polynomial, fractal eigenfunction of Pβ , and, with a bit of elbow-grease,
one can find many more. This includes the Takagi functions, and their higher-order
analogs, which are, roughly speaking, Takagi functions constructed from polynomials.
These all have interesting self-similarity properties under the dyadic monoid.

Unfortunately, one has that eiβ (x) 6= 0 when β < 2x; it won’t do as an eigenfunction
of Lβ . There is no obvious, simple modification of eiβ (x) that would cause it to be a

valid eigensolution of Lβ . Manually installing a factor of Θ

(
β

2 − y
)

and then iterating
to find the closure leads to the same splatter of step functions as in the case of the
polynomials.

Another interesting case arises if one attempts a Fourier-inspired basis. Define

eβ ;n;l (x) = exp i2π (2l +1)β
nx

for integer l. One then obtains a shift sequence

[
Pβ eβ ;n;l

]
(x) =

1
β

eβ ;n−1;l (x)
(

1+ eβ ;n;l

(
1
2

))
This is not a viable candidate for Lβ , as it is again beset by the step function. As a shift
sequence, it can be used to construct coherent states that are eigenfunctions of Pβ ,
having any eigenvalue within the unit disk. Specifically, observe that eβ ;0;l (1/2) =
exp iπ (2l +1) = −1 so that

[
Pβ eβ ;0;l

]
(x) = 0 and so the shift sequence terminates

after finite iteration. Given a complex value z, construct the coherent state as

φl;z (x) =
∞

∑
n=0

zneβ ;n;l (x)

The shift is then[
Pβ φl;z

]
(x) =

z
β

∞

∑
n=0

zn
(

1+ eβ ;n+1;l

(
1
2

))
eβ ;n;l (x)

This is not particularly useful, until one notices that for for certain values of β , this
contains nilpotent sub-series.
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Specifically, fix a value of n=N and consider those values of β for which eβ ;N;l (1/2)=
−1. This holds whenever β N is an odd integer, that is, whenever β = (2m+1)1/N (and,
as always, β ≤ 2). For these special values of β , one has that

[
Pβ eβ ;N;l

]
(x) = 0 and

so the functions

φl;z;N (x) =
N

∑
n=0

zneβ ;n;l (x)

vanish after N iterations of Pβ . That is, these can be used to form a a basis in
which Pβ is nilpotent. Conversely, letting m and N be free, the values for which
β = (2m+1)1/N are dense in the interval [1,2) and so any β is arbitrarily close to
one with a nilpotent function space. These values of β are exactly the same values for
which the bit sequences given by eqn 4 eventually terminate in all zeros; i.e. become
periodic fixed points with period 1.

The existence of a dense set of fixed points is dual to the the existence of nilpotent
densities. That is, one “causes” or “forces” the other to happen. This idea should be
further elaborated, as it establishes a duality between countable and uncountable sets,
which has an element of curiosity to it.

Presumably, there are special values of β which allow a periodic orbits to originate
from a dense set. Such values of β , and such periodic orbits, should then correspond
to specific self-similarities of the φl;z (x) function, specifically manifesting as cyclic
behavior in

(
1+ eβ ;n+1;l

( 1
2

))p
for some period p. Whether there is some similar man-

ifestation for Lβ is wholly unclear; however, the examination of the periodic orbits of
the beta shift, undertaken in a later chapter, will provide a strong clue.

3.4 Rotated Renyi-Parry function
A different class of almost-solutions starts with the Renyi-Parry invariant measure de-
fined in eqn 8. Using this, one may define a “rotated” function

vβ ;z (x) =
∞

∑
n=0

dn (x)
β n zn (17)

where dn (x)= εn (2x/β ) are the same digits as defined by Renyi and Parry, just rescaled
for the beta shift convention being used here. That is,

dn (x) =

{
1 if x < T n

(
β

2

)
0 otherwise

and T the beta shift map of eqn 3. The summation is clearly convergent (and holomor-
phic) for complex numbers z within the disk |z|< β .

Exploring this numerically, one finds that[
Lβ vβ ;z

]
(x) =

1
z

vβ ;z (x)+C (β ;z)

where C (β ;z) is a constant independent of x (or rather, a constant for x < β/2 and zero
otherwise). The fact that C (β ;z) is a constant independent of x can be taken either
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as a humdrum fact, typical of the territory, or as a big unexplained surprise! I prefer
the later. The sequence of digits dn (x) depend strongly on x. The function vβ ;z (x)
depends strongly on x. The digits dn (x) are entangled in an analytic series, in very
highly non-trivial form. This is worth pursuing to great extent.

First, some baby-steps. Combining the above expressions, one can write

C (β ;z) =
[
Lβ vβ ;z

]
(y)−

vβ ;z (y)
z

=
∞

∑
n=0

zn

β n

[
1
β

dn

(
y
β

)
+

1
β

dn

(
y
β
+

1
2

)
− 1

z
dn (y)

]
Again: this is a constant, independent of y for 0≤ y < β/2, and zero for y≥ β/2. This
only holds for the sum; individual terms are not independent of y. The interesting limit
is where |z| → β and so its convenient to define

D(β ;ζ ) =ζ βC (β ;ζ β )

=
∞

∑
n=0

ζ
n
[

ζ dn

(
y
β

)
+ζ dn

(
y
β
+

1
2

)
−dn (y)

]
This is holomorphic on the unit disk |ζ |< 1, as each individual dn is either zero or one;
there won’t be any poles inside the unit disk. Again, this is independent of y.

The equation is readily simplified. Set y= 0, to obtain dn (0) = 1. Cancelling terms,
one obtains

D(β ;ζ ) =−1+ζ

∞

∑
n=0

ζ
ndn

(
1
2

)
(18)

This is straight-forward to examine numerically; the disk is readily plotted, and reveals
what looks like a countable number of zeros in the disk |ζ | < 1, and then many more
in the limit |ζ | → 1. Each zero corresponds to an eigenfunction/eigenvalue pair, the
eigenfunction given by eqn 17. The table below lists some examples; the numbers are
accurate to about the last decimal place.

β z |z| 1/z
1.8 -1.591567859 1.591567859 -0.6283112558
1.8 -1.1962384 +i 1.216022231 1.705783215 -0.4111213835 - i 0.4179206604
1.8 0.9919147363 +i 1.446092984 1.753590535 0.3225655308 -i 0.4702619429
1.6 -1.063651387 +i 1.008959895 1.466067646 -0.4948701876 -i 0.4694246429
1.4 0.550836432 +i 1.178171082 1.300579822 0.3256481633 -i 0.6965211931
1.2 0.9578845659 +i 0.6073301155 1.134192537 0.7446284155 -i -0.4721187476

These are not particularly meaningful numbers; they just give a flavor for some
locations of eigenvalues. The overall distribution is scattered; the zeros appear in not
very predictable locations, mostly not far from the edge of the disk. Insight into this
behavior is developed in depth in later chapters. A typical eigenfunction is shown in
figure 12; this is for the zero listed in the last row of the table above. Although its
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Figure 12: Typical Eigenfunction
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unlike figure 1, it does have the same general characteristics, belonging to the same
family.

Formula 18 will reappear in a later chapter, where it is found to describe periodic
orbits of the beta shift. It will serve to tie together the transfer operator with the behav-
ior of orbits.

This section ends with a deep mystery: why is C (β ;z) independent of the y coor-
dinate? How should it be explained? How can it be put to good use? Might there be
more of such identities? Or is there only this one?

3.5 Analytic Ergodics
Why is C (β ;z) independent of the y coordinate? And is this surprising, or not surpris-
ing?

Perhaps it should not be surprising. The full shift (the Bernoulli shift) has an ab-
solutely flat, uniform distribution. This is not a surprise: real numbers are uniformly
distributed on the real number line. Pick almost any real number: the binary digits are
uniformly distributed. The FP eigenfunction of the transfer operator for the Bernoulli
shift is a constant. This is not a surprise; the uniformity of the reals demands this.

Compare to the invariant measure of eqn 8, shown in the very first figure 1. The
figure clearly consists of flat plateaus; the flatness harking back to, and “explained by”
the flatness of the real numbers. But those flat regions arise from eqn 17 (with z = 1),
and if one looks at the individual binary digit sequences dn (x) for two different values
of x, these sequences become wildly, crazily, chaotically different; why should they
sum to the same value? This now seems to be profound, in some way that the flatness
of the reals is not.

Presumably, this should be known as “the fundamental theorem of analytic ergod-
ics”. Or at least, “the funamental theorem of analytic subshifts”. Oddly, I’ve never
heard of such a theorem, nor recollect any proof of it having scrolled past my eyes.
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Perhaps it is known. It certainly deserves greater fame; it seems like it would be quite
the tool to unlock many of the mysteries being fumbled-over in this text.

3.6 Iterated transfer operator
To understand the nature of the steady-state solution (the Frobenius-Perron eigenstate),
its is worth iterating on the recurrence relation for it, by hand, the first few times. To
do this, it is convenient to write it in the form[

Lβ f
]
(y) =

Θ(y)
β

[ f (α (y))+ f (ω (y))]

where Θ(y) = 1 if y≤ β/2 else zero; this is a step function to denote the vanishing for
the operator for 2y > β . (This differs from the use of Θ as the Heaviside step function
in earlier sections; the intent is the same, but the goal is to have a briefer notation
here. Which is which should be clear from context.) The functions α (y) = y/β and
ω (y) = 1

2 +α (y) are convenient shorthands for symbolic iteration.
Iterating once gives[

L 2 f
]
(y) = Θ(y)

β 2

[
Θ(α (y))

[
f
(
α

2 (y)
)
+ f ((ω ◦α)(y))

]
+

Θ(ω (y))
[

f ((α ◦ω)(y))+ f
(
ω

2 (y)
)]]

Using a simplified notation g(y) = f (α (y))+ f (ω (y)) allows this to be iterated a third
time:[

L 3 f
]
(y) = Θ(y)

β 3

[
Θ(α (y))

[
Θ
(
α

2 (y)
)

g
(
α

2 (y)
)
+Θ(ωα (y))g(ωα (y))

]
+

Θ(ω (y))
[
Θ(αω (y))g(αω (y))+Θ

(
ω

2 (y)
)

g
(
ω

2 (y)
)]]

and a fourth time, this time omitting the argument, and the various nesting parenthesis.[
L 4 f

]
(y) = Θ(y)

β 4

[
ΘαΘα

2 [
Θα

3gα
3 +Θωα

2gωα
2]+

ΘαΘωα
[
Θαωαgαωα +Θω

2
αgω

2
α
]

ΘωΘαω
[
Θα

2
ωgα

2
ω +Θωαωgωαω

]
ΘωΘω

2 [
Θαω

2gαω
2 +Θω

3gω
3]]

Notice that the primary structure is given by a product of step functions. This is more
conveniently visualized as a tree:

32



For any given iteration, the result is the sum of the vertexes at a given level, while
the product of step functions is the product of the step functions in the tree, following
the path to each node. Because any particular step function might be zero, it effectively
acts to cut off the tree at that location. It is therefore interesting to understand general
products of the α and β functions.

It is convenient to define
γx (y) =

x
2
+

y
β

so that α (y) = γ0 (y) and ω (y) = γ1 (y), so that a general iterated sequence of inter-
mixed α’s and ω’s can be written uniformly in terms of γ . Given a sequence of bits
b0b1b2 · · ·bn with each bk being either zero or one, the iterated sequence of functions
can be written as(

γb0γb1γb2 · · ·γbn

)
(y) =

1
2

[
b0 +

b1

β
+

b2

β 2 + · · ·+ bn

β n

]
+

y
β n+1 (19)

So, for example:
α

n (y) =
y

β n

while

ω
2 (y) =

1
2
+

1
β

(
1
2
+

y
β

)
and, in general, that

ω
n (y) =

1
2

[
1+

1
β
+

1
β 2 + · · · 1

β n−1

]
+

y
β n

Iterated sequences of pairs of functions, of the form γb0γb1γb2 · · ·γbn are reminiscent of
de Rham curves, which generalize Cesaro curves and the Koch snowflake. The proper
definition of a de Rham curve assumes the sequence is of infinite length, and applies a
certain continuity condition, and is generally carried out on the complex plane, so that
a continuous, nowhere-differentiable curve results. Here, the curve is distinctly not
continuous: eqn 19 is a finite-length form of the shift series 5 which can be visualized
as the expander function pdr 9, as shown in figure 8.
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Figure 13: Gamma functions
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Examples of “typical” gamma functions. Both figures show gamma functions for β =
1.6; the one on the left shows them for y = 0, while the one on the right shows them
for y = 0.7. Every gamma function is a sequence of plateaus; the zig-zag line is a
high-order gamma, essentially showing the limiting case. The tree function is unity
whenever all of these curves are below β/2, and is zero when above. So, for example,
for the left figure, the tree function is unity, for all values of x less than about 0.4952;
it drops to zero, then returns to unity above x = 0.5, until about 0.6221, when it briefly
plunges and rises again. Then, another dip, before finally settling to zero near 0.6541.
For the right figure, a high-order zig-zag rises above 0.8 somewhere near 0.4914; then
γx;1 (0.7) rises above 0.8 and stays there, driving the tree function to zero, rendering all
other orders irrelevant.

3.7 The Tree Function
Given a bit sequence (bk) and value for y, define the tree function as

Tβ ((bk) ;y) = Θ(y)
∞

∏
n=0

Θ
(
γb0γb1γb2 · · ·γbn (y)

)
For any given fixed sequence of bits and value of y, this function is either zero or one.
One way to understand this function is to ask how it varies for fixed β and y, but with
the bit sequence coming from the Bernoulli shift of eqn 2, so that bn = bn (x). This
simplifies notation, so that one can write

Tβ (x;y) = Tβ ((bk (x)) ;y) = Θ(y)
∞

∏
n=0

Θ(γx;n (y))

with γx;n (y) = γb0γb1γb2 · · ·γbn (y). Its clear that the tree function has maximum support
when y = 0. Figure 13 shows several gamma functions, and the corresponding tree
function that results. Figure 14 shows the x vs. y behavior of the tree functions. Figure
15 shows the β vs. x behavior of the functions. Figure 16 shows a unified visualization
of the three preceding charts.
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Figure 14: Tree functions

The above illustrate the y vs. x dependence of the tree functions; the left image is for
β = 1.4, the right is for β = 1.6. Green indicates the regions where the tree function is
unity, and black where it is zero. To be clear, this shows Tβ (x;y) with x and y plotted
along the x and y axes. The tree functions shown in figure 13 are just two horizontal
slices taken from the right image: a slice along the bottom, and a slice a bit above the
middle.

3.8 Haar Basis Matrix Elements
The symmetric Haar wavelets are built from the mother wavelet

h(x) =

{
1 for 0≤ x < 1/2
−1 for 1/2≤ x < 1

and has individual wavelets given by

hn j (x) = 2n/2h(2nx− j) for 0≤ j ≤ 2n−1

The matrix elements of the transfer operator are〈
mi
∣∣Lβ

∣∣n j
〉
=
∫ 1

0
hmi (x)

[
Lβ hn j

]
(x)dx

where the operator Lβ is given by eqn 13. Computing these by hand promptly pushes
into a big mess. One can obtain explicit expressions, just that they are tedious to obtain.
Some preliminary observations include that〈

mi
∣∣Lβ

∣∣n j
〉
= 0 if β ≤ i/2m−1

because the transfer operator vanishes above β/2. In the same vein, matrix elements
vanish unless [

i
2m ,

i+1
2m

]
∩
[

β j
2n ,

β ( j+1)
2n

]
6= /0
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Figure 15: Tree function variations

These figures illustrate the β vs. x dependence of the tree function. The upper left
shows Tβ (x;0), the upper right shows Tβ (x;0.3), the lower left shows Tβ (x;0.5), the
lower right shows Tβ (x;0.7). In each case, x runs from 0 to 1 along the x axis, while
β runs from 1 to 2 along the vertical axis. As before, green indicates where the tree
function is unity, and black where it is zero. The tree functions shown in figure 13
correspond to horizontal slices in the first and last images. Note that many (possibly
all??) of the green spikes in the upper-left image reach all the way down to the bottom,
although they are mostly much thinner than a pixel and thus not rendered. The vague
blue hazing near the spikes is an attempt at anti-aliasing, to highlight the sharpness.
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Figure 16: Tree function Unified Visualization

This figure presents a unified visualization of figures 13, 14 and 15. That is, it depicts
the Tβ (x;y) varying all three parameters. The parameterβ runs from 1 at the bottom,
to 2 at the top. The parameter x runs from 0 to 1, left to right. Because Tβ (x;y)
is either zero or one, the color is used to represent the largest value of y for which
1 = Tβ (x;y). The color coding corresponds to red for y = 1, green for y = 0.5, blue
for y = 0.25 and black for y = 0. Thus, for example, figure 15 can be obtained directly
from this, by setting a given color, “or darker”, to black. The figure 14 represents a
single fixed horizontal slice through this figure, with the height of the rectangles in
figure 14 corresponding to the color in this figure.
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or if [
i

2m ,
i+1
2m

]
∩
[

β

(
j

2n −
1
2

)
,β

(
j+1
2n −

1
2

)]
6= /0

In all other cases, the Haar wavelets completely fail to overlap, and thus the matrix ele-
ments are zero. In addition, only three pairs of wavelets overlap in a non-zero fashion.
That is, for a fixed m,n and j, there are at most six different values of i for which the
matrix elements are non-vanishing: the first three of these are the values for which

β j
2n ∈

[
i

2m ,
i+1
2m

]
or

β
(

j+ 1
2

)
2n ∈

[
i

2m ,
i+1
2m

]
or

β ( j+1)
2n ∈

[
i

2m ,
i+1
2m

]
and likewise for three more. The observation is that the integral vanishes unless the
first wavelet intersects an edge transition of the second wavelet.

The primary failure of this basis is that there is no obvious way to diagonalize the
transfer operator in this basis. There is no obvious way of solving it, of finding it’s
eigenfunctions and eigenvalues, other than by brute-force numerical attack.

3.9 Julia Set

Consider the two iterators a0 (y) = min
(

β

2 ,βy
)

and a1 (y) = max
(

0,βy− β

2

)
. Indi-

vidually, they are the two arms of the beta shift. Here, they have been separated from
each other, so that the full domain 0 ≤ y ≤ 1 is allowed. Exploring all possible inter-
iterations for these gives the Julia set for the transfer operator: it indicates where a
point “came from”, for the iterated transfer operator. There are several related ways to
visualize this. One way is to fix y and then, given a bit-sequence (bn) to compute

j ((bn)) = abo ◦ab1 ◦ab2 ◦ · · ·(y)

Figure 17 shows a visualization for finite bit-sequences: in essence, the very first few
iterations. Although it is similar to figure 9, it is not the same.

For a related notion, consider the definition of “laps”, from Jeffrey Lagerias etal.[24].

4 Hessenberg basis
There is a set of Haar-like wavelets in which the transfer operator is of the form of a
Hessenberg operator - that is, the operator becomes almost upper-diagonal, with only
one diagonal, just below the main diagonal, that is non-zero. Explicitly, the transfer
operator Lβ has matrix entries

[
Lβ

]
i j such that

[
Lβ

]
i j = 0 whenever i > j + 1. A

matrix having this form is called a Hessenberg matrix; such matrices have various
interesting properties; among others, they generalize the Jacobi matrix. This chapter
explicitly constructs an infinite-dimensional Hessenberg matrix, which may now be
called a Hessenberg operator.

Hessenberg operators occur naturally in spectral measure theory; some of this will
be reviewed in several later chapters. To get a flavor for what is to come: Given
a Hessenberg operator, one may construct a system of orthogonal polynomials that
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Figure 17: Julia Set visualization

Consider the binary tree of dyadic fractions: that is, the tree whose rows are 1/2, (1/4
3/4), (1/8 3/8 5/8 7/8), ... Consider a function J on this tree. For the head of the tree, set
J (1/2) = β . For the next row, set J (1/4) = a0 (J (1/2)) and J (3/4) = a1 (J (1/2)). It-
erate in this fashion so that J

(
(2k−1)/2n+1

)
= a0 (J (k/2n)) and J

(
(2k+1)/2n+1

)
=

a1 (J (k/2n)) recursively. This produces a function J taking values on every dyadic
fraction k/2n.

In the above figure, β runs from 1 at the bottom to 2 at the top. A single horizontal
slice through the image shows a color-coded version of J, with red coding values near
1, green coding values near 1/2 and blue, fading to black coding values of 1/4 and less.
Note that there are many faint blue lines that extend quite far down, but not all the way
down: these form a stair-step. The image is 1024 pixels wide: it shows the first ten rows
of the binary tree. Although this image is similar to figure 9, it differs in many details.

39



provide a basis for square-integrable holomorphic functions on some domain of the
complex plane. Such a space is called a Berman space; in this sense it generalizes
the Jacobi operator for real Borel measures. This basis of polynomials in turn al-
lows the Hessenberg operator to be explicitly seen as a shift operator on that domain,
with [H f ] (z) = z f (z) for H the Hessenberg operator and f (z) a holomorphic function
(specifically a Bergman function) on the Bergman domain. But all of this is for later
chapters; its mentioned here only to whet the appetite.

4.1 Hessenberg wavelet basis
The transfer operator Lβ can be fairly easily brought into Hessenberg matrix form.
A sequence of of orthonormal functions is constructed in this section; when used as a
basis, the transfer operator becomes almost upper-diagonal.

The trick to the construction is to define wavelets such that the transfer operator ap-
plied each wavelet causes the end-points of the wavelet to exactly line up with the end-
or mid-points of previous wavelets, thus avoiding the nasty interval-overlap algebra
required with the Haar basis. This is accomplished by carefully picking the midpoint
of the next wavelet in the sequence to be located exactly at the discontinuity of the
transfer operator applied to the previous wavelet.

The construction proceeds as follows. Let

ψ0 (x) =

{ 1√
β/2

for 0≤ x≤ β/2

0 for β/2 < x≤ 1

Consider Lβ ψ0. It is the sum of two parts: two step-functions; one which is constant
for x ≤ β/2 and another that is constant for x

β
+ 1

2 ≤
β

2 . Solving explicitly for the
location of the step, it is x = β (β −1)/2. For convenience, define m1 = β (β −1)/2
and m0 = β/2. These will anchor a series of midpoints, beginning with m−1 = 0. Using
the midpoint m1, construct the wavelet

ψ1 (x) =


1

m1

√
m1(m0−m1)

m0
for 0≤ x≤ m1

−1
m0−m1

√
m1(m0−m1)

m0
for m1 < x≤ m0

0 for m0 < x≤ 1

Note that this is normalized to unit length:
∫ 1

0 |ψ1 (x)|2 dx = 1 and that it is explicitly
orthogonal to the first:

∫ 1
0 ψ1 (x)ψ0 (x)dx = 0.

Consider Lβ ψ1. As always, it is the sum of two parts. The midpoint of ψ1 is
at m1 = β (β −1)/2 and this mid-point is mapped to one of two different places. If
m1 < 1/2 then it is mapped to m2 = βm1 else it maps to m2 = β (m1−1/2). Thus, if
m1 < 1/2, define

ψ2 (x) =



0 for 0≤ x≤ m1

1
(m2−m1)

√
(m2−m1)(m0−m2)

m0−m1
for m1 ≤ x≤ m2

−1
(m0−m2)

√
(m2−m1)(m0−m2)

m0−m1
for m2 < x≤ m0

0 for m0 < x≤ 1
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else define

ψ2 (x) =


1

m2

√
m2(m2−m1)

m1
for 0≤ x≤ m2

−1
(m1−m2)

√
m2(m2−m1)

m1
for m2 ≤ x≤ m1

0 for m1 < x≤ 1

Because each end of the interval on which ψ2 is non-zero lies entirely within one of
the constant arms of ψ1, one has, by construction, that

∫ 1
0 ψ2 (x)ψ1 (x)dx = 0 (and, of

course,
∫ 1

0 ψ2 (x)ψ0 (x)dx = 0.)
The rest of the basis can be constructed iteratively, based on these examples. The

midpoints are given by iterating 3 on m0 = β/2, so that mp = Tβ (mp−1) = T p
β
(m0) is

the p’th iterate of β/2. Let ml be largest midpoint smaller than mp (and l < p); let mu
be the smallest midpoint larger than mp (and l < p). Let m−1 = 0 initiate the sequence
by providing the smallest-possible “midpoint”; m0 = β/2 already provides the largest
possible.

Then define

ψp (x) =



0 for 0≤ x≤ ml
Cp

(mp−ml)
for ml ≤ x≤ mp

−Cp

(mu−mp)
for mp < x≤ mu

0 for mu < x≤ 1

(20)

By construction, this has the property that
∫ 1

0 ψp+1 (x)ψn (x)dx = 0 for any n < p+1.
The normalization constant is

Cp =

√
(mp−ml)(mu−mp)

mu−ml

which is determined by requiring that
∫ 1

0

∣∣ψp (x)
∣∣2 dx = 1.

4.2 Matrix Elements
The above-defined basis provides the Hessenberg representation for the transfer opera-
tor. Defining 〈

n
∣∣Lβ

∣∣m〉= ∫ 1

0
ψn (x)

[
Lβ ψm

]
(x)dx (21)

this has the expected Hessenberg form, in that〈
n
∣∣Lβ

∣∣m〉= 0 for n > m+1

This is just one diagonal short of being actually solvable. A visualization of the matrix
elements is shown in figure 18.
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Figure 18: Hessenberg Operator Matrix Elements

Six illustrations of the absolute value of the matrix elements
〈
n
∣∣Lβ

∣∣m〉 for the transfer
operator Lβ for (left to right, top to bottom) β =1.1, 1.2, 1.3, 1.6, 1.90, 1.998 and
0≤ n,m< 48 in the Hessenberg basis. The red color represents values of 0.66 or larger,
green represents values of 0.33 and blue and darker correspond to 0.16 or less. Almost
all matrix elements are in fact precisely zero; black pixels in these images correspond to
matrix elements that are zero. Note that the almost all of the diagonal matrix elements
are exactly zero: that is

〈
n
∣∣Lβ

∣∣n〉 = 0 for most n. The bright-red pixels are just
below the diagonal: for most n, one has that

〈
n+1

∣∣Lβ

∣∣n〉 ? 0.5 with the occasional
blueish pixel suggesting a smaller value. These two, taken together, suggests that the
eigenvalue spectrum is rapidly decreasing. The first few images suggests a regular
pattern that gets increasingly compressed and chaotic as β increases. More-or-less
the sane structure prevails if one instead zooms out to look at the 600x600 submatrix;
animating with fine-grained steps in β does not result in an interesting animated movie.
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4.3 Completeness
The Hessenberg basis construction gives a countable set of ψn that is an orthonormal
basis on the unit interval:

∫ 1
0 ψm (x)ψn (x)dx = δmn. Are they complete? Obviously

the {ψn} cannot be complete on the unit interval, as they all vanish for β/2 < x. Per-
haps they are complete on the interval [0,β/2], where they are already orthonormal:∫ β/2

0 ψm (x)ψn (x)dx = δmn.
A numerical exploration shows that the midpoints mp are dense in the interval

(0,β/2), and so this suggests that the basis should be considered to be “sufficiently
complete” on the interval [0,β/2]. The distribution of the mp follow exactly the dis-
tribution of the invariant measure. Convergence is uniform to the same degree that
the midpoints “eventually” fill in and become dense in some interval. Renyi[1] and
Parry[2] do more: they show that the midpoint process is ergodic (Parry points out
that it’s weakly mixing), and provide a formal proof that the distribution is one and the
same as the invariant measure.

The above has some exceptions: there are some values of β for which the midpoint
m0 iterates x = 1/2, wherupon iteration stops (i.e. iterates to zero), or becomes cyclic
(forming a periodic orbit). Which is which depends on how the point 1/2 is treated by
the map. These values of β are potential “trouble spots”, and are explored in greater
detail in the next chapter. They are dense in the interval 1 < β < 2, but they form a
countable set that can be taken to be of measure zero. Thus, most “most” values of β

are not problematic. Excluding the trouble spots, the Hessenberg basis can be taken to
be complete.

Clearly, the ψn span some subspace; do they span the Hilbert space L2 [0,β/2] of
square-integrable functions on the interval [0,β/2]? To what degree can one legiti-
mately write

δ (y− x) =
∞

∑
n=0

ψn (y)ψn (x)

as a resolution of the identity?
The question of completeness dogs some “obvious” assumptions one wants to

make. For example, if the set of states is complete, and the resolution of the iden-
tity holds, then one expects that the transfer operator resolves to the iterated function:

δ (y− (βx mod 1)) =
∞

∑
n=0

∞

∑
m=0

ψn (y)
〈
n
∣∣Lβ

∣∣m〉ψm (x)

It is fun to verify that the world works as one expects it to work: the above can be
verified to hold numerically, for sums limited to a finite cutoff.

4.4 Numerical Eigenvalues
Given the apparent sparsity visible in figure 18, one might think that the eigenvalue
problem is fairly stable, numerically. It is not all that much. Numerical exploration
suggests that the spectrum is on or near a circle lying in the complex plane2, of radius
|λ |= 1/β (ignoring, that is, the leading eigenvalue of 1, which is easily found).

2This was confirmed with both GSL gsl_eigen_nonsymmv() and Lapack DHSEQR solvers, exploring
the principle submatrix of various sizes, up to about 2000×2000 entries. Both systems agree to at least six
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To be clear, this is a numerical exploration of the N ×N principle submatrix of〈
n
∣∣Lβ

∣∣m〉. The eigenvalue problem being posed is to find a vector ~v = (vk)
N
k=0 that

solves
N

∑
m=0

〈
n
∣∣Lβ

∣∣m〉vm = λvn

for some constant λ (with the set of possible λ depending on N, of course).
There are various pitfalls in extrapolating from this to the N→∞ limit. For the next

few paragraphs, consider only some notion of a “minimal” extension from finite N to
the limit. That is, for each finite N, one has a finite set of eigenvalues and eigenvectors.
In the limit, there may be accumulation points: points where the eigenvalues accumu-
late to a limit point, in a standard topological sense. What should that that topological
space be? For finite N, all eigenvectors are explicitly summable, and thus can be taken
to belong to any Banach space `p. One may as well take p = 2 the Hilbert space, and
normalize the eigenvectors~v so that 1 = ∑

N
m=0 v2

m.
For finite N, it appears that “most” eigenvalues λ are “near” the circle |λ | = 1/β ,

and that they seem to be very uniformly distributed around this circle. The numer-
ical results indicate that in the limit N → ∞, that the scare-quotes “most” becomes
“almost all” in the usual sense. Similarly, “near” appears to mean that for any given
λ at finite N, one has that |λ | − 1/β ∼ O (1/N). As to uniformity, it seems that the
spacing between nearest neighbors is also O (1/N), and that there are no “premature”
accumulation points: eigenvalues never get any closer than O (1/N), either.

Thus, the minimal closure, the minimal extrapolation to limit points strongly sug-
gests that the limit points really do lie, uniformly distributed, on the circle |λ | = 1/β .
Then, writing a given accumulation point as λ = β−1 exp2πiφ , what the numerics do
not reveal, or, at least, do not easily reveal, is whether the allowed values of φ are
always rational, irrational or might have some other regular structure. The numerical
exploration does suggest that the eigenvalues are dense on the circle. Certainly it is the
case Hessenberg basis is countable, an so one would expect the eigenvalue spectrum
obtained in this way to be at least countable, as well. Whether it is also uncountable
seems unknowable in this naive sense.

This question is interesting because if only rational φ are allowed, then the de-
caying eigenfunctions belong to a cyclic group, and exhibit an exact form of Poincaré
recurrence as they decay. If irrational φ are allowed, then the decaying eigenfunctions
are at least ergodic.

For β = 2, the β -transform is the Bernoulli shift, the transfer operator is solvable,
and the spectrum is exactly known. This has been explored by various authors[28]. I’ve
written extensively about this spectrum and the eigenvalues in other texts[29, 30, 31].
To recap, it takes several forms, depending on the function space that one chooses to
work in. If one restricts oneself to polynomial eigenfunctions, then the spectrum is
real, non-negative (it has an extensive kernel) and has eigenvalues of 2−n for all n. The

decimal places, if not more. Both show sporadic eigenvalues off the circle, but these are not numerically
stable; ergo, the only valid eigenvalues are those on the circle. The matrix entries were constructed using the
midpoint algorithm, described in the last section. To verify that they are accurate, several techniques were
used: numerical integration to confirm orthogonality, and the use of the GnuMP multi-precision library to
push up accuracy.
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eigenfunctions are the Bernoulli polynomials. Restricting to square-integrable eigen-
functions, the spectrum continuous, having eigenvalues on the unit disk in the complex
plane. The continuous-spectrum eigenfunctions (for eigenvalues other than 2−n) can
be understood in several ways: if forced to be differentiable, then they are not bounded
(they diverge) at the endpoints of the interval. If forced to be bounded, then they are
fractal (non-smooth) over the entire interval. The unitary spectrum corresponds to
differentiable-nowhere eigenfunctions (wait, or continuous-nowhere? I forget.)

A pair of plausible, numerically-extracted eigenfunctions are shown in image 19.
Presumably, the spectrum can be related to the lap-counting function, given by

Lagarias[24].

4.5 (Non-)Unitarity
The numerical results suggest a hypothesis that perhaps some fragment of Lβ is uni-
tary, as it is ordinarily the case that when eigenvalues appear on the unit circle, it is
because an operator is unitary. That does not seem to be the case here. Specifically,
define the Frobenius-Perron eigenvector ρ as the one satisfying Lβ ρ = ρ and normal-
izing it to unit length, so that ‖ρ‖ = 1 in the Hilbert (mean-square) norm. Define the
reduced operator Rβ in terms of the matrix elements

1
β

〈
n
∣∣Rβ

∣∣m〉= 〈n ∣∣Lβ

∣∣m〉−〈ρ|n〉〈ρ|m〉
That is, it is just the beta shift operator, with the Frobenius-Perron eigenvector removed,
so that Rβ ρ = 0 . Its rescaled, so that the remaining eigenvectors of Rβ lie on the unit
circle. Is this operator unitary in any way? That is, might either Rβ R†

β
or R†

β
Rβ be

the identity? Here, the dagger † is just the transpose, as Rβ is purely real. Numerical
exploration clearly shows that Rβ is neither unitary on the left nor on the right. Not a
surprise, but does leave the understanding of Lβ in a curious situation.

Perhaps it is not enough to subtract the invariant measure: The zeros of the formula
18 lying inside the disk must be subtracted as well. There seems to be a cutable number
of these; the subtraction won’t be straight-forward.

4.6 Invariant Measure
Let vn be the Ruelle-Frobenius-Perron eigenvector in the Hessenberg basis. That is, let
vn be the vector that solves

∞

∑
m=0

〈
n
∣∣Lβ

∣∣m〉vm = vn (22)

This is readily computed numerically, and it is straightforward to verify the numerics
by confirming that

ρ (x) =
∞

∑
m=0

vmψm (x)

is the invariant measure of equations 14,15, with the ψk (x) being the wavelets of eqn
20. This expansion seems to “make sense”, as the discontinuities seen in the graph of
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Figure 19: Decaying Eigenfunction, Period Two
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This shows a numerically-computed decaying eigenfunction of period two, for β = 1.6.
It is period two, in that it corresponds to an eigenvalue of λ = −1/β = −0.625, so
that after one iteration of Lβ , the sign flips. This can be confirmed, numerically: after
one iteration, the sign really does flip, to within numerical errors. This was computed
by numerically diagonalizing the 861× 861 matrix given by the lowest terms of eqn
21, and then graphing the eigenvector closes to λ =−0.625 (The GnuMP library was
used to provide the required level of precision in the calculations.)

Although this figure is drawn with curves labeled “real” and “imaginary”, this is
a bit fantastic, and is a numeric artifact. For any period-two eigenfunction, the real
and imaginary parts would have no coupling, and would be independent of each other;
either one could be set to zero and one would still have a valid eigenfunction. This
differs from the case of period-three and higher, where the real and imaginary parts
are expected to mix. (Nor are the two components orthogonal, as one might expect.)
The eigenfunction is also fantastic in that only slightly different numerics result in a
completely different eigenfunction being computed. Even the functions resulting from
diagonalizing the 863× 863 matrix differ fair amount from those arising from the
861× 861 matrix; there’s only a general resemblance. This is not entirely surprising:
the magnitude of the basis coefficients decays very slowly; even at 861, that are still
on the order of 10−3, and thus contribute strongly.

Computed eigenfunctions for period-three are not dissimilar, nor are the ones for
other values of β . They do seem to start having the general oscillatory character of
sin(1/x) as β → 1, but its not clear if this is a numeric artifact, or something real. The
wildness of these functions contrast sharply with the seemingly tame λ = 1 eigenfunc-
tions shown in figure 1. Compare to figure 12, which paves the way.
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Figure 20: Frobenius-Perron Eigenvector Coefficients
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The coefficients vn solving eqn 22 as a function of n, for various values of β . Note
that the coefficients are all real and positive. These can be obtained in two different
ways: either by numerically diagonalizing the matrix equation of 22 or by numerically
integrating

∫ 1
0 ρ (x)ψn (x)dx. Either method gives the same results; diagonalization is

far, far quicker. The slope appears to go as approximately vm ∼Cβ−m with C = 0.02
roughly.

ρ (x) in figure 1 occur at exactly the midpoints mp and the size of each discontinuity
appears to get smaller as p gets larger. Given that the wavelet ψp (x) has its central
discontinuity at mp and is bounded on left and right by midpoints of lower order, this
expansion seems to be very natural. This is supported by the diagram 20, which depicts
the values of vn as a function of n for selected values of β . These values of vn are real,
positive, and quickly get small; there are no difficulties or issues of convergence.

Is there some simple expression for the values of vn as a function of β? If so, it
must be formed using some sort of fractal shift. Figure 21 illustrates v1 through v5.

The orbit of the midpoint is correlated with value of the coefficients, illustrated in
figure 22. The midpoint polynomial for mp = T p

β
(β/2), given in eqn 24, is compared

to vmβ m. It can be seen to “line up”. The two are somehow related; its not clear just
how.
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Figure 21: Perron-Frobenius Eigenvector Coefficients

10-3

10-2

10-1

100

 1  1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2

�

Perron-Frobenius Eigenvector Coeଏcients

v1
v2
v3
v4
v5

This figure shows v1 through v5 as β is varied. The most prominent spike is located at
β = ϕ = 1.618 · · · the Golden Ratio. All spikes correspond to orbits that terminate in a
fixed point after a finite number of iterations. The root cause and location of the spikes
is shown in figure 23.
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Figure 22: Orbits and Coefficients
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This figure compares the midpoint orbit to the coefficients, providing evidence for the
hypothesis stated in the text. The midpoint orbit is just mp = T p

β
(β/2). Because

β = 1.1 in this figure, the discontinuities are infrequent and appear to be quasi-regular
(they are ultimately fully chaotic), as the midpoint mostly just walks up to where it is
knocked down again. The “coefficient” curve is a graph of 10vpβ p for p running along
the horizontal axis. This is the same vp as discussed in the text, and previously shown
in figure 20. Here, its rescaled by its asymptotic behavior, and a constant of 10 to place
it on the same vertical scale. The discontinuitites clearly line up. The relationship is
clearly non-trivial.
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4.7 Generating Function
The truncated ordinary generating function associated with the eigenvector of eqn 22
is

GN (z) =
N

∑
m=0

vmzm

with the ordinary generating function being the limit N → ∞. A numerical study of
this function indicates that most of the N zeros of GN are arranged approximately on a
circle of radius β . The arrangement appear to be quite uniform, with more-or-less equi-
distant spacing of the zeros. As N increases, it seems that more of the zeros get closer
to the circle, although the numerical instabilities associated with double-precision math
make this difficult to control; an arbitrary-precision eigenvalue solver would be needed
to confirm this behavior.

If this behavior persists, and it seems that it will, then the limit N → ∞ cannot be
taken, and the ordinary generating function, as an analytic function, can’t exist, per se,
as it would be uniformly zero inside the disk. Thus, the zeros already found by means
of eqn 18 seem to come to the rescue: these are located inside the disk; perhaps these
are masquerading as “numerical instabilities”, and should be taken as actually existing,
and not spurious.

In the next chapter, it will be seen that circles of zeros in the complex plane is a
recurring theme. This suggests a hypothesis that somehow it might hold that

N

∑
m

vm (β z)m ∼ zN+1−∑
k

bkzk

as both sides have zeros arranged in circles of unit radius. The right hand side is defined
and explored in detail in the next chapter. Superficially, this hypothesis is clearly false:
coefficients on the left are all real and positive; coefficients on the right - the bk, are
bits, either zero or one. Yet both exhibit a circle of zeros.

XXX This section is awkward. Revise it or cut it.

4.8 Givens rotations
An open question: A Hessenberg matrix can be brought to solvable form by applying
a sequence of Givens rotations. Is the sequence of angles that appear in these rotations
meaningful in any way, or are they just some form of uninteresting junk?

5 Periodic Orbits
The iteration of the midpoint, used to construct the Hessenberg basis, works well, un-
less the midpoint iterates to hit the point x = 1/2 where the map has a discontinuity.
Here, iteration stops: at the next step, this point is defined to iterate to zero, in eqn 3.
Zero is a fixed point, and so there is nowhere further to go. This occurs for certain
values of β : after a finite number for steps, the midpoint m0 = β/2 iterates to 1/2. This
section explores these special values of β .
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Aside from the definition in eqn 3, one can consider the modified map, where the
less-than sign has been altered to a less-than-or-equals:

T≤
β
(x) =

{
βx for 0≤ x≤ 1

2
β
(
x− 1

2

)
for 1

2 < x≤ 1

In this map, the point x = 1/2 iterates to β/2, which is just the initial midpoint itself.
In this case, the halted orbits become periodic orbits. There is a third possibility, to
simply remove the points 0, 1 and 1/2 from the domain:

T<
β
(x) =

{
βx for 0 < x < 1

2
β
(
x− 1

2

)
for 1

2 < x < 1

In this case, if the midpoint iterates to 1/2, it can be taken to simply have exited the
domain of validity.

All three variants can be considered together, so that the “true” beta shift is taken
as the quotient space or identification space[32] of the three variants, in the strict topo-
logical sense of a quotient space. Thus, interestingly, for the beta shift, the periodic
orbits and the fixed point both belong to the same equivalence class. This has some
interesting implications when one compares the beta shift to other iterated maps, such
as the logistic map, which have non-trivial stable regions. Topologically, it would seem
that one can perform a kind of surgery, attaching stable regions exactly into those spots
where, in the beta shift, one has an equivalence class. This solves (at least for me) the
long-standing problem of exactly how to properly describe the topological conjugacy
between different kinds of iterated maps.

5.1 The β -generalized Golden Ratio

The above wavelet basis seems to be well-behaved, except when β = ϕ =
(

1+
√

5
)
/2

the Golden Ratio. In this situation, one has that m0 = ϕ/2 and m1 = 1/2. At this
location, further iteration breaks down. That is, m2 = Tϕ (m1) can either be taken to
be m2 = 0 or m2 = m0. In the former case, iteration simply stops; in the later case, it
repeats, again, without generating new midpoints that can provide a workable basis.

Working backwards, this issue re-appears whenever the p’th iterate mp = T p
β
(m0)

lands at the discontinuity, so that one may take either mp = 0 or mp = m0. For p = 3,
there are two trouble spots, which occur when either β 3−β 2− 1 = 0 or when β 3−
β 2− β − 1 = 0. These correspond to the values of β = 1.465571231876768 · · · and
β = 1.839286755214161 · · · .

Where are the trouble spots located? Consider, for example, m4 = T 4
β
(m0), and

consider the movement of m4 as β is swept through the range 1 < β < 2. This is shown
in figure 23. As made clear in the image, three new trouble spots appear. These are
located at β = 1.380327757 · · · and β = 1.754877666 · · · and β = 1.927561975 · · · ,
which are the real roots of β 4−β 3− 1 = 0 and β 4−β 3−β 2− 1 = 0 and β 4−β 3−
β 2−β −1 = 0 respectively.

Following a similar suggestion by Dajani[6], numbers of this kind may be called
“generalized golden means”. Unfortunately, the term “generalized golden mean” is in
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Figure 23: Location of Midpoints
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This rather busy image illustrates the location of the first five midpoints, m0,m1, · · · ,m4
as a function of β . The locations of the discontinuities are termed “trouble spots”; the
first trouble spot occurring for m2 at β = ϕ . The midpoint m3 has two new trouble
spots at β = 1.465 · · · and β = 1.839 · · · ; the trouble spot at β = ϕ being disallowed,
as it already lead to a termination of midpoint iteration. The midpoint m4 has three new
trouble-spots.
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common use, and is applied to a variety of different systems. Not all are relevant; one
that is, is given by Hare et al.[33] who provide series expansions for the real roots of
β p−∑

n−1
k=0 β k = 0; these are known as the n-bonacci constants (Fibonacci, tribonacci,

tetranacci, etc.). Stakhov[34] considers β p+1−β p−1 = 0 in general settings. Some,
but not all of these numbers are known to be Pisot numbers or Salem numbers[13]. In
what follows, these will be referred to as the “beta golden means”, since all of the ones
that appear here have explicit origins with the beta shift.

5.2 Counting Orbits
How many trouble spots are there? The table below shows the count Mp of the number
of “new” trouble spots, as a function of the midpoint index p.

p 2 3 4 5 6 7 8 9 10 11 12
Mp 1 2 3 6 9 18 30 56 99 186 335

This appears to be Sloane’s OEIS A001037 which has a number of known rela-
tionships to roots of unity, Lyndon words, and the number of orbits in the tent map.
The trouble spots are the positive real roots of polynomials of the form β p−β p−1−
b1β p−2− b2β p−3−·· ·− 1 = 0 with the bk being certain binary bit sequences. There
is just one such (positive , real) root for each such polynomial. These polynomials are
irreducible, in the sense that a bit-sequence bk is disallowed if it has the same root as
some lower-order polynomial. For example, β 4−β 3−β −1 is disallowed; it has the
same root as β 2−β −1. Although the digits bk must be zero or one, this definition of
irreducibility, plus the counting, suggests some relationship to the irreducible polyno-
mials over the field F2, as that is what the definition of OEIS A001037 counts. Yet the
relationship, if any, is quite unclear.3

The values of Mn are given explicitly by Moreau’s necklace-counting function

Mn =
1
n ∑

d|n
2d

µ

(n
d

)
where the sum runs over all integers d that divide n and µ is the Möbius function. The
generating function is

t
1
2 − t

=
∞

∑
n=1

nMn
tn

1− tn

which has a radius of convergence of |t| < 1/2. For large n, the asymptotic behavior
can be trivially deduced from the defining sum:

Mn =
2n

n
−O

(
2n/2

n

)
The above counting function is for necklaces with only two colors. In general,

one can have necklaces with 3 or more colors; can that happen here? Yes, of course:
3A hypothesis presented in a later section suggests that each orbit should be thought of as a Galois group,

with the length of the orbit corresponding to the number of elements in the Galois group. It seems that this
might explain much of the structure.
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if one considers the general β -transform for 2 < β , then, in general, it can be taken
as a “kneading transform” with dβe branches or folds in it. The analogous trouble-
spots again appear, and they can appear after an arbitrary finite-length orbit. Insofar
as they correspond to periodic orbits, they are necessarily counted by the necklace-
counting function. That is, one must consider all possible strings of dβe letters, modulo
a cyclic permutation: this is the very definition of a necklace (or “circular word”). The
number of such necklaces is given by the necklace-counting function. Each such orbit
is necessarily represented by a Lyndon word, which is a representative of the conjugacy
class of the orbit.

5.3 β -Golden Polynomials
The “trouble spots” whenever the k’th iterate mk = T k

β
(m0) lands on the starting mid-

point mk = m0. Because of the piece-wise linear form of Tβ , the k’th iterate will be
a piece-wise collection of polynomials, each of order k, and of the form β k−β k−1−
b1β k−2−b2β k−3−·· ·−1 for some binary digits bi being zero or one. These must be
arranged in the manner such that β k−β k−1− b1β k−2− b2β k−3−·· ·− 1 = 0 at each
discontinuity, as illustrated in figure 23. This limits the polynomials that can appear; it
limits the possible coefficients bi; not all bit-sequences appear.

Although the count of these polynomials is the same as that for the irreducible
polynomials over F2, the relationship is completely opaque (to me). Apparently, this
is a generic issue: the number of irreducible polynomials over Fp, for p prime, is the
same as the number of necklaces, and yet, there is no known bijection between these
irreducible polynomials and the Lyndon words![35] Thus, a compilation seems to be
called for.

The table below explicitly shows the polynomials for the first few orders. A poly-
nomial is included in the table if it is an iterate of a previous polynomial, and if it’s real
root is bracketed by the roots of the earlier iterates. That is, pn (β )must have the form
β
(

pn/2 (β )+1
)
−1 when n is even or β p(n−1)/2 (β )−1 for n odd. The roots must be

bracketed by the roots of polynomials occurring earlier in the sequence; if the root is
not bracketed, then the corresponding polynomial does not appear in the list.

The bracketing relationship is rather awkwardly expressed in the following pseudo-
code. Here, rn is the root pn (rn) = 0. The polynomial pn is included in the list if it is
the case that this pseudo-code does not fail:

mprev := n
m := bn/2c
while (0 < m)

mprev is even and rm < rn then fail
mprev := m
m := bm/2c

The above is a rather awkward way of stating that roots must be bracketed by pairs
of previous roots. It can perhaps be more easily understood by studying the location of
the discontinuities in figure 23: new discontinuities at higher orders must occur before
earlier ones.
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Thus, for example, the polynomial β 3 − β − 1 is excluded from the list simply
because it is not an iterate of an earlier polynomial, even though it has the interesting
real root 1.324717957244746 · · · , the “silver constant”. The numbering scheme does
not even have a way of numbering this particular polynomial. Despite this, the silver
constant does appear, but a bit later, as the root of p8 = β 5−β 4−1, which is an allowed
polynomial.

The polynomial p5 = β 4−β 3−β −1 is excluded because it has ϕ = 1.618 · · · as
a root, which was previously observed by p1. The polynomial p9 = β 5−β 4−β −1 is
excluded because it’s root, r9 = 1.497094048762796 · · · is greater than its predecessor
r2; the recursive algorithm does not compare to r4.

There are other ways to start the table, and to index the polynomials. The given
indexing has the property that 2n+ 1, taken as binary, encodes the coefficients of the
polynomial. The order of the polynomial is dlog2 (2n+1)e. The index n itself encodes
the orbit of the midpoint. That is, writing n = b0b1b2 · · ·bp for binary digits bk, then
T k

β
(β/2)< 1/2 if and only if bk = 0. Note that b0 = 1 always corresponds to 1/2< β/2

always. By convention, the last digit is always 1, also.

order pn (β ) n binary root
0 1

1 β 0 0
β −1 0 1 1

2 β 2−β −1 1 11 ϕ = 1+
√

5
2 = 1.618 · · ·

3 β 3−β 2−1 2 101 1.465571231876768 · · ·
β 3−β 2−β −1 3 111 1.839286755214161 · · ·

4
β 4−β 3−1 4 1001 1.380277569097613 · · ·

β 4−β 3−β 2−1 6 1101 1.7548776662466924 · · ·
β 4−β 3−β 2−β −1 7 1111 1.9275619754829252 · · ·

5

β 5−β 4−1 8 10001 1.324717957244746 · · ·
β 5−β 4−β 2−1 10 10101 1.5701473121960547 · · ·
β 5−β 4−β 3−1 12 11001 1.704902776041646 · · ·

β 5−β 4−β 3−β −1 13 11011 1.812403619268042 · · ·
β 5−β 4−β 3−β 2−1 14 11101 1.888518845484414 · · ·

β 5−β 4−β 3−β 2−β −1 15 11111 1.965948236645485 · · ·

The next table lists the acceptable polynomials for order 5, 6 and 7. Again, the
coefficients appearing in the polynomial are encoded by the binary value of 2n+ 1 in
the sequence.

order sequence
5 8,10,12,13,14,15
6 16,20,24,25,26,28,29,30,31
7 32,36,40,42,48,49,50,52,53,54,56,57,58,59,60,61,62,63

Although there are as many of these polynomials as there are Lyndon words, there
is no obvious way to write a bijection between the two. It is almost possible to do so by
writing 2n in binary, and then reversing the order of the bits, left-to-right. One almost
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gets the Lyndon words in the correct order, except “in the middle”: so, for example, in
the table above, one can get the Lyndon order by exchanging 10 with 12, and 13 with
14. But the table above cannot be re-ordered: the given ordering encodes the orbit of
the midpoint. Apparently, although a given orbit can be cyclically rotated to obtain a
Lyndon word, the initial segment of the orbit is not a Lyndon word itself.

Questions that present themselves include:

• Is there a generating function for the squence of allowed values of n? What is it?

• How long is the initial segment of each periodic orbit, before the orbit attains it’s
Lyndon word form? What are the values of β where the initial orbits are not in
Lyndon form?

5.4 Distribution of β -Golden Roots
It seems natural to assume that the real roots have some distribution. This seems not to
be the case. Figure 24 shows the numerically computed (bin-counted) distribution of
the zeros of pn (β ) for n < 2k for three different values of k. This suggests that, in the
limit of k→∞, almost all pn (β ) have roots that approach 2. Although the roots appear
to be dense in 1 < β < 2, essentially all of the weight of that density is at 2. Since the
roots are countable, the density clearly becomes very thin.

The local distribution of roots can be sensed from the figure 25, which visualizes
the distance between neighboring roots.

5.5 Complex Roots
What are the complex roots? Numerical work clearly indicates that they seem to be
approximately cyclotomic in some sense or another. They seem to be more-or-less
uniformly distributed in a circle, always. The modulus of most of the complex roots
appear to be less than one. This is violated for the complex roots of p2k (β ) = β k+2−
β k+1− 1, where some of the roots in the right-hand quadrant have a modulus larger
than one. By contrast, the complex roots of p2k−1 (β )= β k+1−∑

k
j=0 β j seem to always

have a modulus less than one. These two seem to be the extreme cases: in general, the
polynomials appear to be “approximately cyclotomic”. Its not clear how to make this
statement more precise.

These numerical results can be argued heuristically: just divide the polynomial by
it’s leading order. That is, a general polynomial of this form is

pn (z) = zk+1−
k

∑
j=0

b jzk− j

with the convention that b0 = bk = 1, and the bit-sequence n = b0b1b2 · · ·bp corre-
sponding to a terminating orbit. Dividing by zk+1gives a series

1− 1
z
− b1

z2 −
b2

z3 −·· ·

Clearly, this can have a zero only when |z|< 2 as otherwise, the terms get too small too
quickly.
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Figure 24: Distribution of Golden Means
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The bin-counted distribution of roots of pn (β ) for three different cutoffs, and the cor-
responding eyeballed fit. Bin-counting proceeds by dividing the range 1 < β < 2 into
1303 equal–width bins. Proceeding methodically to find roots for all n < 2k for fixed
k, each root is assigned to a bin. At the end of the counting process, the bin-counts are
normalized by the width of the bin, and the total number of roots observed (i.e. by the
Moreau counting function). For fixed k, the distribution appears to be approximately
exponential (but not quite - there is a deviation from linearity in the graph above, just
barely discernable by naked eye). Three different k’s are shown, and three eyeballed
fits. The general trend appears to be that, for fixed k, the distribution is approximately
β α with α ' k+3− log2 k ' log2 Mk+3. Clearly, the k→ ∞ limit accumulates all the
measure at β = 2.
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Figure 25: Distance Between Means
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This figure visualizes the inverse distance between golden means. A total of 1375 =

∑
12
k=1 Mk roots were obtained, and then sorted into ascending order. Letting rn represent

the n’th root in this sequence, this shows the reciprocal distance 1/1375(rn+1− rn). In-
creasing the number of roots essentially just rescales this graph, making it progressively
more vertical. In essence, almost all of the roots accumulate near ( β = 2; roots be-
come increasingly rare the smaller the β . In the limit, one might say that essentially all
roots are at β = 2: although the roots are dense in the interval 1 < β < 2, the counting
measure indicates that they are accumulating at β = 2 only.

58



5.6 β -Golden β -Fibonacci Sequences
It is well known that the golden ratio occurs as limit of the ratio of adjacent Fibonacci
numbers:

ϕ = lim
m→∞

Fm

Fm−1

where Fm = Fm−1 +Fm−2. There is a generalization of this, which also has received
attention: the tribonacci, quadronacci, etc. sequences, whose limits are

αn = lim
m→∞

F(n)
m

F(n)
m−1

where F(n)
m = F(n)

m−1 +F(n)
m−2 + · · ·+F(n)

m−n.
Is it possible that the real roots of the polynomials pn(β ) are also the roots of

such sequences? But of course they are! Given a finite string of binary digits {b} =
b0,b1, · · · ,bk, write the beta-Fibonacci sequence as

F{b}m = b0F{b}m−1 +b1F{b}m−2 + · · ·bkF{b}m−k

The name “beta-Fibonacci” is needed because the term “generalized Fibonacci se-
quence” is already in wide circulation for the special case of all bits being one. The
ratio of successive terms is

α
{b} = lim

m→∞

F{b}m

F{b}m−1

and is given as the (positive) real root of the polynomial

pn (β ) = β
k+1−b0β

k−b1β
k−1−·· ·−bk = 0

These polynomials and their roots were already enumerated and tabulated in the previ-
ous section.

The beta-Fibonacci sequences do not appear by accident: these sequences have an
ordinary generating function (OGF) given by the polynomial! That is,

∞

∑
m=0

zmF{b}m =
zk

1−b0z−b1z2−·· ·−bkzk+1 =
1

zpn
( 1

z

)
The factor of zk in the numerator serves only to initiate the sequence so that F{b}0 =

· · ·= F{b}k−1 = 0 and F{b}k = 1.
These sequences are generic: they indicate how many different ways one can par-

tition the integer m into elements of the set {b0,2b1,3b2, · · · ,(k+1)bk}. So, for ex-
ample, the entry for n = 12 in the table below corresponds to OEIS A079971, which
describes the number of ways an integer m can be partitioned into 1, 2 and 5 (or that
5m can be partitioned into nickels, dimes and quarters). This corresponds to the bit se-
quence {b}= 11001; that is, {b0,2b1,3b2, · · · ,(k+1)bk}= {1 ·1,2 ·1,3 ·0,4 ·0,5 ·1}=
{1,2,5}. From such partitions, it appears that one can build partitions of the positive
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integers that are disjoint, and whose union is the positive integers. This suggests a
question: can these partititions be expressed as Beatty sequences?

The previous table is partly repeated below, this time annotated with the OEIS
sequence references.

n binary root root identity sequence
0 1 1
1 11 ϕ = 1+

√
5

2 = 1.618 · · · golden ratio Fibonacci A000045
2 101 1.465571231876768 · · · OEIS A092526 Narayana A000930
3 111 1.839286755214161 · · · tribonacci A058265 tribonacci A000073
4 1001 1.380277569097613 · · · 2nd pisot A086106 A003269
6 1101 1.754877666246692 · · · OEIS A109134 A060945
7 1111 1.927561975482925 · · · tetranacci A086088 tetranacci A000078
8 10001 1.324717957244746 · · · silver A060006 A003520

10 10101 1.570147312196054 · · · pisot A293506 A060961
12 11001 1.704902776041646 · · · A079971
13 11011 1.812403619268042 · · · A079976
14 11101 1.888518845484414 · · · A079975
15 11111 1.965948236645485 · · · pentanacci A103814 A001591

All of these integer sequences and roots participate in a number of curious rela-
tions having a regular form; this is, of course, the whole point of listing them in the
OEIS. This suggests a question: do the known relationships generalize to the beta-shift
setting?

For example, there are various known relations for the “generalized golden means”.
These are the roots of the series for which all bk = 1, that is, the roots of

β
k+1−β

k−β
k−1−·· ·−1 = 0

In the present notation, these would be the roots of the polynomials pn (β ) = 0 for
n= 2k−1. Such roots can be rapidly computed by a series provided by Hare, Prodinger
and Shallit[33]:

1
αk

=
1
2
+

1
2

∞

∑
j=1

1
j

(
j (k+1)

j−1

)
1

2 j(k+1)

This series is obtained by making good use of the Lagrange inversion formula. Here,
αk is the k’th generalized golden mean, i.e. the solution p2k−1 (αk) = 0. Can the Hare
series be extended to provide the roots rn of pn (rn) = 0 for general n?

Another set of observations seem to invoke the theory of complex multiplication
on elliptic curves, and pose additional questions. So:

The tribonacci root r3 is given by

r3 =
1
3

(
1+

3
√

19+3
√

33+
3
√

19−3
√

33
)
' 1.839 · · ·
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The silver number (plastic number) r8 is given by

r8 =
1
6

(
3
√

108+12
√

69+
3
√

108−12
√

69
)
' 1.324 · · ·

The Narayana’s cows number r2 is given by

r2 =
1
6

3
√

116+12
√

93+
2

3 3
√

116+12
√

93
+

1
3
' 1.645 · · ·

The root r6 is related to the silver number r8 as r8 = r6 (r6−1) and is given by

r6 =
1
6

3
√

108+12
√

69+
2(

3
√

108+12
√

69
)2 ' 1.754 · · ·

Do the other roots have comparable expressions? To obtain them, is it sufficient to
articulate the theory of “complex multiplication” on elliptic curves? The appearance
of only the cube and square roots is certainly suggestive of an underlying process of
points on elliptic curves.

5.7 β -Fibonacci sequences as shifts
The nature of the β -Fibonacci sequences as shift sequences can be emphasized by not-
ing that they arise from the iteration of a (k+1)× (k+1) matrix in lower-Hessenberg
form:

B =



b0 1 0 0 · · · 0
b1 0 1 0 · · · 0
b2 0 0 1 · · · 0
...

...
...

. . .
...

bk−1 0 0 0 · · · 1
bk 0 0 0 · · · 0


(23)

That is, the m’th element of the sequence is obtained from the m’th iterate Bm. That
such iteration results in integer sequences has long been observed in the theory of
continued fractions. It’s useful to work an explicit example. For the golden ratio, one
has

B =

[
1 1
1 0

]
and the iterates are

B2 =

[
2 1
1 1

]
, B3 =

[
3 2
2 1

]
, B4 =

[
5 3
3 2

]
, Bn =

[
Fn Fn−1

Fn−1 Fn−2

]
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with Fn being the n’th Fibonacci number, as usual. For the general case, one has that

Bm =



F{b}m F{b}m−1 F{b}m−2 · · · F{b}m−k+1 F{b}m−k

F{b}m−1 F{b}m−2 F{b}m−3 · · · F{b}m−k F{b}m−k−1

F{b}m−2 F{b}m−3 · · ·
...

...
...

. . .
...

...
F{b}m−k+1 · · ·
F{b}m−k · · · F{b}m−2k


so that the top row consists of the latest sequence values. When multiplied by the bits,
this just generates the next iterate in the sequence. The upper-diagonal 1’s just serve to
shift columns over by one, with each iteration: that is why it’s a shift!

The characteristic polynomial of this matrix is, of course, the polynomial pn:

det [B− xI] = (−1)k pn (x)

Thus, we can trivially conclude that the eigenvalues of B are given by the roots of
pn (x). This matrix is in lower-Hessenberg form; this makes it obvious that it’s a shift;
a finite shift, in this case.

5.8 Equivalent labels for orbits
At this point, it should be clear that there are several equivalent ways of labeling the
expressions under consideration. These are recapped here. Proofs are omitted; they are
straight-forward.

5.8.1 Orbits

For every given 1 < β < 2 there is a unique orbit of midpoints
{

mp
}

given by mp =
Tβ (mp−1) = T p

β
(m0) and m0 = β/2. The orbits are in one-to-one correspondence with

β . The midpoints are the same as the Renyi-Parry seqence; namely T p
β
(β/2) = t p

β
(1),

recalling here the notation of eqn 7 and 8.

5.8.2 Orbit encoding

The midpoint generates a unique sequence of bits {b0,b1,, · · · ,bk, · · ·} given by the
left-right move of the mid-point, as it is iterated. That is, bk = Θ(mk−1/2) so that
bk is one if the midpoint is greater than half, else bk is zero. Each bit-sequence is in
one-to-one correspondence with β .

5.8.3 Monotonicity

The compressor function w(β ) = ∑k bk2−k is a monotonically increasing function of
β , so that values of w(β ) are in one-to-one correspondence with β .
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5.8.4 Polynomial numbering

If the orbit is periodic, then there exists a polynomial pn (z) = zk+1− b0zk− b1zk−1−
·· ·−bk−1z−1 with k = 1+blog2 nc being the length of the orbit. The positive real root
of pn (z) is β . The integer n is in one-to-one correspondence with the bit sequence, and
with the value of β .

5.8.5 Integer sequences

If the orbit is periodic, then there exists a sequence of integers F{b}, the beta-Fibonacci
sequence, that is in one-to-one correspondence with the finite bit sequence {b} =
b0,b1, · · · ,bk, and with the value of β .

5.8.6 Shift matrix

If the orbit is periodic, then the finite bit sequence {b}= b0,b1, · · · ,bk defines a lower-
Hessenberg “golden shift” matrix B, as shown in eqn 23.

5.8.7 Summary

To summarize: any one of these: the integer n, the polynomial pn (x), the integer
sequence F{b}m , the orbit of midpoints mp = T p (β/2), the orbit encoding {b}, the shift
matrix B, the value of the compressor function w(β ) and, of course, β itself can each
be used as a stand-in for the others. Specifying one determines the others; they all
uniquely map to one-another. They are all equivalent labels. Fashionably abusing
notation, n≡ pn (x)≡ {b} ≡ F{b}m ≡ mp ≡ w(β )≡ β ≡ B.

An explicit expression relating the orbit encoding and the orbit can be read off
directly from eqn 6. Plugging in,

mp = T p+1
β

(
β

2

)
=

β

2

[
β

p+1−
p

∑
j=0

b jβ
p− j

]
(24)

for p < k the length of the bit sequence, and mk = T k+1
β

(β/2) = β pn (β )/2 = 0 termi-
nating, since β is the positive root of pn (x).

Four of the correspondences given above ask for periodic orbits. Three of these
can be extended to non-periodic orbits in an unambiguous and uncontroversial way.
The extensions are covered in the next two sections. The fourth is the numbering n of
the finite orbits. These are countable; there is no way to extend the counting number
n to the non-periodic orbits. Ineed, there ae too many: the non-periodic orbits are
uncountable.

5.9 Infinite-nacci integer sequences
The beta-Fibonacci integer sequence can be extended to arbitrary (viz. infinite) length
bit sequences, as

F{b}m =
m

∑
j=1

b j−1F{b}m− j
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starting with F{b}0 = 1. The sum is always finite, but one cannot perform it without
first knowing at least the first m bits of the (now infinite) bit-sequence {b}. The integer
sequence still has the desirable property it had before:

β = lim
m→∞

F{b}m

F{b}m−1

Here, the β value is the one associated to {b}. So, as before, the real number β and the
bit sequence {b} label exactly the same orbit.

Remarkably, one can be sloppy in how one deals with periodic orbits with this ex-
tention. One has two choices that are equivalent: One choice is to truncate, so that
the bit-sequence ends with all-zeros, effectively rendering it of finite length. The alter-
native is to allow it to continue periodically, forever. Either form results in the same
β -Fibonacci sequence!

As an example, consider β = 1.6, which is close to the golden ratio, but not quite. It
has an infinite non-periodic (non-recurring) bit-sequence {b}= 101010010100101000000100 · · · .
The generated integer sequence is F{b}m = 1,1,1,2,3,5,8,12,20,32,51,82,130,209,335,535, · · ·
which undershoots the Fibonacci sequence (12 appears, where we expected 13, and 20
instead of 21, and so on). The ratio of the last two is 535/335 = 1.597 · · · and the
previous is 335/209 = 1.603 · · · and the ratio of successive elements eventually con-
verges to 1.6. By comparison, the Fibonacci sequence is generated by the bit-string
1010101010... of alternating ones and zeros.

The β -Fibonacci representation of the orbits has the remarkable property that one
does not need some a priori mechanism to know if some orbit is periodic or not. This
dual-representation of periodic orbits is reminiscent of a property commonly seen in
Cantor space 2ω representations of the real number line, where the dyadic rationals
(which are countable, of course) map to two distinct bit-sequences (one ending in all-
ones, the other ending in all-zeros). A more general setting for this is given in symbolic
dynamics, where the totally disconnected Bernoulli scheme Nω can be used to repre-
sent elements of certain countable sets two different ways. For N = 10, one famously
has that 1.000...=0.999... as an example. So likewise here, one can toggle between
finite and infinite-periodic strings. So, given a finite string {b} = b0,b1, · · · ,bk−1,bk
which has, by definition, bk = 1, create a new finite string that is twice as long:
{b′} = b0,b1, · · · ,bk−1,0,b0,b1, · · · ,bk which necessarily has exactly the same beta-
Fiboanacci sequence. That is, F{b

′}
m = F{b}m . Once can repeat this process ad infinitum,

obtaining an infinite periodic string. The difference between these two is simply the
difference between a less-than-sign, and a less-than-or-equal sign used in the genera-
tion of the orbit, as noted at the very begining of this chapter. We have proven: finite
orbits are exactly the same as infinite periodic orbits, at least when represented by real
numbers and by integer sequences. Conversely, the difference between using < and ≤
during iteration is immaterial for describing convergents.

5.10 Infinite β -Polynomials
An infinite polynomial is, of course, an analytic function. The goal here is to extend
the finite framework. The definition of the polynomials above requires a finite bit
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sequence. This can be extended to an asymptotic series, by writing first

pn (z) = zk+1
(

1−b0z−1−b1z−2−·· ·−bkz−k−1
)

Set ζ = 1/z to get

ζ
k+1 pn

(
1
ζ

)
= 1−b0ζ −b1ζ

2−·· ·−bkζ
k+1

which extends to the holomorphic function

q{b} (ζ ) = 1−
∞

∑
j=0

b jζ
j+1

This is manifestly holomorphic on the unit disk, as each coefficient is either zero or
one. It has a positive real zero, of course: q{b} (1/β ) = 0. Comparing to eqn 18, we
see that this is exactly the same function, or rather, it’s negative. Indeed, following the
definition, bn = dn (1/2) and so D(β ;ζ ) =−q{b} (ζ ).

This at last provides a foot in the door for correctly describing the eigenvalues of the
β -transfer operator: they are in one-to-one correspondence with the zeros of q{b} (ζ ).

5.11 β -Hessenberg operator
Extending the golden shift matrix B of eqn 23 to an infinite-dimensional operator is a
bit trickier. Of course, one could just declare the matrix elements of the operator to be
this-and-such, but these matrix elements are with respect to what basis? Is the operator
even bounded? The answer to the second question is obviously “no”.

The characteristic equation of B is pn (β )= 0; the Frobenius-Perron eigenvalue β >
1 is too large, although the k−1 = blog2 nc other roots are conveniently arranged near
the unit circle, more-or-less equidistant from one another. The solution is to rescale B
by 1/β . The Frobenius-Perron eigenvalue is now one, and the remaining eigenvalues
distributed near or on a circle of radius 1/β . We may as well take the transpose as well,
so that Bβ = BT/β is in upper-Hessenberg form. Rescaled in this way, it now seems
safe to declare, by fiat, that the operator Bβ is the correct extension of the matrix B
to infinite dimensions. Just to be explicit: given the bit-sequence {b}, the operatorBβ

has the matrix elements 〈
0
∣∣Bβ

∣∣ j
〉
=

b j

β〈
j+1

∣∣Bβ

∣∣ j
〉
=

1
β

with all other entries being zero. This is clearly in upper-Hessenberg form, with the
subdiagonal providing the shift.

Comparing to the upper-Hessenberg form of Lβ of eqn 21, and the numerical re-
sults on it’s eigenvalues, it seems clear that Bβ and Lβ must surely be similar. That
is, there must be an operator S such that
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Lβ = S−1Bβ S

The invariant measure Lβ ρ = ρ is mapped to σ = Sρ , where Bβ σ = σ is the FP-
eigenvector. It is easy to write down σ explicitly: σ =

(
1,β−1,β−2, · · ·

)
, that is,

σ j = β− j. This is obviously so: the subdiagonal entries of Bβ act as a shift on σ

and the top row is just

1 =
∞

∑
j=0

〈
0
∣∣Bβ

∣∣ j
〉

σ j =
∞

∑
j=0

b jβ
− j−1 = 1−q{b}

(
1
β

)
= 1

Although Bβ is no more solvable than Lβ in the wavelet basis is, it is certainly
much, much easier to work with. It also re-affirms the ansatz 17 for eigenfunctions.
To be explicit: if v is a vector satisfying Bβ v = λv, with vector elements v j, then the
function

v(x) =
∞

∑
j=0

d j (x)v j

is an eigenfunction of the transfoer operator: that is,
[
Lβ v

]
(x) = λv(x), or, explicitly:

1
β

[
v
(

x
β

)
+ v
(

x
β
+

1
2

)]
Θ

(
β

2
− x
)
= λv(x) (25)

which is just eqn 13. So, for λ = 1, this is just v = σ which is just eqn 17 for z = 1, the
invariant measure, as always. But it also says more: the only solutions to Bβ v = λv are

necessarily of the form v =
(

1,(λβ )−1 ,(λβ )−2 , · · ·
)

, because the subdiagonal forces
this shift. To satisfy the the top row of Bβ , one must have that

λ =
∞

∑
j=0

〈
0
∣∣Bβ

∣∣ j
〉

v j =
1
β

∞

∑
j=0

b j

(λβ ) j = λ

(
1−q{b}

(
1

λβ

))
= λ

and so the eigenvalue λ is exactly the eigenvalue that solves the β -series q{b} (1/λβ ) =
0.

This falls short of being a full proof; this line of argumentation only affirms the
ansatz 17. To recap: periodic orbits have an associated shift matrix B; this extends
naturally to a shift operator Bβ for non-periodic orbits. The shift operator has a suffi-
ciently simple form that it’s eigenvectors can be explicitly written down in closed form;
they are necessarily coherent states. The top row of the shift operator defines a holo-
morphic function q{b} whose zeros correspond to eigenstates of the shift operator. The
holomorphic function is determined by the binary digit sequence {b}. The binary digit
sequence is obtained from the iterated midpoint, as b j = d j (1/2) where d j (x) = 1 if
x < T n (β/2). This is enough to prove eqn 25 holds for the special value x = 0 (for any
eigenvalue λ ); it is no enough to show that it holds for any x. For the full proof, one
needs the “fundamental theorem of analytic ergodics”, which I don’t have here.
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5.12 Example eigenfunctions
The above provides a spur to further examine the spectrum of the transfer operator.
Some examples are worked through here.

To recap: eigenstates of the transfer operator correspond with the zeros of q{b} (ζ ),
or, more precisely, the zeros for which |ζ | ≤ 1. The reason for this limitation is that the
eigenstates are explictly given by

v(x) =
∞

∑
m=0

dm (x)ζ
m

for ζ = 1/βλ ; this is absolutely convergent only for |ζ | < 1. One might hope to ana-
lytically extend this to the entire complex plane, but the extension depends on the digit
sequence dm (x). We’re lacking in a tractable mechanism to perform this extension.

5.12.1 Case n=1

Consider first β = ϕ = 1.6180 · · · the golden ratio. The corresponding finite beta-
polynomial is q{11} (ζ ) = 1−ζ −ζ 2; the infinite series is

q{1010101···} (ζ ) = 1−ζ −ζ
3−ζ

5−·· ·=
(
1−ζ −ζ

2)/(1−ζ
2)

which has a positive real zero at ζ = 1/ϕ and poles at ζ =±1. The zero corresponds
to the FP eigenvalue of one. The invariant measure is

v(x) =
∞

∑
m=0

dm (x)
ϕm =


ϕ for 0≤ x < 1

2
1 for 1

2 ≤ x < ϕ

0 for ϕ ≤ 1

There is a negative real zero at ζ = −ϕ , but the eigenfunction summation is not con-
vergent here.

5.12.2 Case n=2

The n = 2 case has the finite bitstring {b} = 101 and the periodic bitstring {b} =
1001001 · · · . The corresponding finite beta-polynomial is q{101} (ζ ) = 1−ζ −ζ 3; the
infinite series is

q{1001···} (ζ ) = 1−ζ −ζ
4−ζ

7−·· ·=
(
1−ζ −ζ

3)/(1−ζ
3)

which has a positive real zero at ζ = 1/β = 0.6823 · · · and three poles on the unit
circle. The FP eigenvalue provides β = 1.4655 · · · . The invariant measure is

v(x) =
∞

∑
m=0

dm (x)
β m =



β

β−1 for 0≤ x < T
(

β

2

)
1

β−1 for T
(

β

2

)
≤ x < 1

2
1/β

β−1 for 1
2 ≤ x < β

0 for β ≤ 1
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There are many equivalent ways to write the invariant measure; the above just selected
some representatives from the coset of equivalent expressions. For example, the third
entry could be written as β = 1/β (β −1).

5.12.3 Case n=3

The n = 3 case has the finite bitstring {b} = 111 and the periodic bitstring {b} =
1101101 · · · . The corresponding finite beta-polynomial is q{111} (ζ ) = 1−ζ −ζ 2−ζ 3;
the infinite series is

q{110110···} (ζ ) = 1−ζ −ζ
2−ζ

4−·· ·=
(
1−ζ −ζ

2−ζ
3)/(1−ζ

3)
which has a positive real zero at ζ = 1/β = 0.5436 · · · and three poles on the unit
circle. The FP eigenvalue gives β = 1.8392 · · · . The invariant measure is

v(x) =



β

β−1 for 0≤ x < 1
2

β for 1
2 ≤ x < T

(
β

2

)
1

β−1 for T
(

β

2

)
≤ x < β

0 for β ≤ 1

5.12.4 Case n=4,6,7

The pattern gets repetitive. There is no case n = 5, as this is not one of the allowed
orbits. The bitstrings are those previously listed in tables; they are {b} = 1001 {b} =
1101 and {b}= 1111. The infinite series is q{b···} (ζ ) = q{b} (ζ )/

(
1−ζ 4

)
. The zeros

are as previously listed. The n = 4 plateuas are at 1
β−1

[
β , 1, 1

β
, 1

β 2

]
. The

n = 6 plateaus are at
[

β

β−1 ,
β 2

(β 2−1)(β−1)
, β , β

(β 2−1)(β−1)

]
. The n = 7 plateaus

are at
[

β

β−1 , β , β+1
β (β−1) ,

1
β−1

]
. Again, the values at the plateaus can be written

in many different ways, given the finite polynomail.

5.12.5 Case n=16

The n = 16 polynomial is the first one to have complex zeros inside the unit disk. The
finite bitstring is {b}= 100001 and so the polynomial is q{100001} (ζ )= 1−ζ−ζ 6. The
positive real root is ζ = 0.7780895986786 · · · and so β = 1/ζ = 1.28519903324535 · · · .
The complex zeros are located at ζ = 0.965709509 · · ·exp±iπ0.2740452363 · · · which
corresponds to eigenvalues are λ = 0.525107 · · ·±i0.611100 · · ·= 0.805718 · · ·exp±iπ0.274045 · · · .
The correspnding eigenfunction is shown immediately below.
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The order of q{b} is six, and this has six almost-plateaus; they are not quite flat,
although they are close to it, presumably because ζ is close to one.

5.12.6 The general case

Generalizing from the above, one finds the following:

• For a period-k orbit, the infinite series is q{b···} (ζ ) = q{b} (ζ )/
(
1−ζ k

)
.

• The first label n for which q{b} (ζ ) has a complex zero within the disk is n = 16.
As a general rule, it seems that complex zeros inside the disk only appear for
β < ϕ (I beleive; have not carefully checked. This seems reasonable, as later
chapters show that the region of β < ϕ behaves very differently from larger
values.)

• The invariant measure has k plateaus. The plateau boundaries are given by
T m
( 1

2

)
for m = {0, · · · ,k−1} (so that T 0

( 1
2

)
= 1

2 and T 1
( 1

2

)
= β

2 , and so on).

• The left-most plateau (of the invariant measure) is at β/(β −1) = ∑
∞
n=0 1/β n.

• The other plateaus appear to be at simple rational functions of β , but a precise
expression is elusive.

To solve the last issue, perhaps one can find tools in Galois theory. Let R [ζ ] be the
ring of polynomials in ζ and consider the quotient ring L = R [ζ ]/q{b} (ζ ). This L is
a field extension of R and so one expects a Galois group Gal(L/R). The plateaus of
the invariant measure are presumably associated with the group elements. This seems
like a promising direction to go in: perhaps this is just enough to explain the length
of an orbit, the sequence of points in the orbit, the reason that some polynomials are
forbidden (they don’t generate prime ideals), the appareance of Moreau’s necklace-
counting function, etc. This remains an unfinished exercise.

5.13 Factorization
The polynomials factorize. Let rn denote the real positive root of pn (x) – that is,
pn (rn)= 0. Then one has the factorizations (dropping the subscript on r for readability)

p1 (x) = x2− x−1 = (x− r)(x+ r−1) = (x− r)(x+ p0 (r))
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where p0 (x) = x−1. Likewise, there are two order-3 polynomials. They factor as

p2 (x) = x3− x−1 = (x− r)
(
x2 + xp0 (r)+ rp0 (r)

)
while

p3 (x) = x3− x2− x−1 = (x− r)
(
x2 + xp0 (r)+ p1 (r)

)
Continuing in this way, there are three order-4 polynomials. They factor as

p7 (x) = x4− x3− x2− x−1 = (x− r)
(
x3 + x2 p0 (r)+ xp1 (r)+ p3 (r)

)
and

p6 (x) = x4− x3− x2−1 = (x− r)
(
x3 + x2 p0 (r)+ xp1 (r)+ rp1 (r)

)
and (noting that there is no p5 that occurs in the series)

p4 (x) = x4− x3−1 = (x− r)
(
x3 + x2 p0 (r)+ xrp0 (r)+ r2 p0 (r)

)
There’s clearly a progression, but perhaps a bit difficult to grasp. It can be more

clearly seen by writing pn = q2n+1 and then writing out 2n+ 1 in binary. So, once
again, from the top:

p1 (x) = q11 (x) = (x− r)(x+q1)

where q1 = q1 (r) which adopts the shorthand that the q polynomials on the right-hand
side always have r as an argument, which can be dropped for clarity. Note also that
q0 (r) = r was already previously observed, in an earlier section. That is, using the
dropped-r convention, q0 = r. Next

p2 (x) = q101 (x) = (x− r)
(
x2 + xq1 +q01

)
where, by definition, q01 (x)≡ rq1 (x). Next,

p3 (x) = q111 (x) = (x− r)
(
x2 + xq1 +q11

)
is the second factorization of order 3. For order 4, one has

p4 (x) = q1001 (x) = (x− r)
(
x3 + x2q1 + xq01 +q001

)
where, this time, q001 (x) = xq01 (x) = x2q1 (x). Continuing,

p6 (x) = q1101 (x) = (x− r)
(
x3 + x2q1 + xq11 +q011

)
where, by defintion, q011 (x)≡ xq11 (x). Finally,

p7 (x) = q1111 (x) = (x− r)
(
x3 + x2q1 + xq11 +q111

)
It is worth doing one more, just to clinch that the reversal of the bit sequence is indeed
correct. For this purpose, p12 = q11001 should serve well. One has

p12 (x) = q11001 (x) =(x− r)
(
x4 + x3 p0 (r)+ x2 p1 (r)+ xrp1 (r)+ r2 p1 (r)

)
=(x− r)

(
x4 + x3q1 + x2q11 + xq011 +q0011

)
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The general pattern should now be clear. Given one of the admissible bit sequences
b0b1b2 · · ·bk−1bk and recalling that bk = 1 always, (and that b0 = 1 always) one has

pn (z) = qb0b1b2···bk−1bk (z) = zk+1−b0zk−b1zk−1−·· ·−bk−1z−1

which has the factorization, with bits reversed:

qb0b1b2···bk−1bk (z)= (z− r)
(

zk + zk−1qb0 + zk−2qb1b0 + zk−3qb2b1b0 + · · ·+qbk−1bk−2···b1b0

)
where, as already noted, each q is a polynomial in the root r. Although, notationally,
the root r was taken as the real root, the above factorization works for any root.

The trick can be repeated. Although at first it might seem daunting, the pattern is
uniform: every power of z occurred in the above. Let s 6= r be some other root. Then

qb0b1b2···bk−1bk (z)= (z− r)(z− s)
(

zk−1 +
(
s+qb0

)
zk−2 +

(
s2 + sqb0 +qbob1

)
zk−3 + · · ·

)
The coefficient of the next term being s3 + s2qb0 + sqbob1 + qb0b1b2 and so on. From
this point one, this becomes just an ordinary factorization of polynomials... well, but
so was the first step, as well. What made the first step interesting was that, because the
coefficients at that step were explicitly either zero or one, the corresponding reversal of
the bit sequence became manifest.

One may as well bring this detour to a close. There’s nothing particularly magic in
the above factorization, other than the combinatorial re-arrangement of the polynomial
labels. A generic polynomial factorization looks like the below, for comparison. If

p(x) = xn+1 + c0xn + c1xn−1 + · · ·cn

and if r is a root of p(x) viz p(r) = 0 then

p(x) =(x− r)
(
xn +(r+ c0)xn−1 +

(
r2 + c0r+ c1

)
xn−2 + · · ·

)
=(x− r)

(
xn +a0xn−1 +a1xn−2 + · · ·

)
with

ak = rk+1 +
k

∑
j=0

c jrk− j

There are some notable values occurring in the factorization. These are shown in the
table below:
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o n bin root r q polynomial OEIS root of
2 1 11 ϕ = 1.618· q1 = 0.618 · · ·

3
2 101 1.465571· q1 = 0.46557123187676 · · · A088559 q3 +2q2 +q−1

q01 = 0.68232780382801 · · · A263719 q3 +q−1

3 111 1.839286· q1 = 0.83928675521416 · · · q3−2q2−2
q11 = 0.54368901269207 · · · A192918 q3 +q2 +q−1

4

4 1001 1.380277·
q1 = r−1

q01 = 0.52488859865640 · · · A072223 q4−2q2−q+1
q001 = 0.72449195900051 · · ·

6 1101 1.7548776·
q1 = r−1 A075778 q3 +q2−1

q11 = 0.32471795724474 · · · silver - 1
q011 = 0.56984029099805 · · ·

7 1111 1.9275619·
q1 = r−1

q11 = 0.78793319384471 · · ·
q111 = 0.51879006367588 · · ·

As may be seen, some of these constants are already notable for various reasons.
Many are also the real roots of yet other polynomials, of a not entirely obvious form.
(Well, the q1 polynomials will always be obvious expansions in binomial coefficients).
The suggestion here is that these are all in turn part of some filigreed partially-ordered
set of intertwining polynomials. Exactly how to express that intertwining in any sort of
elegant or insightful way is not obvious.

6 Islands of Stability as Arnold Tongues
The trouble-spots, the eventual fixed-points of the map, can be placed in one-to-one
accordance with the “islands of stability” seen in the iterated logistic map. They are,
in essence, locations where periodic orbits “could be pasted”, or where they “naturally
would appear”, if the map supported periodic attractors. That is, the beta shift only
supports a single attractor, of period-one at x = 0; there is no “room” for anything
more. This is analogous, in a way, to the phase locked loop, at zero coupling constant.
At finite coupling strength, these “trouble spots” expand out as Arnold tongues, to have
a finite size, visible on the Feigenbaum diagram for the logistic map as regions where
period-doubling is occurring.

The idea here can be illustrated explicitly. Basically, take the natural sawtooth
shape of the map, widen the middle, and insert a slanting downward line, to create a
zig-zag. That is, connect the two endpoints in the middle of the beta shift, “widening”
it so that it has a finite, not infinite slope, thereby converting the iterated function from
a discontinuous to a continuous one. This can be constructed directly: given some
“small”, real ε > 0, define the piecewise-linear ε-generalization of the map 3 as

Tβ ,ε(x) =


βx for 0≤ x < 1

2 − ε

β

4 −β
( 1

4 − ε
)

w for 1
2 − ε ≤ x < 1

2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x≤ 1
(26)
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where w is just a handy notation for a downward sloping line:

w =
2x−1

2ε

Observe that w = 1 when x = 1
2 − ε and that w = −1 when x = 1

2 + ε so that w just
smoothly interpolates between +1 and -1 over the middle interval. The additional fac-
tors of β

4 −β
( 1

4 − ε
)

w just serves to insert the downward slope smack into the middle,
so that the endpoints join up. The results is the zig-zag map, illustrated in the figure
below

In the limit of ε → 0, one regains the earlier beta shift: limε→0 Tβ ,ε = Tβ , as the
slope of the middle bit becomes infinite. The middle segment is a straight line; it
introduces another folding segment into the map. This segment introduces a critical
point only when ε is sufficiently large, and β is sufficiently small, so that its slope is
less than 45 degrees (is greater than -1). When this occurs, a fixed point appears at
x = 1/2. A sequence of images for finite ε are shown in figure 26.

The appearance of islands of stability in the Feigenbaum attractor is due to the
presence of a fixed point at any parameter value. In order to “surgically add” islands
of stability to the beta transform, the middle segment interpolation must also have a
critical point at “any” value of ε . To achieve this, consider the curve

Dβ ,ε(x) =


βx for 0≤ x < 1

2 − ε

β

4 −β
( 1

4 − ε
)

g(w) for 1
2 − ε ≤ x < 1

2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x≤ 1
(27)

where the straight line has been replaced by a soft shoulder

g(w) = 1−2cos
π

4
(1+w)

and w is the same as before. This is scaled so that its a drop-in replacement for the
straight line: g

( 1
2 − ε

)
= 1 and g

( 1
2 + ε

)
= −1. A cosine was used to create this soft

shoulder, but a parabola would have done just as well. It is illustrated above, with the
label “soft map”.

This map also interpolates between the left and right arms of the beta transform,
forming a single continues curve. The curve is smooth and rounded near 1

2 − ε > x,
having a slope of zero as x approaches 1

2 − ε from above. This introduces a critical
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Figure 26: Z-shaped Map

This illustrates a sequence of iterated maps, obtained from eqn 26. Shown are ε =
0.01, 0.02, 0.04 in the first row, 0.06, 0.08, 0.10 in the second row and 0.12, 0.14,
0.15 in the third row. The image for ε = 0 is, of course, figure 2. The parameter β

runs from 1 at the bottom to 2 at the top. Thus, a horizontal slice through the image
depicts the invariant measure of the iterated map, black for where the measure is zero,
and red where the measure is largest. The sharp corner at the lower-left is located
β = (1+2ε)/(1−2ε) and x = ε (1+2ε)/(1−2ε). A yellow horizontal and vertical
line in the last image indicate the location of this corner.
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Figure 27: Critical-Z map

This illustrates a sequence of iterated maps, obtained from eqn 27. The sequence of
depicted ε values are the same as in figure 26. The top row shows ε = 0.01, 0.02, 0.04,
with 0.06, 0.08, 0.10 in the second row and 0.12, 0.14, 0.15 in the bottom row. The
image for ε = 0 is, of course, figure 2. The parameter β runs from 1 at the bottom to
2 at the top. Working from bottom to top, one can see islands of stability forming in
the ε = 0.02 and 0.04 images. The largest island, one third from the top, corresponds
to β = ϕ = 1.618 · · · the golden ratio. Moving downwards, the other prominent is-
lands correspond to the “trouble spots” 101, 1001 and 1001, which are the Narayana’s
Cows number, an un-named number, and the Silver Ratio, at β = 1.4655 · · · and so
on. Moving upwards, one can see a faint island at the tribonacci number. Due to the
general asymmetry of the map, these islands quickly shift away from these limiting
values. For example, the primary island appears to start near β = δ +(2−δ )(ϕ−1),
where δ = (1+2ε)/(1−2ε). This location is indicated by a horizontal yellow line
in the images in the right column. The other islands shift away in a more complicated
fashion.
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point near 1
2 − ε . Notice that there is a hard corner at 1

2 + ε . The interpolation is NOT
an S-curve! A sequence of images for finite ε are shown in figure 27.

Two more variant maps can be considered. Both replace the center piece with
symmetrical sinuous S-shaped curves, but in different ways. Consider

Sβ ,ε,σ (x) =


βx for 0≤ x < 1

2 − ε

β

4 −σβ
( 1

4 − ε
)

sin π

2 w for 1
2 − ε ≤ x < 1

2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x≤ 1
(28)

and

Hβ ,ε,p,σ (x) =


βx for 0≤ x < 1

2 − ε

β

4 −σβ
( 1

4 − ε
)

sgn
(
x− 1

2

)
|w|p for 1

2 − ε ≤ x < 1
2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x≤ 1
(29)

The Sβ ,ε(x) replaces the central segment with a softly-rounded segment, containing
two critical points: near 1

2 − ε and near 1
2 + ε , where the curve flattens out to a zero

slope. When σ = +1, the map as a whole is continuous. When σ = −1, the map
consists of three discontinuous pieces. Different values are explored in figure 28.

The Hβ ,ε,p,σ (x) replaces the central segment with a segment that has a kink in the
middle, when p > 1. Note that Hβ ,ε,1,1(x) = Tβ ,ε(x). Here, sgnx is the sign of x. The
general shape of Hβ ,ε,p,σ (x) is shown above, labeled as the “kink map”. The location
of the kink in H is always centered; an off-center kink, as depicted in the figure, is
explored below. The bifurcation diagrams for H are illustrated in figure 29.

To summarize: the “trouble spots” don’t “just” break the ability to create a Hessen-
berg basis at certain values of β : they are more “fundamental” than that: they indicate
the regions where (“phase-locked”) periodic orbits can be made to appear. The last
sequence of images, shown in figure 29 indicate that the islands of stability need NOT
consist of the period-doubling sequences seen in the Feigenbaum map. This is made
explicit in figure 30, which shows a zoom by a factor of thirty.

Another interesting visualization is a Poincaré recurrence plot. The islands of sta-
bility should manifest as Arnold tongues[36]. These are shown in figures 31 and 32.

To intuitively understand the location of the islands (the location of the Arnold
tongues), its easiest to examine a map with a kink in it, whose location is adjustable.

Hβ ,ε,α,σ (x) =


βx for 0≤ x < 1

2 − ε

β

4 −σβ
( 1

4 − ε
)

hα,p for 1
2 − ε ≤ x < 1

2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x≤ 1

with

hα,p (x) =

{
α +(1−α) |w|p for x < 1

2
α− (1+α) |w|p for 1

2 ≤ x

As before, hα,p (x) is designed to interpolate appropriately, so that hα,p
( 1

2 − ε
)
= 1 and

hα,p
( 1

2 + ε
)
=−1. The location of the kink is now adjustable: hα,p

( 1
2

)
= α . Iterating

on this map results in figures that are generically similar to those of figure 29, except
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Figure 28: Interpolating Sine Map

This illustrates a sequence of iterated maps, obtained from eqn 28. The sequence in the
upper row shows ε = 0.04, 0.10 and 0.15; with σ = +1. The upper row is much like
the sequence shown in figure 27, except that its made sinuous, thanks to symmetrical
S-shape. The middle row shows the same ε values, but for σ = −1. The bottom
row shows eqn 29 with p = 1 and σ = −1; thus, because p = 1 gives a straight-line
segment in the middle, this bottom row is directly comparable to the zig-zap map. It
should make clear that the islands appear in the middle row due to critical points in the
S-curve, and not due to the tripartite map. The lower right diagram exhibits islands,
but only because the middle segment has a slope of less than 45 degrees, resulting in
a critical point at the middle of the map. As usual, the parameter β runs from 1 at the
bottom to 2 at the top.
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Figure 29: Interpolating Kink Map

This illustrates a sequence of iterated maps, obtained from eqn 29. All eight images
are held at ε = 0.04. The top row has σ =+1 (and thus the map is continuous) while
the bottom row has σ = −1 (and thus the map has three disconnected branches. Left
to right depicts the values p = 2,3,4,5. As usual, the parameter β runs from 1 at the
bottom to 2 at the top. In all cases, islands appear, and numerous common features are
evident. Perhaps most interesting is that the islands do NOT contain period-doubling
sequences. The primary sequence of islands, starting from the central largest, proceed-
ing downwards, are located the inverse powers of two, viz at β = k

√
2. Why are the

islands located at inverse powers of two, instead or, for example, the golden means?
The short answer: it depends on the location of the kink in the map, as explored in the
main text.
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Figure 30: No Period Doubling

This figure is a zoom, confirming a lack of period doubling in the map Hβ ,ε,p,σ (x) of
eqn 29. The explored region is 0 ≤ x ≤ 1, viz no zoom in the horizontal direction.
Vertically, the image is centered on β = 1.45, having a total height of ∆β = 0.015625.
This uses the quintic kink, so p = 5 and σ = +1, making the the continuous variant.
The value of ε = 0.04 makes this directly comparable to other images.
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Figure 31: Poincaré recurrence

The above visualize the Poincaré recurrence times for the map Dβ ,ε(x) of eqn 27 on
the left, and the map Sβ ,ε,1(x) of eqn 28 on the right. In both cases, the parameter
β runs from 1 to 2, left to right. The parameter ε runs from 0 to 0.2, bottom to top.
The Poincaré recurrence time is obtained by iterating on the maps, and then counting
how many iterations it takes to get near an earlier point. The color coding is such that
yellow/red indicates large recurrence times; green is intermediate time, blue a short
time, and black corresponds to n less than 3 or 4 or so. The vertical black spikes
are the Arnold tongues; they correspond to parameter regions which lie in an island
of stability. That is, the recurrance time is low, precisely because the the point x is
bouncing between a discrete set of values. The yellow/red regions correspond to chaos,
where the iterate x is bouncing between all possible values. The largest right-most
spike is located at β = ϕ = 1.618 · · · , with the sequence of spikes to the left located
at the other primary golden means (viz, 1.3803 · · · and the silver mean1.3247 · · · and
so on). As noted earlier, the general curve of that spike appears to follow β = δ +
(2−δ )(ϕ−1), where δ = (1+2ε)/(1−2ε). The dramatic swallow-tail shapes in
the right-hand image are identical to those that appear in the classic iterated circle
map.[36]
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Figure 32: Arnold Tongues

The above visualize the Poincaré recurrence times for the map Hβ ,ε,p,σ (x) of eqn 29.
The parameter β runs from 1 to 2, left to right. The parameter ε runs from 0 to 0.2, bot-
tom to top. The power p is held fixed at p = 5. The left image shows σ =-1; the right
shows σ = +1. The Poincaré recurrence time is obtained by iterating on Hβ ,ε,p,σ (x)

and counting how many iterations it takes until
∣∣∣x−Hn

β ,ε,p,σ (x)
∣∣∣ < 0.009. The shapes

depicted are not sensitive to the recurrence delta 0.009; this value is chosen primarily to
make the colors prettier. The color coding is such that yellow/red indicates large recur-
rance times n; green is intermediate time, blue a short time, and black corresponds to n
less than 3 or 4 or so. The vertical blue spikes are the Arnold tongues; they correspond
to parameter regions which lie in an island of stability. That is, the recurrance time is
low, precisely because the the point x is bouncing between a discrete set of values. The
yellow/red regions correspond to chaos, where the iterate x is bouncing between all
possible values. The central spike is located at β =

√
2 with the sequence of spikes to

the left located at k
√

2 for increasing k. In that sense, the large black region dominating
the right side of the figures correponds to β = 2. These correspond to the black bands
in figure 29.
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that this time, the location of the islands is controllable by the parameter α . Roughly,
to first order, the primary series of islands are located at k

√
2/(1−α); as before, these

islands do not allow period-doubling to take place.
To get islands with period doubling, one needs to re-create the “soft shoulder” of

eqn 27, but at a variable location.
Thus, the above presents a general surgical technique for controlling both the gen-

eral form of the chaotic regions, the location of the islands of stability, and what appears
within the islands.

Note to reader: I suspect that the above observations have been previously dis-
covered by others, and might even be “well known”, viz. presented in some pop-sci
literature on fractals. However, I am not aware of any references discussing this topic.
If you, dear reader, know of such references, please drop me a line at the posted email
address.

Exercise left to the reader: the above arguments should be sufficient to fully demon-
strate that the circle map, which is well-known to exhibit phase locking regions called
Arnold tongues, is topologically conjugate to the fattened beta shift Tβ ,ε . Or some-
thing like that. In a certain sense, this can be argued to be a “complete” solution, via
topological conjugacy, of the tent map, the logistic map and the circle map. This is a
worthwhile exercise to actually perform, i.e. to give explicit expressions mapping the
various regions, as appropriate.

Essentially, the claim is straight-forward: topologically, all chaotic parts of a map
correspond to folding (as per Milnor, 1980’s on kneading maps), into which one may
surgically insert regions that have cycles of finite length. The surgical insertion can oc-
cur only at the discontinuities of the kneading map. It almost sounds trivial, expressed
this way; but the algebraic articulation of the idea would be worthwhile.

7 Miscellaneous unfinished ideas
An ad-hoc collection of half-finished thoughts.

7.1 Multiplicative Shifts
A multiplicative shift is a shift assembled as an product of functions. The most famous
of these is the generating function for integer partitions

P(z) =
∞

∏
n=1

1
(1− zn)

Similarly products occur for the necklace counting functions, most famously the cy-
clotomic identity

1
1−β z

=
∞

∏
j=1

(
1

1− z j

)M(β , j)

where M (β , j) the necklace polynomial.
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A far more obscure product expresses the Minkowski measure[37], given as

?′ (x) =
∞

∏
n=0

A′ ◦An (x)
2

with

A(x) =

{
x

1−x for 0≤ x < 1
2

2x−1
x for 1

2 ≤ x≤ 1

with A′ being the derivative of A and An being the n’th iterate. The Minkowski measure
integrates to the Minkowski Question Mark function ?(y) =

∫ y
0 ?′ (x)dx; it is the proto-

typical “multi-fractal measure” (although there really is nothing “multi-” about it; the
“multi-” prefix stems from a misunderstanding of its multiplicative invariance). The
product structure indicates that the Minkowski measure is a Gibbs measure, viz arising
from an invariant Hamiltonian on a one-dimensional lattice.

The figure 23 suggests that a similar product can be constructed from the midpoint
sequence, namely

∞

∏
p=0

4mp (β )

β

for the midpoints mp (β ) = T p
β
(m0).

7.2 Midpoints, revisited
The midpoints are defined above as m0 = β/2, so that mp = Tβ (mp−1) = T p

β
(m0) with

Tβ (y) the beta shift map of eqn 3. Almost all literature uses the beta transform tβ (x)
of eqn 7 instead. The midpoint sequence and the iterate t p

β
(1) are closely related:

2mp mod 1 = t p+1
β

(1)

Although related, they are not the same. The difference is a sequence of bits:

cp = 2mp− t p+1
β

(1)

Note that cp ∈ {0,1} always. Note that

β =
∞

∑
p=0

cp

β p

which is not entirely obvious!

7.3 Rauzy Fractals
Given a polynomial, one has an associated finite matrix, in Hessenberg form, that, iter-
ated upon, generates a sequence. The projection of that sequence to a non-expanding
orthogonal plane is a Rauzy fractal. What are the corresponding Rauzy fractals for this
situation?

How about the general iterated sequence (e.g. the sequence of midpoints)? Is this
space-filling, or not?
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8 Bergman (Hessenberg) Polynomials
Given a matrix operator in Hessenberg form, it can be interpreted as a right-shift on the
space of polynomials. Such polynomials form an orthogonal basis for a certain kind of
Hilbert space, called the Bergman space. They are studied in applied mathematics, as
they are orthogonal over some measure on the complex plane. The Hessenberg operator
is a generalization of the better-known case of the Jacobi operator, which has it’s own
extensive theory, including spectra and scattering, and is important for several exactly
solvable non-linear models in physics, including the Toda lattice[38]. The Hessenberg
operator presumably has an equally rich theory, but it does not appear to be currently
known; the breadth and scope of existing publications is limited.

The general framework for the Hessenberg polynomials is sketched below, includ-
ing a fast and informal definition of Bergman space (the space on which the polynomi-
als are orthogonal). The Hessenberg matrix is explicitly solvable on the left, and can
be explicitly brought into a from that exhibits the right-shift operator. In the general
theory, the change of basis from the shift operator to the Hessenberg matrix is known
to be the Cholesky decomposition of a moment matrix, and specifically, the moments
of the measure on which the polynomials are orthogonal.

There are two Hessenberg operators in this text: the operator Lβ in the wavelet
basis, and the operator Bβ generated from the midpoint orbits. The second is already
obviously a shift, and so everything below follows “trivially” from it. The first form is
is numerically and analytically difficult. Needless to say, the section below treats the
firs rather than the second. XXX TODO this should be fixed, as Bβ is both simpler
and more enlightening overall. Later ...

Working backwards from the beta shift, the first asymptotic term in the measure can
be extracted. For β > ϕ , it appears to be a Dirac delta (point mass) located at z = 1 on
the complex plane, with a blancmange-like fractal curve giving the weight. For β < ϕ ,
it appears to be the derivative of the Dirac delta, with a different blancmange-like fractal
curve giving the weight.

8.1 Bergman Space
Given a matrix operator in Hessenberg form, it can be interpreted as a right-shift on
the space of polynomials. That is, given an unreduced Hessenberg matrix with matrix
entries Ai j, one can write a recurrence relation that defines a sequence of polynomials
as

zpn (z) =
n+1

∑
k=0

Akn pk (z) (30)

with p0 (z)= 1. This relation is easily solvable in closed form, as the recurrence relation
terminates in a finite number of steps.

One important property of these polynomials is that the zeros of pn (z) correspond
to the eigenvalues of the n×n principle submatrix of A. Numeric exploration of these
polynomials confirms the previous results on eigenvalues obtained from direct diago-
nalization: the zeros of the pn (z) seems to lie mostly near the circle of radius 1/β ,
distributed uniformly over all angles.
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If all of the sub-diagonal entries obey An+1,n > 0, then the polynomials form an
orthonormal basis for Bergman space. That is, there exists a domain in the complex
plane on which the polynomials provide a basis for a Hilbert space of holomorphic
functions on that domain[39, 40, 41]. That is, one has the orthogonality relation

δmn =
∫

D
pm (z) pn (z)dµ (z)

for some domain D ⊂ C of the complex plane, and some (Borel) measure dµ on that
domain.

The matrix A can be interpreted as an operator with a continuous spectrum. To do
this, fix a certain, specific value of z = c a constant, and then notice that ~p = (pn (z))

∞

n=0
is a vector having the property that AT~p = z~p. That is, ~p is a left-eigenvector of A;
equivalently, a right-eigenvector of its transpose AT . Clearly, the spectrum is continu-
ous on the domain D.

The matrix operator A can also be interpreted as a right-shift on Bergman space. To
do this, define

A (w,z) =
∞

∑
k=0

∞

∑
n=0

pk (w)Akn pn (z)

Then, given some holomorphic function f (z) decomposed in terms of the polynomials,
so that f (z) = ∑n an pn (z), one has that

[A f ] (w) =
∫

A (w,z) f (z)dµ (z)

=∑
k

∑
n

pk (w)Aknan

=w∑
n

an pn (w)

=w f (w)

That is, given a sequence (a0,a1,a2, · · ·), the Hessenberg matrix acts as a right-shift,
mapping it to the sequence (0,a0,a1, · · ·).

This is perhaps a bit silly, as one could instead just perform the same manipulation
without the f (z), by observing that, formally,

A (w,z) = w
∞

∑
k=0

∞

∑
n=0

pk (w) pn (z)

The above treatment is breezy and “formal”, paying no heed to summability, con-
vergence or responding to any questions about what spaces the various vectors may
live in. This is as appropriate, since the task here is to discover which spaces are the
appropriate ones, when the Hessenberg matrix arises from the beta shift.

Notice that the word “operator” is a bit mis-used, here, as a vague synonym for
“infinite-dimensional matrix”. Properly, the word “operator” should be reserved for
an infinite-dimensional matrix acting on some given space, having general properties
that are independent of the basis chosen for that space. So far, that might not be the
case here: the infinite-dimensional matrices here might not be bounded operators; they
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Figure 33: Sub-diagonal Entries
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Subdiagonal matrix entries for β=1.6

These charts show the sub-diagonal matrix entries
〈
n+1

∣∣Lβ

∣∣n〉 for the first n < 500.
The left graph shows β = 1.1, the right shows β = 1.6; other values behave similarly. A
scatterplot of the location of the spikes as a function of β does not reveal any structure.
That is, except for small n, the location of a spike shows no smooth variation as β is
varied smoothly. There does appear to be some structure for small n – some banded
sequences – and so perhaps the correct statement is that the system is mixing, as n
increases.

might not even be continuous, viz. we have not ruled out the possibility that the space
of interest is some Fréchet space or some more general topological vector space. It
is well known that operators on such spaces can have “unexpected” discontinuities,
unexpected in that they are not seen in ordinary Banach spaces.

At any rate, if polynomials obtained from the beta shift are orthogonal on some
domain D ⊂ C that is the support of some measure dµ , it is not at all clear what this
measure might be. They are certainly not orthogonal on the unit disk, with uniform
measure.

Notice also that the above treatment seems to be a special case of a more general
principle: when an operator has a continuous spectrum, it can sometimes be inter-
preted as a right-shift. That is, given some arbitrary operator H , then if one has that
H f = λ f and λ takes arbitrary values λ ∈D⊂C, then H can be taken to be a right-
shift operator, provided that f = f (λ ) can be decomposed into a set of orthogonal
polynomials in λ .

8.2 Beta Bergman Shift
The primary question for this section is whether the β -transform transfer operator, in
the Hessenberg basis, can be considered to be a Bergman shift.

To obtain the orthogonal polynomial basis, one must satisfy the constraint that
An+1,n > 0 for the matrix elements Akn =

〈
k
∣∣Lβ

∣∣n〉 of eqn 21. Numeric exploration
indicates that this is indeed the case, with the sub-diagonal entries all positive (none are
zero), and all tend to have the same value, with sporadic exceptions. These are shown
in figure 33.
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Can one find a domain on the complex plane that would have such Bergman poly-
nomials? The references[39, 41] provide a technique for doing so, provided that the
matrix is asymptotically Toeplitz. That is, if the diagonals of Ai j have nice limits, that
limn→∞ An−k,n exists for fixed k, then a Jordan arc bounding a domain on the complex
plane can be found. The figure 33 indicates that this limit does not exist, in the strict
sense: the values bounce away from an obvious limit point indefinitely. Exactly what
this implies is unclear. Perhaps it is possible to extend the results of [39, 41] to matri-
ces that are where the diagonals merely have an accumulation point, as opposed to a
well-defined limit?

Based on numeric exploration, it appears that the domain is the unit disk. That is,
AT~p = z~p holds for |z| ≤ 1.

8.3 Bergman Alternative
The Bergman polynomials of eqn 30 define an orthonormal basis for some region of
the complex plane. For the square-integrable norm, this basis is the basis of a Hilbert
space, and specifically, that of a reproducing kernel Hilbert space.

Yet, something funny happens on the unit disk. Let pm (z) be the polynomials, and
for some sequence of coefficients {an}, consider a generic function

f (z) =
∞

∑
k=0

ak pk (z)

Consider the case where the {an} are a right-eigenvector of the Hessenberg operator,
that is, where

∞

∑
m=0

Akmam = λak

Substituting into the above, one has

f (z) =
∞

∑
k=0

1
λ

∞

∑
m=0

Akmam pk (z) =
z
λ

∞

∑
m=0

am pm (z) =
z f (z)

λ

There are two alternatives to solving this; either f (z) = 0 or z = λ . Since this is a
reproducing kernel Hilbert space, then if z = λ is part of the domain of the Bergman
space, then one must conclude that f (z) = 0 everywhere. That is, right-eigenvalues of
A correspond to functions f (z) that are vanishing. To invent a new name, by analogy
to the Fredholm alternative, perhaps this can be called the Bergman alternative.

Numerical exploration indicates that, for the matrix elements of eqn, 21, the func-
tion f (z) vanishes inside the unit disk |z| < 1, and is undefined (infinite) outside of
it.
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8.4 Left Factorization
Suppose one is given an (arbitrary) sequence of polynomials (pn (z))

∞

n=0, such that the
order of pn is n. Then each individual polynomial can be expanded as or β > ϕ ,

pn (z) =
n

∑
k=0

pnkzk

This defines an infinite matrix P = [pnk], provided that the coefficients are extended
so that pnk = 0 whenever k > n. This matrix is manifestly lower-triangular. Writing
vectors~z = (zn)∞

n=0 and ~p = (pn (z))
∞

n=0 as before, the above is just the matrix equation

~p = P~z

Consider now the case where the polynomials were constructed from some irre-
ducible Hessenberg matrix A. The earlier observation that AT is a shift, namely, that
AT~p = z~p can now be written as

AT P~z = zP~z = Pz~z = PK~z

In the above, the z without the vector notation is just a scalar, and thus commutes
(trivially) with P . Its eliminated by explicitly making use of the right-shift (Koopman)
operator, which, in this basis, is

K =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0 0 0 0
. . .

0 0 0 0
. . .


Since P is lower-triangular, it is invertible on the right, that is, the inverse P−1 exists,
and so one is left with

P−1AT P = K

The irreducibility of A is important, here; non-zero entries on the sub-diagonal are
required, else trouble ensues.

Rearranging, this provides an explicit decomposition of A into triangular matrices:

AT = PK P−1

Taking the transpose, this gives

A =
[
P−1]T K T PT

with PT and
[
P−1

]T both being upper-triangular, and K T being the left-shift.
This system is solvable. Given some matrix A in Hessenberg form, the matrix

elements of P can be computed recursively, in a finite number of steps (i.e. in closed
form), directly from 30. The explicit expression is
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An+1,n pn+1, j = pn, j−1−
n

∑
k=0

Akn pk j

The starting conditions are p00 = 1. To handle the j = 0 case in the above, set pn,−1 = 0.
Because P is lower triangular, its inverse P−1≡R = [rkn] can be obtained explic-

itly. Along the diagonal, one has rnn = 1/pnn while the lower triangular form means
rkn = 0 for k < n. For the remaining entries m < n, one has

0 =
n

∑
k=m

pnkrkm

This can be solved in a finite number of iterations on

pnnrnm =−
n−1

∑
k=m

pnkrkm

The above avoids questions of convergence, or any notion of the spaces on which
the matrices or operators might act. The norm to be used for~z and ~p is not specified.
This is appropriate at this stage: it is the algebraic manipulations that are interesting,
at this point, rather than the spaces on which the matrices/operators might act. One
can invent several kinds of norms that might be applicable, but there is no particular
reason to believe that ~p might have a finite norm. Likewise, P may not have a finite
norm. For the case of the Hessenberg operator originating with the beta shift operator,
it does not; the individual matrix elements pnm increase without bound. That is, P is
an infinite matrix, but it is not clear that it is also an operator. If it is, it is certainly not
a compact operator.

Some of the poor behavior can be brought under control by factoring P = DN
with N being unitriangular (all ones on the diagonal) and D a diagonal matrix, with
entries [D ]nk = pnnδnk. With this factorization, one may then write

N −1AT N = DK D−1

so that DK D−1 has off-diagonal matrix entries
[
DK D−1]

nk = δn+1,k pnn/pkk. This
is a rescaling of the shift [K ]nk = δn+1,k. The scaling factor is exactly the sub-diagonal
of the Hessenberg. That is, pnn/pn+1,n+1 = An+1,n. The polynomials N ~z are monic.

8.5 Beta-transform factoids
An assortment of observations follow, for the case of the beta shift.

First, the matrix entries of P grow in an unbounded fashion. It appears that pnn ∼
O (β n); the ratio pnn/β n is depicted in figure 34.

Experimentation reveals two different regimes of behavior, depending on whether
or not β < ϕ =

(
1+
√

5
)
/2 the Golden ratio. Exactly why there are two different

regimes is unclear. Earlier sections motivated the reason for the appearance of the
golden mean; why this shows up dramatically, as it does here, is unclear (to me).
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Figure 34: Polynomial Operator Diagonal Entries
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Polynomial Operator Diagonal Entries for �=1.2

This depicts the ratio pnn/β n of the diagonal matrix entries pnn of the Bergman poly-
nomial matrix operator P for the beta shift with value β = 1.2. Other values of β

are not dissimilar, although the spikes are pushed more closely together. The height
of the spikes seems to be roughly the same, for all β . This is another way of visualiz-
ing the same information as in figure 33, as the ratio pnn/pn+1,n+1 is just given by the
subdiagonal entries An+1,n of the Hessenberg matrix. In particular, the straight edges
correspond to usually-constant values on the subdiagonal.
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One such result is that when β < ϕ , then the sum over columns of the Bergman
operator vanishes. That is,

∞

∑
k=0

pnk = δn0

This implies that every polynomial pn (z) has a zero at z = 1 (except for p0 (z) = 1)
when β < ϕ .

8.6 Decaying Eigenfunctions
The matrix mechanics developed in the previous sections can be used to perform
asymptotic expansions that rapidly converge to decaying eigenfunctions. This works
most simply for the case of ϕ < β . TODO Write these down. TODO flesh out. Ba-
sically, write a vector ~w with elements wn = ωn for 1 < |ω| so that this is divergent.
Then write the formal vector ~a =

[
PT

]−1
~w which is formally divergent, but can be

truncated in finite dimensions, and renormalized to be of unit length. Doing so provides
an eigenfunction of A. The associated eigenvalue is 1 when β < ϕ but is less than 1
when ϕ < β (and in fact, the eigenvalue is exactly that depicted in figure 35). TODO
graph some of these, explore more thoroughly, address the issues of formal divergence.

8.7 Moment Matrix
When the Hessenberg matrix is derived from measures on the complex plane, it takes
the form of M = RRT with R = P−1, so that R is the Cholesky decomposition of
M . This matrix is manifestly symmetric: M = M T . Direct observation shows that it
is almost positive-definite: one finds that [M ]i j > 0 for all i, j except for [M ]00 = 0.
This result can be strengthened: when β < ϕ , then [M ]i j > 1 for all i, j except for
[M ]00 = 0 and [M ]0n = [M ]n0 = 1. But, for β > ϕ , one finds that [M ]00 = 0 and
[M ]01 = [M ]10 = [M ]11 = 1, while all the rest obey 0 < [M ]i j < 1.

In the standard literature, M is usually obtained from some moment matrix, viz, for
the integral

∫
zmzndµ (z) for some measure dµ (z). Might that be the case here? Tak-

ing the time to numerically characterize the matrix, one finds that the ratio of successive
rows (or columns as its symmetric) very quickly approaches a limit limn→∞, [M ]nm / [M ]n−1,m =
C (β ) for some constant C that depends only on β but not on m. The limit C (β ) is
graphed in figure 35.

For β < ϕ , it appears that limn→∞, [M ]nm = B(β ) a constant, independent of m.
This limiting value B(β ) is graphed in figure 36.

The asymptotic behavior of the matrix [M ]i j can be obtained as a moment matrix
on point sources. A delta function located at z =C for real C has the moments

Cmn =
∫

zmzn
δ (z−C)dz

=
∫

rmrn
δ (r−C)rdr

∫
δ (θ)e−imθ einθ dθ

=Cm+n+1
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Figure 35: Symmetric Matrix Limit Ratio
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This figure shows the limit C (β ) defined in the text. Note that C (β ) = 1 for β <ϕ . The
jump is at about β = 1.83928676 · · · . Note this is one of the “troublesome midpoints”
for the Hessenberg basis expansion, specifically for T 3

β
(β/2) = 0 or β/2. This is one

of the first “generalized golden means”, the positive real root of β 3−β 2−β −1 = 0.
The entire fractal structure presumably corresponds to higher iterates p that satisfy
T p

β
(β/2) = 0.
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Figure 36: Symmetric Matrix Limit
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Symmetric Matrix Limit

This figure shows the limit B(β ) defined in the text. The limit is approached fairly
quickly for the larger values of β , but convergence proves difficult for β . 1.1.
The overall shape is that of a hyperbola, but doesn’t seem to actually be hyper-
bolic for either small or large β . The right-most nick in the curve appears to be at
β = 1.465571231876768 · · · , another “generalized golden mean”, and the only real
root of β 3−β 2− 1 = 0; equivalently, the root of T 3

β
(β/2) = 0. The remaining nicks

are presumably located at T p
β
(β/2) = 0 for higher iterates p.
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Figure 37: Point Weight
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This figure shows the value of A(β ) that gives the point weight of the moment matrix.
That is, the asymptotic behavior of M is given by [M ]mn →

∫
zmznρ (z)dz with the

measure given by a point mass ρ (z) = A(β )δ (z−C (β )). Clearly, there is a strong
resemblance to figure 35.

Thus, for ϕ < β , the asymptotic behavior of [M ]i j is given by the distribution A(β )δ (z−C (β )).
What is A(β )? This is graphed in figure 37.

What about β < ϕ? A limiting constant distribution can be obtained from a deriva-
tive point mass located at z = 1. That is,

Dmn =
∫

zmzn
δ
′ (z−1)dz

=
∫

rmrn
δ
′ (r−1)rdr

∫
δ (θ)e−imθ einθ dθ

=1

so that the asymptotic behavior of [M ]i j for β <ϕ is given by the distribution B(β )δ ′ (z−1).
The prime superscript here means derivative, viz, in colloquial language, δ ′ (z) =
dδ (z)/dz.

9 The Jacobi Operator
Given a Borel measure on the real number line, one can find a sequence of polyno-
mials that are orthonormal with respect to that measure. These polynomials pn (x) are
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coupled together by a three-term recurrence equation

xpn (x) = an+1 pn+1 (x)+bn pn (x)+an pn−1 (x)

with p0 (x) = 1 and p−1 (x) = 0. This recurrence relation can be taken to be an opera-
tor, known as the Jacobi operator J , acting on vectors consisting of the polynomials
p(x) = {pn (x)} so that

[J p] (x) = xp(x)

so that p is an eigenvector of J with eigenvalue x. The two sequences of coefficients
{an} and {bn} form three diagonals of the operator, with {an} running down the center,
and {bn} the two diagonals on either side[38].

Given that the invariant measure for the β -transform, given by eqn 14 and visual-
ized in figure 1 is a Borel measure, it seems reasonable to ask: what is the correspond-
ing Jacobi operator? How can the sequence of polynomials be understood?

Szegő polynomials w.r.t. dµ are a set of orthogonal polynomials on the unit circle.
Applying a Cayley transform gives the Schur functions, obeying a rational recurrence
relation solvable via continued fractions. Hmmm.

And then there is Favard’s theorem...

9.1 Moments
Construction of the polynomial sequences require moments. Since the invariant mea-
sures (and all of the eigenfunctions) are linear combinations of the Hessenberg basis
functions, it suffices to compute the moments for these. Since the basis functions are
piece-wise constant, and have an explicit expression given by eqn 20, the moments can
also be given explicit expression:∫ 1

0
xn−1

ψp (x)dx =
Cp

n

[
mn

p−mn
l

mp−ml
−

mn
u−mn

p

mu−mp

]
with the midpoint mp and the lower and upper midpoints ml < mp < mu defined just as
before. Clearly, the moments rapidly get small as n→ ∞. Likewise, for fixed n, these
also rapidly get small as p→ ∞.

10 The Multiplication Operator
The difficulties presented in the previous section suggests that studying the multiplica-
tion operator might be simpler. Multiplication by β is given by

Mβ (x) = βx (31)

The corresponding transfer operator is

[
Mβ f

]
(y) =

1
β

f
(

y
β

)
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The multiplication operator, superficially, in itself, is not terribly interesting; it simply
rescales things. It does not generate fractals, at least, not if one confines oneself to
real numbers and the canonical topology on the real-number line. If instead one works
with the product topology on 2ω , then the multiplication operator becomes rather com-
plicated and difficult to analyze. In this sense, it is promising: it avoids the overt
complexity of the logistic map, the tent map and the beta shift, yet still has a compli-
cated behavior in the product topology. In particular, the multiplication of two numbers
appear to involve chaotic dynamics of the carry bit.

10.1 Beta-shift, Revisited
The beta shift of eqn 3 takes a simple form when reinterpreted on bit-strings: it is
the concatenation of multiplication, followed by a left-shift. Given a bit-string (bn) =
0.b0b1b2 · · · denote its left-shift by U given by

U (0.b0b1b2 · · ·) = 0.b1b2 · · ·

which, for real numbers, corresponds to

U(x) =

{
2x for 0≤ x < 1

2
2x−1 for 1

2 ≤ x≤ 1

which is none-other than the Bernoulli shift of eqn 1 with a change of notation. The
beta shift is then

Tβ (x) = Mβ (U (x))

so that the iterated beta shift is an alternation between a left-shift and a multiplication.
The act of discarding the most significant bit (the MSB) with each left-shift alters the
dynamics of iterated multiplication.

This suggests that studying multiplication and the multiplication operator might
provide fruitful insight into the beta shift.

10.2 Monomial Eigenfunctions
Some properties of the multiplication operator can be guessed at directly. Obviously,
f = const. is a decaying/growing eigenfunction, depending on whether β > 1 or not.
That is, one should imagine f = const. as a uniform distribution of dust; with each
iteration, it is spread either farther apart (β > 1) or bunched closer together (β < 1).

Clearly, f (x) = xn is an eigenfunction, with eigenvalue 1/β n+1. If one considers
multiplication only to operate on the positive real-number line, then n need not be an
integer. In other words, the multiplication operator has a continuous spectrum in this
situation.

If the domain of the operator is extended to functions on the non-negative real-
number line, then n must be positive, as otherwise f (0) is ill-defined. But if n is
positive, then (for β < 1) the multiplication operator only has eigenvalues greater than
one, which is not, in general, very desirable.
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If the domain of the multiplication operator is extended to the entire real-number
line, then n is forced to be an integer, in order to avoid issues due to multi-valued
functions. Extending the domain to the complex plane leads us astray, and so we will
not go there.

10.3 A Fractal Eigenfunction
The compressor function is also an eigenfunction. It was previously observed in eqn
11 that

cprβ

(
x
β

)
=

1
2

cprβ (x)

whenever 1 < β ≤ 2 and 0 ≤ x < 1 and so, cprβ is potentially be an eigenfunction of
Mβ with eigenvalue 1/2β , provided that it is extended to arguments 1 < x. This can be
done as follows. Define the extended function, valid for 0 ≤ x < ∞ and for 1 < β ≤ 2
as

ecprβ (x) =



cprβ (x) if 0≤ 2x < β

2cprβ

(
x
β

)
if β ≤ 2x < β 2

4cprβ

(
x

β 2

)
if β 2 ≤ 2x < β 3

2ncprβ

(
x

β n

)
if β n ≤ 2x < β n+1

The extension is performed simply by treating the self-similarity as a recurrence re-
lation, which can be iterated to move the argument into a region where the original
definition was sufficient. In essence, one applies a right-shift operator to reduce the
argument. Since the multiplication operator is odd about x = 0, on can trivially extend
this to negative x by defining ecprβ (−x) =−ecprβ (x).

Note that the original cprβ (x) also had a translation symmetry: the upper half
was equal to the lower half. This translation symmetry has been lost, since after all,
multiplication does not preserve translation.

The ecpr function is not square integrable; it does not have an Lp-norm for any p;
and this is no surprise, as its hard to imagine how it could be otherwise, for a function
to be self-similar under scaling.

10.4 A Generic log-periodic Eigenfunction
Inspired by the above, its should be clear how to build a generic eigenfunction. Let
g(x) be some arbitrary function, defined on the interval 1 ≤ x < β (given some fixed
1 < β ). Define its extension as

g′w (x) = wng
(

x
β n

)
if β

n ≤ x < β
n+1

This has, by construction, the self-similarity relation g′w (βx) = wg′w (x) and so is an
eigenfunction with eigenvalue w/β :[

Mβ g′w
]
=

w
β

g′w
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This function is merely log-periodic; its not fractal. Perhaps its silly to illustrate this; it
should be obvious, but just in case its not, the figure below shows such a function, for
β = 1.6 and w = 0.8. It is an eigenfunction of M1.6 with eigenvalue of 1/2.
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Log-periodic function

There doesn’t seem to be anything particularly interesting with this particular game.
There’s a simple explanation for this: The multiplication operator is generating a free
monoid in one generator (the iteration itself), whereas fractals require at least two
generators of self-symmetry. The (usually) free interaction of multiple generators is
what forces the fractal to appear.

Note that the cprβ function constructed above is a special case of this: It’s self-
similar, but the property that made it interesting, as a fractal, was erased in the con-
struction. As before, note that g′w (x

n) is an eigenfunction with eigenvalue 1/βwn (for
integer n).

10.5 Haar Basis Matrix Elements
The Haar basis matrix elements for the beta shift proved to be a bit unwieldy and not
terribly useful. The corresponding matrix elements for the multiplication operator have
the same general essence, but are slightly simpler and shorter to write down. In all other
respects, they still have the same tractability issues.

The multiplication operator Mβ has matrix elements in the standard Haar basis:〈
mi
∣∣Mβ

∣∣n j
〉
=
∫

∞

−∞

hmi (x)
[
Mβ hn j

]
(x)dx

=
2(m+n)/2

β

∫
∞

−∞

h(2mx− i)h
(

2nx
β
− j
)

dx

Instead of confining oneself to the unit interval, here it is convenient to consider the
entire real-number line, and thus that is the range of the integral. Likewise, i and j an
be any integers, positive or negative. As before, matrix elements vanish unless[

i
2m ,

i+1
2m

]
∩
[

β j
2n ,

β ( j+1)
2n

]
6= /0

This holds in three cases: where one of the intervals contains an edge transition (left,
middle or right) of the other interval, without also containing the other two.
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10.6 The Shift and Add algorithm
One can model the multiplication of real numbers with a number of different algo-
rithms applied to bit strings. One of the simplest such algorithms is the shift-and-add
algorithm, described here. Its just elementary-school long-form multiplication, applied
to the binary expansions of the numbers.

There’s a point worth laboring on: a bit string representing a real number is not the
same thing as the real number. There are more bit-strings than there are real numbers.
Most famously, the two bit strings 0.0111 · · · and 0.1000 · · · are two obviously distinct
bit-strings, but they represent the same real number: one-half. All real numbers of
the form j/2n (the “dyadic rationals”) will always have dual representations; all other
real numbers have a single, unique representation. These correspond to the “gaps” in
the Cantor set, or, equivalently, neighboring infinite branches in the finite binary tree.
Bit-strings are not real numbers. They’re just a usable model of them. The usability
is somewhat limited; its OK for working with individual points, but fails miserably for
the topologies: the canonical topology on the reals is sharply different than the product
topology on 2ω .

The goal is to compute the product Kx with 0 ≤ K ≤ 1 and 0 ≤ x ≤ 1 so that the
product is 0 ≤ Kx ≤ 1. Both K and x are represented by their binary expansions. Let
the binary expansions be

x = 0.b0b1b2 · · ·=
∞

∑
n=0

bn2−n−1

and

K = 0.c0c1c2 · · ·=
∞

∑
n=0

cn2−n−1

where the bn and cn are either 0 or 1, always.
Define s0 = 0 and sn+1 to be the non-negative integer

sn+1 = bnc0 +bn−1c1 + · · ·+b0cn =
n

∑
k=0

bkcn−k (32)

Note that 0 ≤ sn ≤ n. It is useful to visualize this in terms of the elementary school
shifted tabular form:

0 c0b0 c0b1 c0b2 c0b3 · · ·
c1b0 c1b1 c1b2 · · ·

c2b0 c2b1 · · ·
+ c3b0 · · ·

——————————————–
s0 s1 s2 s3 s4 · · ·

This makes clear the shift-and-add form. The value of each individual sn can be vi-
sualized as a stack of blocks. For the special case of K = 0.111 · · · = 1 one has that
sn+1 = ∑

n
k=0 bk, that is, it is simply the total number of one-bits in the first n locations.
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The final step is to reduce the the sum series sn to a bit-string. This is accomplished
recursively, by performing a carry operation:

dn = sn +

⌊
dn+1

2

⌋
(33)

where bdc = d mod 1 denotes the floor of d (the integer part of d). The desired bit
sequence is then

an = dn mod 2 (34)

Equivalently, an is the remainder, the part of dn that was not propagated to the next
location. Explicitly, is is an = dn−2bdn/2c. The carry-sum propagation can be imag-
ined as a kind of bulldozer, razing the towers dn until they are one block high, pushing
the razed bits off to the next location. The resulting sequence (an) is then the bit-string
for the product Kx. That is,

Kx = 0.a0a1a2 · · ·=
∞

∑
n=0

an2−n−1

The problem with this algorithm is that the relation 33 for the dn is infinitely re-
cursive, and in general is not guaranteed to terminate. One has to start at n = ∞ and
move backwards from there. There are two plausible scenarios for computing the an in
practice. One is to search the n until one finds that spot where bdN+1/2c= 0; one can
then obtain the an for all n < N without issue. The problem here is to find such an N.

The other way to compute is to observe that the iteration is convergent. The re-
cursion 33 only depends on a finite and fixed number of bits “behind it”, roughly
equal to log2 n bits that come after this. As noted earlier, 0 ≤ sn ≤ n and likewise,
0 ≤ dn ≤ 2n+ 1. To write down dn, one needs at most C = 1+ blog2 (2n+1)c bits.
This implies that a given dn can only perturb at most C−1 bits downstream of it. That
is, dn−C+1 depends on dn but dn−C does not. Thus, in order to correctly compute all bits
ak for 0≤ k ≤ n−C, it is sufficient to set dn to some arbitrary value (less than 2n+2)
and then iterate (using the correct values for sk when k < n). At the end, discard all dk
and ak for n−C < k, as they are incorrect.

10.7 Tree-view
Points:

1) adding one bit is like shifting the tree over sideways.
2) multiplying by one bit is like shifting the tree down-left.
3) adding a number to itself is like shifting tree up (since its just 2x)

11 Simplified Models of Multiplication
The shift-and-add algorithm is obviously rather complex; can it be replaced by some-
thing simpler? The particular question to ask is how much of the chaotic dynamics of
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the beta shift is due to the propagation of the carry bit, and how much of it is due to
other parts of the algorithm? Specifically, the addition of two numbers, which requires
a carry bit, can be replaced by a bit-wise XOR of their bit strings: this generates “al-
most” the same results as addition, when the number of 1-bits in the strings are sparse,
but are wrong when 1-bits appear in the same location: the XOR discards the carry bits.
Thus, a simplified model of multiplication would the the shift-and-XOR model: it pro-
ceeds the same way as shift-and-add, but replaces addition with XOR. What does this
look like, and how does the equivalent of the beta shift behave under this operation?

11.1 Shift-and-XOR
The shift-and-XOR algorithm must like the shift-and-add algorithm, except that it
drops the carry bits. Starting from the same spot, let 0 ≤ K ≤ 1 and 0 ≤ x ≤ 1 and
represent both by their binary expansions:

x = 0.b0b1b2 · · ·=
∞

∑
n=0

bn2−n−1

and

K = 0.c0c1c2 · · ·=
∞

∑
n=0

cn2−n−1

where the bn and cn are either 0 or 1.
Define s0 = 0 and sn+1 to be the result of XOR-ing instead of adding the bits.

sn+1 = bnc0⊕bn−1c1⊕·· ·⊕b0cn =
n⊕

k=0

bkcn−k

Here, the oplus symbol ⊕ denotes the XOR operation. Note that each sn is either zero
or one. Reconstructing a real number from this, one defines

K⊗ x = 0.s0s1s2 · · ·

where the otimes symbol ⊗ is pressed into service to indicate the shift-and-XOR prod-
uct. Note that it is symmetric: K⊗x = x⊗K and so behaves at least a bit like ordinary
multiplication. Its is not distributive over ordinary addition: (a+b)⊗x 6= a⊗x+b⊗x
but it is distributive over XOR: (a⊕b)⊗x = (a⊗ x)⊕ (b⊗ x). It is illustrated in figure
38.

The range of the shift-and-XOR operation is fundamentally different from multi-
plication. First, because the carry bit is dropped, one has that s0 = 0 always, and so
that K⊗ x ≤ 1/2 always, even when both K → 1 and x→ 1. Next, for any value of
1/2 < K ≤ 1, the range of K⊗ x runs over the entire interval [0,1/2] as x runs over the
interval [0,1]. The measure is not compressed (other than by a factor of 2) , as there is
in ordinary multiplication. That is, if S⊂ [0,1] is a measurable subset of the unit inter-
val, with measure µ (S), then one has µ (K⊗S) = µ (S)/2. There are several ways to
prove this. One formal approach is to consider the correspondence between the natural
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Figure 38: Shift and XOR Algorithm
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This figure shows two functions, (2/3)⊗ x and (4/5)⊗ x as a function of x.

measure on the reals, and the measure of cylinder sets on the product topology. That
is, the Cantor space {0,1}ω is endowed with a natural topology, the product topology.
The open sets of this topology are called “cylinder sets”. Their measure is uniformly
distributed over unit interval, precisely because the Bernoulli shift is ergodic: the one
implies the other.

Indeed, the shift-and-XOR algorithm can be best thought of as a formula for shuf-
fling the bit-strings around, without actually altering them: re-ordering them, not chang-
ing them. The intuitive key to this is to observe that subtracting x from 1 just re-orders
the unit interval, top to bottom, and that this is the same as flipping all zero bits to one,
and v.v. That is, 1− x = x⊕0.111 · · · .

Another way to see this shuffling is to note that a⊕a = 0 and that 0⊕ x = x. Thus,
for a fixed value of a, the string x and the string a⊕ x are paired together, in a unique
way, so that either can be gotten from the other. The function a⊕ [0,1]→ [0,1] sending
x 7→ a⊕ x is an exchange of these unique pairings of strings. It is not just a bijection,
it is an involution. If the strings are given their natural lexicographic sort order, the
mapping x 7→ a⊕x is just a certain kind of shuffle of the sort order; it neither adds new
strings, nor deletes any, nor changes their number. The function is one-to-one and onto.
The multiply-and-XOR algorithm is just a repeated sequence of XOR’s:

K⊗ x =
(c0x

2

)
⊕
(c1x

4

)
⊕
(c2x

8

)
⊕·· ·

and so K⊗x is nothing more than a reshuffling of strings (along with a right-shift equal
to the number of leading zero-bits in the binary expansion of K; the right-shift com-
mutes with the measure on the product topology.) Thus, K⊗ x preserves the measure
on the unit interval (up to a factor of 2−n due to the above-mentioned right-shift). That
is, for 1/2 < K ≤ 1, this discussion shows that µ (K⊗S) = µ (S)/2.
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11.2 Self-similarity
There are several self-similarity properties of the shift-XOR worth noting. It behaves
very much like a classic dyadic fractal. Thus, one has that

K⊗
( x

2

)
=

1
2
(K⊗ x) =

1
2

K⊗ x

In addition... TODO: illustrate the other symmetry.

11.3 Similarity Transformations
The shift-and-XOR algorithm acts as a permutation on bit-strings. As a result, the
XOR-analogs of the beta shift and the tent map become uniformly ergodic, behaving
exactly as the Bernoulli shift. The Frobenius-Perron solution to these is just the uniform
distribution, which is featureless. All of the structure visible in figures 2 and 3 is
entirely due to the dynamics of the carry bit. Effectively, the carry-bit algorithm alters
the uniform distribution of the Bernoulli shift (equivalently, the uniform distribution
associated with the natural measure on Cantor space.)

Define the XOR-analog of the beta shift as

cβ (x) =

{
2β ⊗ x for 0≤ x < 1

2
2β ⊗

(
x− 1

2

)
for 1

2 ≤ x < 1

The factor of 2 makes up for the fact that shift-XOR effectively drops the top bit; thus
the goal is to map each half of the unit interval into the entire interval [0,1].

Given a fixed β , define �β : [0,1]→ [0,1] as

�β (x) = β ⊗ x

As observed previously, �β is an automorphism of the unit interval, and more: it is a
permutation on Cantor space. Let b(x) be the Bernoulli shift of eqn 1; then one has that
cβ =�β ◦b. Taken together, this implies that the ergodic properties of iterating on cβ

follow directly from the ergodic properties of the Bernoulli shift; a shuffle, any shuffle
on the Cantor set should not alter these ergodic properties.

TODO: similarity transforms on the transfer operator... and the non-alteration of
the eigenspectrum, even as the eigenfunctions are altered.

11.4 Multiplication on the Cantor Space
The previous set of results indicates that all of the structure in the bifurcation diagrams
of 2 and 3 is entirely due to the dynamics of the propagation of the carry sum. To
explore this, the notation needs to be improved on.

The beta shift can be decomposed into multiple distinct stages. First, there is a
conversion from the unit interval to the Cantor space; this was defined at the very start,
but now we need a less awkward notation for it. Let

π : 2ω → [0,1]
0.b0b1b2 · · · 7→ x
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be the projection from the Cantor space to the real-number unit interval, given by eqn
2. Note that it is a surjection: dyadic rationals (rationals of the form m/2n) correspond
to two distinct bit strings. For example, 1/2 can be represented as both 0.1000 · · · and
as 0.0111 · · · . Cantor space covers the unit interval. Write the inverse mapping as

π−1 : [0,1] → 2ω

x 7→ 0.b0b1b2 · · ·

As a function, it is injective but not surjective. It is usually convenient to ignore this,
and to pretend that both π and π−1 are bijections, even though they are not. This
rarely leads to practical difficulties, as long as one stays conceptually tidy. Better yet,
just perform all work on the Cantor space, and project to the unit interval only when
needed.

Next, turn to multiplication. This has three parts. First, the summation of the carry
bits:

Sβ : 2ω → Nω

0.b0b1b2 · · · 7→ (s0,s1,s2, · · ·)

where the summation is given by eqn 32. Here, Nω is Baire space, the space of all
infinite-length sequences of non-negative integers. In number theory, this would be
called the space of arithmetic functions. The second part of multiplication is the prop-
agation of the carry bits. Denote this as

C : Nω → Nω

(s0,s1,s2, · · ·) 7→ (d0,d1,d2, · · ·)

which is defined in eqn 33. Finally, one extracts the remainder, after propagation:

A : Nω → 2ω

(d0,d1,d2, · · ·) 7→ (a0,a1,a2, · · ·)

which is given by eqn 34. Of the three parts into which we’ve decomposed multiplica-
tion, only the first part is parameterized by K. Thus, multiplication, on Cantor space,
can be written as Mβ = A◦C◦Sβ . The shift-and-XOR algorithm omits the propagation
of the carry sum. On Cantor space, it is just �β = A◦Sβ : the XOR is just modulo-2 of
the carry sum.

To obtain multiplication on the real-number unit interval, we need merely to re-
project from Cantor space to the reals. Thus, multiplication, given in eqn 31, decom-
poses into

Mβ = π ◦A◦C ◦Sβ ◦π
−1

The beta shift of eqn 3 is then

Tβ = π ◦A◦C ◦Sβ ◦π
−1 ◦b

where b is the Bernoulli shift. To simplify notation, it is convenient to go ahead and
provide a symbol for the shift operator:

B : 2ω → 2ω

(b0,b1,b2, · · ·) 7→ (b1,b2, · · ·)
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so that b = π ◦B◦π−1. The corresponding beta shift on the Cantor space is

Bβ = A◦C ◦Sβ ◦B

which eliminates the pesky projection π . It should be clear that Sβ is an injection, the
propagation operation C and the remainder A are both surjections.

As noted, the shift-and-XOR algorithm can be written as �β = A ◦ Sβ ; the step
where the carry bits are propagated is dropped. The XOR-version of the beta shift is

cβ =�β ◦B = A◦Sβ ◦B

Thus, in this new notation, it reaffirms that B is the true source of ergodicity, and that
A ◦ Sβ being a permutation does not alter the basic ergodic property of B. All of the
structure in the bifurcation diagrams can be blamed on the propagation operator C.

11.5 Propagation games
Pinning the “blame” of complex dynamical structure on the propagation of the carry
bits seems to be an open invitation to replace the propagation operator C by just about
anything, to see what happens. Figure 39 illustrates some of the things that can happen.

Reviewing the images there makes it clear that although fiddling with the carry bit
fundamentally alters point trajectories, it completely fails to open any doors that would
provide insight into the structure of the transfer operator. The pictures are pretty, but
appear to be meaningless.

12 Sci-fi day-dreaming
This section provides two day-dreams inspired by this material. They are just that:
daydreams. If you don’t like fictional daydreaming, you won’t like the material here.
Sorry about that.

12.1 Limits to computation
There are many limits to computation. One limit is the speed of light. In current gener-
ation CPU chips, clock rates in the vicinity of 3 gigahertz= 3×109 cycles per second.
By comparison, the speed of light in a vacuum is about 3× 108 meters per second.
Dividing, one finds that light can travel about 3×108/3×109 = 10−1 meters, or about
four inches: a bit bigger than the actual physical dimensions of a chip (typically around
half-an-inch on a side), but not by much. Of course, the speed of light in a metal con-
ductor is lower – about half the speed in a vacuum. And transistors are small – more
than twenty-thousand times smaller. So, measured in terms of the size of the transistor,
the speed of light is about ten or twenty transistor-widths per clock-cycle. So, OK, its
still fast, at that length scale. But not really all that fast. The point here is that the speed
of light is a potential limit to the speed of computation, and it is not all that far away.

In this setting, one can imagine the situation where the speed of propagating the
carry bit during multiplication becomes a limiting factor. The above work hints at
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Figure 39: Carry-bit propagation

Two triptychs of different carry-bit behaviors. Define F : Nω → Nω by F = f × f ×
f ×·· · and then iterate on A◦C ◦F ◦Sβ ◦B. For f (n) = n one obtains, of course, the
standard beta shift of figure 2. The top-left image shows f (n) = n mod 2, which is the
same as iterating on the shift-XOR function cβ . Here, β runs from 0 at the bottom, to
2 at the top; x runs from 0 to 1, left to right. The uniform red square simply indicates
that the iteration is completely independent of β when 1 < β ≤ 2: it is fully uniform
and ergodic in the same way that the Bernoulli shift is. The top-middle image shows
f (n) = n+ 1, that is, pretending that there is one carry bit too many. The top-right
shows f (n) = max(0,n−1), that is, having one carry-bit too few.
The bottom three shows a progression of f (n) = max(n,1), f (n) = max(n,2) and
f (n) = max(n,3), allowing more and more carry bits to propagate. In the limit, this
becomes figure 2 once again. Except for the top-left image, the rest seem pointlessly
goofy.
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a somewhat boggling idea: can multiplication be effectively parallelized by working
with transfer operators instead? That is, the multiplication of two numbers corresponds
to point-wise particle dynamics: a discrete particle following a chaotic path through
a complex numerical computation. By contrast, the transfer operator describes how
a distribution propagates through a computation: it effectively performs “an infinite
number” of multiplications at the same time, in parallel. That is, rather than asking
how single values propagate, one could, and perhaps should, ask how distributions
propagate – parallelize multiplication (for example) to an “infinite” degree. It is this
rather ridiculous idea that suggests that the above explorations are not purely abstract,
but have a potentially practical application. As I suggested – its a bit of science-fiction
day-dreaming at this point. But it does hint at an alternate model of computation.

Variants of this model have already been explored, for decades. For example,
Crutchfeld defined “geometric state machines” as generalizations of finite state ma-
chines, where, instead of having a finite matrix (a “transition matrix”) act on a finite
vector (the “state vector”), one instead considers operators acting on homogeneous
spaces – that is, applying a sequence of such operators on homogeneous space. The
most famous and celebrated such space would the CPn – complex projective space,
with the operators that act on it being the the unitary ones: U(n) – such a system defin-
ing the n-qubit quantum state machine. Distributions on CPn are mixed states – and
the idea of quantum computing is to evolve such states through a set of operations.

The point here is that computation, by means of the time-like evolution of distri-
butional densities, is already being explored, but in a rather different context than the
one explored here. Here, it seems like we are bowled over by the complexities of a
seemingly much simpler system.

12.2 Wave function collapse
There is also a different, bizarrely hypothetical way in which all of this apparatus could
manifest itself. Currently, in order to avoid the rather severe issues associated with the
concept of quantum-mechanical wave-function collapse, the (vast?) majority of prac-
ticing physicists believe in the many-worlds hypothesis. Clearly, this belief is entirely
correct for microscopic systems, isolated from the usual thermodynamic hustle and
bustle (chlorophyll, rhodopsin and the magnetically sensitive cryptochromes notwith-
standing). But it seems to fly in the face of daily experience, where we are aware of
just one reality. One of my favorite hypotheses is that this is the result of the (rapid)
decay of macroscopic quantum states down to a probability of zero. The mechanism is
presumably that of decaying subshift measures. Penrose argues that this has something
to do with gravity; but we can go one better: the natural setting for shift spaces are hy-
perbolic spaces, as that is where there is enough room to “fit everything” in a uniform
way consistent with a metric. Curiously, the world we live in – Minkowski space, is
hyperbolic. This suggests that the Many Worlds interpretation is exactly right, as long
as one truly is in Minkowski space, but that gravitation, which essentially bends or
distorts it, squeezes down the room available for multiple quantum states, effectively
forcing the collapse in this way.

Put another way: the standard treatment for quantum field theory is the Feynman
functional integral; it can be viewed as an integral over all possible paths that a “par-
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ticle” might take. The daydream is to equate a specific path with the idea of point-
dynamics in an iterated function. As long as one considers only points, and there
movement, one can be completely unaware of either the invariant measure, or of the
decaying eigenstates of the shift operator. In a standard QFT textbook, all equations
appear microscopically time-reversible. There’s almost no idea of a measure, except
for the exp−ih̄S in the Feynman integral. The incorporation of gravity into this is fa-
mously difficult. The daydream here is that gravity manifests itself as eigenfunctions
that live off of the shell of unitary evolution.

There is some practical hope of bringing this daydream to fruition: the theory of
subshifts has seen dramatic advances over the last few decades, getting increasingly
abstract, and gaining a firm footing in very general settings: viz not just in metric
spaces, but even in more general topological vector spaces, and specifically in stereo-
type spaces, where most of the devices used in analysis can be exercised in reasonably
safe manner. The point here is that most of QFT can be formulated using these more-or-
less conventional tools and notations. The trick is to locate and extract those parts that
renormalize to zero, not unlike some of the formally divergent sums explored above,
which can none-the-less be regulated and made to give reasonable answers. Or at least,
that’s the daydream. Clearly, got far to got before it can be reality.

13 Topological Push-Forward
The transfer operator is most generally and correctly defined as an operator acting on
the topology of a space, and specifically, as the push-forward of the (uniform) measure
by the iterated function. That is, given any open set belonging to the topology, the
transfer operator assigns a different open set of the topology: it is a map of sets to
sets. For iterated maps on the unit interval, it is essentially a map of cylinder sets, the
open sets of the product topology. The shift-XOR experiment shows that the ergodic
properties arise from the Bernoulli shift, and that all other properties, commonly called
“chaotic”, are really the side effect of something else, entirely: the internal structure of
the transfer operator. Fiddling with the carry-bits cannot reveal this structure; instead,
they just define other, pointlessly goofy iterated functions. Point trajectories fail to
reveal the internal structure of the transfer operator, and at best point in a misleading
direction. To understand the transfer operator, it must be tackled for what it is: one
must look at how intervals are mapped to intervals, and what sort of symmetries can be
discovered in this mapping. (I’ve given one sketch of a proof of the transfer operator as
a push-forward in this reference:[37]. There are must surely be better, more accessible
and more formal and mathematically refined presentations; if you, reader, know of
such, please drop me a line.)

The action of the transfer operator on the sets belonging to the topology of the reals
reveals several distinct kinds of actions. The topology on the reals can be generated
from a basis consisting of connected sets. The transfer operator will map some con-
nected sets to other connected sets, simply moving them around, shrinking or expand-
ing them. In other cases, a connected set will be split into two disjoint parts. For maps
that are continuous, there must be regions that have fixed-points and period-doubling
routes to chaos: these correspond to the (countable number of) “trouble spots” illus-
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trated in section 6.
It seems reasonable to argue that each of these different kinds of moves creates

a distinct group (or monoid) of transformations: in a certain sense, those transforms
that do not change th connectivity, nor do any folding, are all similar to one-another.
It should be possible to write down exactly which sets belong to this type, and then
give explicit transformation properties between them. Likewise, those connected sets
which are split in two are all similar. It seems like there should be a prototype: a generic
split, followed by some re-arrangement of the two parts. How can this classification be
written in an insightful, useful way?

I believe that there has been a sufficient number of advances in the theory of sub-
shifts so that the above vague sketch can be presented in a fairly concrete way. Un-
fortunately, most of the relevant material remains rather arcane and abstract, lacking
in direct accessibility to casual students. I am not currently aware of any adequate yet
accessible treatment.

14 Conclusion
What, exactly, is the point of analytic mathematics, especially in the computational
age? Can’t one just get a fast computer, iterate on the logistic map, and find out ev-
erything there is to find? Well, of course, yes, and no: these questions can be taken as
either silly or as deeply philosophical, and it is worth the effort to understand them and
address them properly.

First, lets dispose of some obvious mis-perceptions. If one carefully scrutinizes
figure 1, one will find signs of a slight unevenness in the horizontal bars. These are
numerical artifacts due to statistical under-sampling: they smooth out and fade away
with additional sampling of the iterated equations. There is a way to obtain this same
figure, far more rapidly, and without this particular form of numerical noise: one can
instead iterate on equation 15. This suggests one philosophical answer: the goal of
mathematics is to find faster ways of computing things; to discover better algorithms.

A uniting theme between this, and the other text that I have written on fractal issues,
is that they are all explorations of the structure of the Cantor set, the structure of the
space of infinite sequences of symbols, and the structure of the continuum. That is, we
know the continuum in two different ways: one way is by means of the natural topology
on the real number line; the other is the product topology on the space of binary strings.
The former is suggested by the physical universe that we actually live in: a continuum
with spatial extents. The latter is suggested by the notion of time and repetition: the
making of choices naturally leads to a tree structure; tree structures necessarily embed
in hyperbolic spaces; the Minkowski space that we live in is hyperbolic, and this is
why, every day, as time passes on, we get to make new choices precisely because the
amount of room for possibilities is ever-increasing as time flows forward.

What, exactly, do the words “exactly solvable” really mean? So, for example, equa-
tion 19 involves summation and multiplication, which has this aura of comfortable pre-
ciseness that an iterated function somehow does not. Where does this sensation come
from? When performing arbitrary-precision numerical computations, it should be clear
that neither addition nor multiplication are simple or easy: they both require fairly
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complex algorithms to implement, and have not-insignificant run-times. To be more
precise: the algorithms are non-trivial because one is using a binary digit expansion
to provide a model for a real number. Different representations of the real numbers
potentially offer different algorithms and performance profiles. One could represent
reals by rationals, but then two issues arise. One is that the rationals are not evenly dis-
tributed across the real number line: rationals with small denominators cluster about in
a fractal fashion, studied deeply in number theory. As a result, one promptly gets stuck
in a quagmire of trying to understand what a “uniform distribution” should be. Binary
expansions are more “obviously” uniform. A more basic issue is that, if working with
rationals, one must somehow accomplish the addition or multiplication of two integers.
To accomplish this, one has to represent the integers as sequences of bits, which only
takes us back to where we started. There is no computational oracle that automatically
knows the sum or product of integers: it has to be computed. The analysis being done
in this text is a kind of a game, where not only is one algebraic arrangement of symbols
is being compared to another, but also one computational algorithm is being compared
for another. Unfortunately, this latter comparison is very nearly opaque and hidden. If
only it could be made visible in some simple fashion.

The situation here is more easily illustrated in a different domain. The hyper-
geometric series was presented and studied by Gauss; then Kummer, Pfaff and Euler
observed various identities yoking together different series. By the 1950’s, thousands
of relations were known, along with some algorithms that can enumerate infinite series
of relations. The curious situation is that there is no known algorithm that can enu-
merate all such relations; there is no systematic way to classify them. The situation
does seem to make clear that there is an interplay between infinite series and algorith-
mic relationships between them. Stated a different way: hyper-geometric series are
self-similar, and the identities relating them are expressions of that self-similarity.

To further sharpen this idea: the dyadic monoid is the generator of self-symmetry
in many common fractals; this is “well-known”, and I have explored this in other texts.
A more general setting for fractal self-similarities is given by tilings of the hyperbolic
surface: to each tiling, there are corresponding fractals, the self-similarity of which are
given by the tiling. The figures 2, 3 and 4 are clearly self-similar in some obscure way:
it is visually clear, but providing a simple algebraic expression describing the similarity
is difficult; I have not been successful in this. None-the-less, it seems self-evident that it
will be the dyadic monoid that is somehow responsible for the symmetries, underlying
them (unless, of course, there is some other, as yet undiscovered structure).

The meta-question is: what is the correct framework by which one can best un-
derstand the interplay between symmetries, infinite series and algorithms? The current
tool-set seems impoverished: it does not “solve” the systems in this text. Worse, cur-
rent mathematical practice reifies addition and multiplication into oracular operations
that magically obtain “the right answer”, when it is clear from numerical methods that
addition and multiplication are necessarily algorithmic operations performed on finite
truncations of infinite series. It would be nice to place these operations on equal foot-
ings, so as to expose the true nature of this beast.
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15 Bibliography
The references below provide a bibliography that attempts to touch on all the differ-
ent ways in which the beta transform and beta expansions have been studied. Search
engines exist to help you find the things you don’t know, and want to find out more
about.
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