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COMPOSITIONS WITH RESTRICTED PARTS

JIA HUANG

Abstract. Euler showed that the number of partitions of n into distinct parts equals the number of
partitions of n into odd parts. This theorem was generalized by Glaisher and further by Franklin.
Recently, Beck made three conjectures on partitions with restricted parts, which were confirmed
analytically by Andrews and Chern and combinatorially by Yang.

Analogous to Euler’s partition theorem, it is known that the number of compositions of n with
odd parts equals the number of compositions of n + 1 with parts greater than one, as both numbers
equal the Fibonacci number Fn. Recently, Sills provided a bijective proof for this result using binary
sequences, and Munagi proved a generalization similar to Glaisher’s result using the zigzag graphs
of compositions. Extending Sills’ bijection, we obtain a further generalizaiton which is analogous to
Franklin’s result. We establish, both analytically and combinatorially, two closed formulas for the
number of compositions with restricted parts appearing in our generalization. We also prove some
composition analogues for the conjectures of Beck.

1. Introduction

Partitions and compositions are prevalent in enumerative combinatorics and also play impor-
tant roles in many other fields, such as the symmetric function theory, the representation theory
of symmetric groups and Hecke algebras, combinatorial Hopf algebras, etc. See, for example,
Andrews–Eriksson [2], Grinberg–Reiner [9], and Heubach–Mansour [10].

Using generating functions, Euler proved the following well-known theorem concerning par-
titions with restricted parts.

Theorem 1.1 (Euler). The number of partitions of n into distinct parts equals the number of partitions of
n into odd parts.

Glaisher generalized Euler’s partition theorem to the result below, which specializes to Euler’s
theorem when k = 2.

Theorem 1.2 (Glaisher). Given an integer k ≥ 1, the number of partitions of n with no part occurring k
or more times equals the number of partitions of n with no parts divisible by k.

Franklin obtained a further generalization of Euler’s partition theorem, which recovers the
result of Glaisher when m = 0.

Theorem 1.3 (Franklin). Given integers k ≥ 1 and m ≥ 0, the number of partitions of n with m distinct
parts each occurring k or more times equals the number of partitions of n with exactly m distinct parts
divisible by k.

Recently, Beck made three conjectures on partitions with restricted parts in OEIS, the On-Line
Encyclopedia of Integer Sequence [14]. Andrews [1] and Chern [4] proved the conjectures of Beck
using generating functions, and Yang [18] proved these conjectures using Glaisher’s bijection. In
general, it seems difficult to obtain closed formulas for the number of partitions, whether with
or without part constraints; see, e.g., Sills [13].

The main theme of this paper is to study analogues of the above theorems for compositions
instead of partitions. Unlike in the case of partitions, we are able to obtain closed formulas
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2 JIA HUANG

for compositions with restricted parts, with both analytic and combinatorial proofs. We also
explore analogues of Beck’s conjectures in the setting of compositions. Generally speaking, parti-
tions attract much more attention than compositions, but there have been some recent efforts on
finding composition analogues of partition identities, such as the work of Munagi [11], Munagi–
Sellers [12], and Sills [13]. It is certainly our hope that this paper, together with the above cited
references, can bring more attention to the study of compositions.

Let us first state a known composition analogue of Euler’s partition theorem.

Theorem 1.4. The number of compositions of n with odd parts equals the number of compositions of n+ 1
with parts greater than one.

Both numbers in Theorem 1.4 are equal to the Fibonacci number Fn defined by Fn := Fn−1 + Fn−2

with F0 = 0 and F1 = 1; see, e.g., Cayley [3], Grimaldi [8], and Stanley [15, Exercise 1.35].
Recently, Sills [13] provided a bijective proof of Theorem 1.4 using the binary sequence encoding
of compositions.

One can also represent a composition as a zigzag graph or equivalently, a ribbon diagram. This
is similar to the well-known Ferrers/Young diagram of a partition. Using the zigzag graphs of
compositions, Munagi [11, Theorem 1.2] generalized Theorem 1.4 to the following result.

Theorem 1.5. For any integer k ≥ 1, the number of compositions of n with parts congruent to 1 modulo
k equals the number of compositions of n + k − 1 with parts no less than k.

Theorem 1.5 generalizes Theorem 1.4 similarly as Glaisher’s theorem generalizes Euler’s par-
tition theorem. The two equal numbers in Theorem 1.5 both appear in OEIS [14, A003269 for
k = 4]. The first number in Theorem 1.5, denoted by ak,n, has a simple closed formula

(1) ak,n = ∑
0≤j≤(n−1)/k

(
n − 1 − j(k − 1)

j

)

by Dani [6] and Munagi [11]. The generating function Ak(x) := ∑n≥0 ak,nxn can be derived from
a more general result of Heubach and Mansour [10, Theorem 3.13].

For k ≥ 2, the number ak,n of compositions of n with all parts congruent to 1 modulo k also
equals the number of compositions of n − 1 with all parts equal to 1 or k. One can prove this
bijectively by replacing each part congruent to 1 modulo k with a string of k’s followed by a 1 and
striking out the last 1. See also Munagi [11, Theorem 1.2]. These two equal numbers both appear
in OEIS [14, A005710 for k = 8]. The latter number was studied by Chinn and Heubach [5] and
their result [5, Lemma 1] coincides with the generating function Ak(x) upon a shift of terms.

We give a proof for Theorem 1.5 using the bijection of Sills [13], and further extend this to
the following result, which generalizes Theorem 1.5 similarly as Franklin’s theorem generalizes
Glaisher’s theorem.

Theorem 1.6. For any integers k ≥ 1 and m ≥ 0, the number of compositions of n with exactly m
parts not congruent to 1 modulo k, each of which is greater than k, equals the number of compositions of
n + k − 1 with exactly m parts less than k, each of which is preceded by a part at least k and followed by
either the last part or a part greater than k.

Let a
(m)
k,n denote the number in Theorem 1.6. For k ≥ 3 or m ≥ 2 we do not see the sequence a

(m)
k,n

in OEIS. When k = 2, m = 1, and n ≥ 1, this sequence appears in OEIS [14, A029907] with some
interesting combinatorial interpretations, which are different from what we have in Theorem 1.6.
This sequence is also related to the composition analogues we obtain for Beck’s conjectures in
Section 6 and one can find more details there.

We establish two closed formulas for the number a
(m)
k,n , which specialize to the formula (1) for

the number appearing in Theorem 1.5 when m = 0.



COMPOSITIONS WITH RESTRICTED PARTS 3

Theorem 1.7. For m, n ≥ 0 and k ≥ 2 we have

a
(m)
k,n = ∑

λ⊆(k−2)m

i+(k+1)m+jk+|λ|=n

(
i

m

)(
i + j − 1

j

)
mλ(1

m)

= ∑
i+(k+1)m+jk+ℓ(k−1)+h=n

(−1)ℓ
(

i

m

)(
i + j − 1

j

)(
m

ℓ

)(
m + h − 1

h

)
.

Here λ ⊆ (k − 2)m means that λ is a partition with at most m parts, each no more than k − 2,
|λ| is the sum of all the parts of λ, and mλ(1

m) is the specialization of the monomial symmetric
function indexed by λ evaluated at the vector (1, . . . , 1) of length m.

The first formula in Theorem 1.7 is a positive summation. The second formula is somewaht
simpler, but carries negative signs. We provide two proofs of Theorem 1.7. One is analytic, using
the generating function technique, while the other is purely combinatorial, with the alternating
signs in the second formula explained by inclusion-exclusion.

The paper is structured as follows. We first provide some preliminaries on partitions and
compositions in Section 2. Then we prove Theorem 1.5 in Section 3 using Sills’ bijection, and
generalize it to Theorem 1.6 in Section 4. We next show Theorem 1.7 both analytically and
combinatorially in Section 5. Finally we summarize recent studies on three conjectures of Beck
for partitions with restricted parts, and prove some composition analogues in Section 6.

2. Preliminaries

Given integers a and b, we define the binomial coefficient

(
a

b

)
:=





a!
b!(a−b)!

, if a ≥ b ≥ 1,

1, if b = 0,

0, otherwise.

For any integer d ≥ 1, it is easy to show the following identity, which will be used in the analytic
proof of Theorem 1.7:

(2)
1

(1 − x)d
=

∞

∑
i=0

(
i + d − 1

i

)
xi.

A partition of n is a weakly decreasing sequence λ = (λ1, . . . , λℓ) of positive integers with sum
λ1 + · · ·+ λℓ = n; it is common to use the symbol λ ⊢ n to denote this. The size of λ is |λ| := n,
the parts of λ are the integers λ1, . . . , λℓ, and the length of λ is the number of parts ℓ(λ) := ℓ.

Let λ ⊆ rd denote that λ = (λ1, . . . , λℓ) is a partition with at most d parts, each part no more
than r, i.e., λ1 ≤ r and ℓ ≤ d. For i = 0, 1, . . . , r, let mi be the number of parts of the partition

λ ⊆ rd that are equal to i. Then m0 + m1 + · · · + mr = ℓ ≤ d and m1 + 2m2 + · · · + rmr = |λ|.
The monomial symmetric function mλ(x1, . . . , xd) is the sum of the monomials xa1

1 · · · xad

d for all
rearrangements (a1, . . . , ad) of (λ1, . . . , λd), where λℓ+1 = · · · = λd = 0. The evaluation of
mλ(x1, . . . , xd) at the vector (1, . . . , 1) of length d is

mλ(1
d) =

(
m

m0, . . . , mr

)
=

m!

m0! · · · mr!
.
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One sees that

(1 + x + x2 + · · ·+ xr)d = ∑
n≥0

∑
m0+m1+···+mr=d

m1+2m2+···+rmr=n

(
m

m0, . . . , mr

)
xn(3)

= ∑
n≥0

∑
λ⊆rd

|λ|=n

mλ(1
d)xn.(4)

We will use the identity (4) in our analytic proof of Theorem 1.7.
Next, a composition of n is a sequence α = (α1, . . . , αℓ) of positive integers with α1 + · · ·+ αℓ = n;

we use the symbol α |= n to denote this. The parts of α are α1, . . . , αℓ, which are not necessarily
decreasing. The length of α is the number of parts ℓ(α) := ℓ. We say that a part αi is preceded by
the part αi−1 if i > 1, and followed by the part αi+1 if i < ℓ. The descent set of the composition α is

D(α) := {α1, α1 + α2, . . . , α1 + · · ·+ αℓ−1}.

The map α 7→ D(α) is a bijection from compositions of n to subsets of [n − 1] := {1, 2, . . . n − 1}.
Furthermore, a subset S ⊆ [n − 1] can be encoded by a binary sequence of length n − 1 whose
ith component is 1 if i ∈ S or 0 otherwise. Therefore we have a bijection between compositions
of n and binary sequences of length n − 1. For example, the composition α = (1, 7, 1, 4) |= 13 has
descent set D(α) = {1, 8, 9} ⊆ [12] and corresponds to the binary sequence 100000011000.

Finally, the opposite of a binary sequence b is the equally long binary sequence whose ith
component is different from the ith component of b for all i. For example, the opposite of
110001011 is 001110100.

3. Proof of Theorem 1.5 using Sills’ bijection

Munagi [11, Theorem 1.2] proved Theorem 1.5 using the zigzag graphs of compositions. Now
we provide a proof based on the bijective proof of Theorem 1.4 due to Sills [13]. We will further
extend this to Theorem 1.6 in Section 4.

Theorem 1.5. For any integer k ≥ 1, the number of compositions of n with all parts congruent to 1
modulo k equals the number of compositions of n + k − 1 with no parts less than k.

Proof. Let α = (α1, . . . , αℓ) be a composition of n, which corresponds to a binary sequence b of
length n − 1. Let c denote the opposite binary sequence of b. Assume ai ≡ 1 (mod k) for all
i = 1, 2, . . . , ℓ. This implies that the zeros in b [or the ones in c, resp.] appear in strings of length
divisible by k. Thus we can replace each maximal substring of ones in c with an equally long
string of the following form:

(5) 0 · · · 0︸ ︷︷ ︸
k−1

1 0 · · · 0︸ ︷︷ ︸
k−1

1 · · · 0 · · · 0︸ ︷︷ ︸
k−1

1

The resulting binary sequence c̃ corresponds to the descent set of a composition α̃ of n whose
parts are all at least k except the last one. Adding k − 1 to the last part of α̃ gives a composition
of n + k − 1 with no parts less than k.

Conversely, given a composition of n + k − 1 with no parts less than k, one can subtract k − 1
from the last part and get a composition of n, which corresponds to a binary sequence of length
n − 1. Every one in this binary sequence is preceded by at least k − 1 zeros, and thus replacing

each substring of the form 0k−11 with 1k gives a binary sequence of length n − 1 with ones
appearing in strings of length divisible by k. Then the opposite sequence has zeros appearing in
strings of length divisible by k and corresponds to a composition of n with all parts congruent to
1 modulo k. �
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Example 3.1. The composition α = (1, 7, 1, 4) |= 13 has all parts congruent to 1 modulo k = 3.
It corresponds to the binary string b = 100000011000, whose opposite is c = 011111100111.
Replacing each maximal substring of ones in c with an equally long string of the form (5) gives the
binary sequence c̃ = 000100100001, which corresponds to the composition α̃ = (4, 3, 5, 1) |= 13.
Adding k − 1 to the last part of α̃ gives the composition (4, 3, 5, 3) |= 15 with no part less than k.

Conversely, the composition (4, 3, 5, 3) |= 15 has no part less than k = 3. Substracting k − 1
from its last part gives the composition (4, 3, 5, 1) |= 13, which corresponds to a binary sequence
000100100001. Replacing each copy of 001 with 111 in this binary sequence gives the binary
sequence 011111100111, in which ones occur in strings of length divisible by k. The opposite
binary sequence 100000011000 corresponds to the composition (1, 7, 1, 4) |= 13 with all parts
congruent to 1 modulo k.

For n ≥ 0 let ak,n denote the number of compositions of n with all parts congruent to 1 modulo
k; in particular, ak,0 = 1 since it is vacuously true that any part of the empty composition is
congruent to 1 modulo k. Dani [6] and Munagi [11] obtained a closed formula for the number
ak,n from its generating function

Ak(x) := ∑
n≥0

ak,nxn.

One can derive Ak(x) from a more general result of Heubach and Mansour [10, Theorem 3.13].
We give the formulas for Ak(x) and ak,n in the following proposition and include a proof here to
help the reader understand our proof of the more general Theorem 1.7 in Section 5.

Proposition 3.2. For n, k ≥ 1 we have

Ak(x) =
1 − xk

1 − x − xk
and ak,n = ∑

0≤j≤(n−1)/k

(
n − 1 − j(k − 1)

j

)
.

Proof. Each composition of n with all parts congruent to 1 modulo k must begin with a part of
the form ik + 1 for some integer i ≥ 0. Removing the first part from this composition gives a
composition of n − ik − 1 with all parts congruent to 1 modulo k. Thus we have

ak,n = ∑
i≥0

ak,n−ik−1, ∀n ≥ 1.

where ak,n := 0 for n < 0. This recurrence relation implies that

Ak(x) = 1 + ∑
i≥0

xik+1 Ak(x) = 1 +
x

1 − xk
Ak(x).

It follows that

Ak(x) = 1 +
x

1 − x − xk

= 1 + ∑
i≥0

x(x + xk)i

= 1 + ∑
i≥0

xi+1 ∑
0≤j≤i

(
i

j

)
xj(k−1)

= 1 + ∑
j≥0

∑
i≥j

(
i

j

)
xj(k−1)+i+1.

Taking the coefficient of xn in the above series gives the desired formula for ak,n. �
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4. Proof of Theorem 1.6

In this section we further generalize Theorem 1.5 to Theorem 1.6, which is restated below. For
an example of the bijection in our proof, see Example 4.1.

Theorem 1.6. For any integers k ≥ 1 and m ≥ 0, the number of compositions of n with exactly m
parts not congruent to 1 modulo k, each of which is greater than k, equals the number of compositions of
n + k − 1 with exactly m parts less than k, each of which is preceded by a part at least k and followed by
either the last part or a part greater than k.

Proof. (i) Let α = (α1, . . . , αℓ) be a composition of n, which corresponds to a binary sequence b
of length n − 1. Let c be the opposite of b. One sees that every part αi > 1 of α corresponds to
a maximal string of ones in c whose length is αi − 1, and we replace this maximal string of ones
with an equally long string of the form

(6) 0 · · · 0︸ ︷︷ ︸
k−1

1 0 · · · 0︸ ︷︷ ︸
k−1

1 · · · 0 · · · 0︸ ︷︷ ︸
k−1

1 0 · · · 0︸ ︷︷ ︸
r−1

1

where r is the least positive residue of αi − 1 modulo k. The resulting binary sequence c̃ corre-
sponds to a composition α̃ |= n.

Assume that α has exactly m parts not congruent to 1 modulo k, all of which are greater than
k. If αi ≡ 1 (mod k) then the parts of α̃ coming from the above string (6) are all at least k. If
αi 6≡ 1 (mod k) then the above string (6) gives exactly one part of α̃ that is less than k. This part
is preceded by a part that is at least k if αi > k. In addition, this part is followed by either the last
part of α̃ or a part greater than k, since there is a 0 right after the string of ones corresponding to
αi in the binary sequence c unless i = ℓ.

The only part that we have not considered yet is the last part of α̃, which is possibly less than
k. But adding k − 1 to it gives a composition of n + k − 1 whose last part now is at least k. This
composition has exactly m parts less than k, each of which is preceded by a part at least k and
followed by either the last part or a part greater than k.

(ii) Conversely, let β = (β1, . . . , βℓ) be a composition of n+ k− 1, which corresponds to the binary
sequence (

0β1−110β2−11 · · · 0βℓ−1−110βℓ−1
)

.

Assume that β has exactly m parts less than k, each of which is preceded by a part at least k and
followed by either the last part or a part greater than k. This implies βℓ ≥ k, so we can replace

0βℓ−1 with 0βℓ−k. For each i ∈ [ℓ− 1] we replace the string 0βi−11 with 0βi−k1k if βi ≥ k or 1βi

otherwise. The opposite of the resulting binary sequence can be written as b = b1 · · · bℓ where

bi :=

{
1βi−k0k, if βi ≥ k,

0βi , if βi < k

for all i ∈ [ℓ− 1] and bℓ := 1βℓ−k. The binary sequence b corresponds to a composition β′ |= n.
There are exactly m parts of β′ that are not congruent to 1 modulo k, since they all come from

the parts of β less than k. Recall that each part βi < k of β is preceded by a part at least k and
followed by either the last part or a part greater than k. Hence bi = 0βi is preceded by a maximal
string of zeros whose length is a positive multiple of k, and followed by either nothing or a 1.
This gives a part of β′ not congruent to 1 modulo k, and it must be greater than k. �

Example 4.1. (i) The composition α = (5, 4, 6, 1) |= 16 has m = 2 parts not congruent to 1 modulo
k = 3, each greater than k. It corresponds to the binary sequence b = 000010001000001 whose
opposite is c = 111101110111110. Replacing each maximal substring of ones with a string of the
form (6) gives the binary sequence c̃ = 001100010001010, which corresponds to the composition
α̃ = (3, 1, 4, 4, 2, 2) |= 16. The part 5 6≡ 1 (mod k) of α corresponds to the part 1 < k in α̃, which
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is preceded by a 3 ≥ k and followed by a 4 > k. The part 6 6≡ 1 (mod k) of α corresponds to
the first occurrence of 2 in α̃, which is preceded by a 4 ≥ k and followed by the last part of α̃.
Adding k − 1 to the last part of α̃ gives the composition (3, 1, 4, 4, 2, 4) |= 18 with exactly m parts
less than k as mentioned above since its last part is now 4 ≥ k.

(ii) Conversely, the composition β = (3, 1, 4, 4, 2, 4) |= 18 has m = 2 parts less than k = 3, which
are 1 and 2, each preceded by a part at least k and followed by either the last part or a part
greater than k. The composition β corresponds to the binary sequence 00110001000101000. By
the construction in the above proof, we have b = 000010001000001, which corresponds to the
composition β′ = (5, 4, 6, 1) |= 16. There are exactly m parts of β′ not congruent to 1 modulo k,
which are 5 > k and 6 > k, coming from the two parts 1 < k and 2 < k of β.

Remark 4.2. From computations we cannot find any connection between the number of compo-
sitions of n with exactly m parts not congruent to 1 modulo k and the number of compositions
of n + k − 1 with exactly m parts less than k. We give an example below to illustrate how our
proof of Theorem 1.6 would fail in this more situation. The composition α = (4, 3, 4) |= 11 has
exactly m = 1 part not congruent to 1 modulo k = 3. It corresponds to the binary sequence
b = 0001001000 whose opposite is c = 1110110111. Replacing each maximal string of ones with
an equally long string of the form (6) gives c̃ = 0010010001, which corresponds to the composi-
tion α̃ = (3, 3, 4, 1) |= 11. Adding k − 1 to the last part of α̃ gives a composition (3, 3, 4, 3) |= 13
with no part less than k.

5. Proof of Theorem 1.7

In this section we establish Theorem 1.7, which gives two closed formulas for the number

appearing in Theorem 1.6, that is, the number a
(m)
k,n of partitions of n with exactly m parts not

congruent to 1 modulo k, each greater than k, where m, n ≥ 0 and k ≥ 2. In particular, we have

a
(0)
k,0 = 1 and a

(m)
k,0 = 0 for all m ≥ 1. To obtain a closed formula for the number a

(m)
k,n , we first

derive a formula for its generating function

Ak(x, y) := ∑
m,n≥0

a
(m)
k,n xnym

whose specialization Ak(x, 0) = Ak(x) is already determined by Proposition 3.2.

Proposition 5.1. For k ≥ 2 we have

Ak(x, y) =
1 − xk

1 − x − xk − (xk+2 + xk+3 + · · ·+ x2k)y
.

Proof. Let α be a composition of n ≥ 1 with exactly m ≥ 1 parts not congruent to 1 modulo k,
each greater than k. The first part of α can be written as ik + j, where either i ≥ 0 and j = 1 or
i ≥ 1 and j ∈ {2, . . . , k}. Removing this part from α gives a composition α′ of n − ik − j, which is

counted by either a
(m)
k,n−ik−j if j = 1 or a

(m−1)
k,n−ik−j if j 6= 1. Thus we have a recurrence relation

a
(m)
k,n = ∑

i≥0

a
(m)
k,n−ik−1 + ∑

2≤j≤k
∑
i≥1

a
(m−1)
k,n−ik−j, ∀m, n ≥ 1.
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where we set a
(m)
k,n := 0 for n < 0. This implies

Ak(x, y) = Ak(x) + ∑
n≥1

∑
m≥1

(

∑
i≥0

a
(m)
k,n−ik−1 + ∑

2≤j≤k
∑
i≥1

a
(m−1)
k,n−ik−j

)
xnym

= Ak(x) + ∑
i≥0

∑
n≥ik+1

∑
m≥1

a
(m)
k,n−ik−1xnym + ∑

2≤j≤k
∑
i≥1

∑
n≥ik+j

∑
m≥1

a
(m−1)
k,n−ik−jx

nym

= Ak(x) + ∑
i≥0

xik+1 (Ak(x, y)− Ak(x)) + ∑
2≤j≤k

∑
i≥1

xik+jyAk(x, y)

= Ak(x)

(
1 −

x

1 − xk

)
+ Ak(x, y)

(
x

1 − xk
+

(xk+2 + xk+3 + · · ·+ x2k)y

1 − xk

)
.

From this and the formula for Ak(x) given by Proposition 3.2 one derives

Ak(x, y)

(
1 −

x

1 − xk
−

(xk+2 + xk+3 + · · ·+ x2k)y

1 − xk

)
= Ak(x)

(
1 −

x

1 − xk

)
= 1.

The result follows immediately. �

Now we are ready to prove Theorem 1.7 in two different ways.

Theorem 1.7. For m, n ≥ 0 and k ≥ 2 we have

a
(m)
k,n = ∑

λ⊆(k−2)m

i+(k+1)m+jk+|λ|=n

(
i

m

)(
i + j − 1

j

)
mλ(1

m)

= ∑
i+(k+1)m+jk+ℓ(k−1)+h=n

(−1)ℓ
(

i

m

)(
i + j − 1

j

)(
m

ℓ

)(
m + h − 1

h

)
.

Proof 1. We first present the generating function proof. By Proposition 5.1, we have

Ak(x, y) =
1 − xk

1 − xk − (x + (xk+2 + xk+3 + · · ·+ x2k)y)

=
1

1 − (1 − xk)
−1

(x + (xk+2 + xk+3 + · · ·+ x2k)y)

= ∑
i≥0

(
1 − xk

)−i (
x + (xk+2 + xk+3 + · · ·+ x2k)y

)i

= ∑
m≥0

∑
i≥m

(
i

m

)(
1 − xk

)−i
xi−m

(
xk+2 + xk+3 + · · ·+ x2k

)m
ym

= ∑
m≥0

∑
i≥m

(
i

m

)(
1 − xk

)−i
xi+(k+1)m

(
1 + x + · · ·+ xk−2

)m
ym.

Using the equations (2) and (4), we can extract the coefficient of xnym and get the first desired
formula. We can also rewrite

(
1 + x + · · ·+ xk−2

)m
=

(
1 − xk−1

)m

(1 − x)m
.

Applying the binomial theorem and the equation (2) to this gives the second desired formula. �

Proof 2. Now we give a combinatorial proof for the two formulas of the number a
(m)
k,n . By the

proof of Theorem 1.6, this number enumerates binary sequences of length n − 1 in which all but
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m maximal substrings of zeros have length divisible by k. Such a sequence can be written as

0α1 10α2 1 · · · 0αi−110αi

for some integer i ≥ m. There are ( i
m) ways to specify the m-subset

R := {r : k ∤ αr} ⊆ {1, 2, . . . , i}.

For each r ∈ R, since k ∤ αr ≥ k, there exist integers ar ≥ 0 and br ∈ {0, 1, . . . , k − 2} such that

αr = k + 1 + ark + br.

For each s ∈ {1, 2, . . . , i} \ R, there exists an integer as ≥ 0 such that αs = ask. The number of

ways to choose the nonnegative integers a1, . . . , ai is (i+j−1
j ), where j := a1 + · · ·+ ai. The number

of ways to choose the integers br ∈ {0, 1, . . . , k − 2} for all r ∈ R is

∑
λ⊆(k−2)m

i+(k+1)m+jk+|λ|=n

mλ(1
m) = ∑

i+(k+1)m+jk+ℓ(k−1)+h=n

(−1)ℓ
(

m

ℓ

)(
m + h − 1

h

)

where the second formula follows from applying inclusion-exclusion to the integer sequences
(br ≥ 0 : r ∈ R) with br ≥ k − 1 for all r in a prescribed ℓ-subset R′ ⊆ R. �

6. Analogues of Beck’s conjectures

In this section we review some conjectures of Beck on partitions with restricted parts and
provide analogues for compositions.

Let a(n) be the number of partitions of n with exactly one (possibly repeated) even part. Let
b(n) be the difference between the number of parts in all partitions of n into odd parts and the
number of parts in all partitions of n into distinct parts. Let c(n) be the number of partitions
of n in which exactly one part is repeated. Beck [14, A090867] conjectured that a(n) = b(n).
Andrews [1, Theorem 1] analytically proved that a(n) = b(n) = c(n). Fu and Tang [7, Theorem
1.5] extended the result of Andrews with an analytic proof. Using Glaisher’s bijection, Yang [18,
Theorem 1.5] generalized the above conjecture of Beck to the following result

#O1,k(n) =
1

k − 1

(

∑
λ∈Ok(n)

ℓ(λ)− ∑
λ∈Dk(n)

ℓ(λ)

)

where O1,k(n), Ok(n), and Dk(n) are the sets of partitions of n with exactly one (possibly re-
peated) part divisible by k, no part divisible by k, or no part occuring at least k times, respectively.

Let a1(n) be the number of partitions of n in which exactly one part occurs three times and
each other part occurs only once. Let b1(n) be the difference between the number of parts
in all partitions of n into distinct parts and the number of distinct parts in all partitions of n
into odd parts. Beck [14, A090867] conjectured that a1(n) = b1(n) and Andrews [1, Theorem 2]
analytically proved this conjecture. Extending Glaisher’s bijection, Yang [18, Theorem 1.7] proved
a more general result

#Tk(n) = ∑
λ∈Dk(n)

ℓ(λ)− ∑
λ∈Ok(n)

ℓ(λ).

Here Tk(n) is the set of partitions of n with one part occurring more than k and less than 2k times

and every other part occuring less than k times, and ℓ(λ) is the number of distinct parts of λ.
A partition λ = (λ1, . . . , λℓ) is said to be gap-free if 0 ≤ λi − λi+1 ≤ 1 for all i = 1, 2, . . . , ℓ− 1.

Let a2(n) be the number of gap-free partitions of n. Let b2(n) be the sum of the smallest parts
of all partitions of n into an odd number of distinct parts. Beck [14, A034296] conjectured that
a2(n) = b2(n). Chern [4] analytically proved this conjecture based on work of Andrews [1].
Yang [18] combinatorially proved this conjecture and found connections with work of Wang,
Fokkink, and Fokkink [17].
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Now that we have composition analogues for the partition theorems of Euler, Glaisher, and
Franklin, it is natural to explore analogues of the above conjectures of Beck in the setting of
compositions. This would hopefully lead to some interesting results as well as connections to
other work on compositions.

An example is given by a special case of the number a
(m)
k,n in Theorem 1.6 and Theorem 1.7.

According to OEIS [14, A029907], the number An := a
(1)
2,n+3 satisfies the following properties.

• One has A0 = 0, A1 = 1, and An+2 = An+1 + An + Fn+1 for n ≥ 0, where Fn is the nth
Fibonacci number.

• For n ≥ 1 one has the following simple closed formulas:

An =
1

5
((n + 4)Fn + 2nFn−1) = ∑

0≤i≤n−1
∑

0≤j≤i/2

(
n − j − 1

j

)
.

• The number An equals both the number of compositions of n + 1 with exactly one even
part and the number of parts in all compositions of n with odd parts.

The last statement above motivates the following result, which has an easy combinatorial proof.

Proposition 6.1. Let k ≥ 2, 1 ≤ r ≤ k − 1, 1 ≤ s ≤ k − r, and n ≥ 0. Then the number of compositions
of n + s with one part congruent to r + s and every other part congruent to r modulo k equals the number
of parts in all compositions of n with each part congruent to r modulo k.

Proof. Let α = (α1, . . . , αℓ) be a composition of n+ s with αi ≡ r+ s (mod k) for some i and αj ≡ r
(mod k) for all j 6= i. Define α′

i := αi − s and α′
j = αj for all j 6= i. One sees that α′ = (α′

1, . . . , α′
ℓ
)

is a composition of n with α′
j ≡ r (mod k) for all j = 1, 2, . . . , ℓ, and we have a distinguished part

α′
i of this composition.

Conversely, given a composition β = (β1, . . . , βℓ) of n with β j ≡ r (mod k) for all j = 1, 2, . . . ℓ
and given a distinguished part βi for some i, we have a composition β′ = (β′

1, . . . , β′
ℓ
) of n + s

defined by β′
i := βi + s and β′

j := β j for all j 6= i. The composition β′ satisfies β′
i ≡ r + s (mod k)

and β′
j ≡ r (mod k) for all j 6= i. �

Taking k = 2 and r = s = 1 in the above proposition gives the following corollary, which can
be viewed as a composition analogue for the conjectures of Beck.

Corollary 6.2. For n ≥ 0, the number of compositions of n + 1 with exactly one even part equals the
number of parts in all compositions of n with odd parts.

Next, let Bn be the number of parts in all compositions of n + 1 with parts greater than 1; see
OEIS [14, A010049]. We give another analogue of Beck’s conjectures.

Proposition 6.3. The number of parts in all compositions of n with parts greater than 1 equals the
difference between the number of parts in all compositions of n with odd parts and the number of parts in
all compositions of n + 1 with parts greater than 1.

Proof. Turban [16, Equation (2.12)] showed that

Bn =
1

5
((2n + 3)Fn − nFn−1) =

1

5
((n + 3)Fn + nFn−2) .

It follows that

Bn + Bn−1 =
1

5
((n + 3)Fn + (n + 2)Fn−1 + nFn−2 + (n − 1)Fn−3)

=
1

5
((n + 4)Fn + 2nFn−1) = An.

Thus Bn−1 = An − Bn. �
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One may try to bijectively prove the above proposition; the bijection by Sills [13] seems not
work. It would also be interesting to extend this result from k = 2 to larger values of k.

There could be of course other possible composition analogues for Beck’s conjectures. For
instance, one can define a composition α = (α1, . . . , αℓ) to be gap-free if |αi − αi+1| ≤ 1 for all
i = 1, 2, . . . , ℓ− 1. Although included in OEIS [14, A034297], the number of gap-free compositions
of n still needs further study, and that may lead to connections to compositions with other kinds
of part constraints.
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