Equivalence of OEIS A007729 and A174868

Michael J. Collins
Daniel H. Wagner Associates
mjcollins10@gmail.com
David Wilson
davidwwilson710@gmail.com.

Abstract

We verify the conjecture that the sixth binary partition function [2] is equal (aside from the initial zero term) to the partial sums of the Stern-Brocot sequence [3]: $$
0,1,2,4,5,8,10,13,14,18,21,26,28,33,36,40,41,46 \ldots
$$

Let b_{k}^{\prime} be the sixth binary partition function, which is the number of ways to write k as a sum

$$
k=\sum_{i \geq 0} \varepsilon_{i} 2^{i}
$$

with $\varepsilon_{i} \in\{0,1,2,3,4,5\}$. We obtain

$$
\begin{equation*}
b_{2 k}^{\prime}=b_{k}^{\prime}+b_{k-1}^{\prime}+b_{k-2}^{\prime} \tag{1}
\end{equation*}
$$

by counting the number of representations of $2 k$ with $\varepsilon_{0}=0,2$ or 4 ; in each case we have a representation $\hat{\varepsilon}$ of $\frac{2 k-\varepsilon_{0}}{2}$ by taking $\hat{\varepsilon}_{i}=\varepsilon_{i+1}$, and the correspondence is clearly one-to-one. Also $b_{2 k+1}^{\prime}=b_{2 k}^{\prime}$, since we can get a representation of $2 k+1$ only by taking a representation of $2 k$ and adding 1 to ε_{0}. Thus

$$
\begin{align*}
& b_{2 k}^{\prime}=2 b_{k-1}^{\prime}+b_{k}^{\prime} \quad(k \text { even }) \tag{2}\\
& b_{2 k}^{\prime}=2 b_{k-1}^{\prime}+b_{k-2}^{\prime} \quad(k \text { odd })
\end{align*}
$$

since b_{k-1}^{\prime} equals either b_{k}^{\prime} or b_{k-2}^{\prime}.
We eliminate the even/odd repetition by defining $b_{k}=b_{2 k}^{\prime}$. Then $b_{0}=1, b_{1}=2$ and

$$
\begin{align*}
b_{2 k} & =2 b_{2 k-1}^{\prime}+b_{2 k}^{\prime}
\end{align*}=2 b_{k-1}+b_{k}, ~ 子, ~=2 b_{2 k}^{\prime}+b_{2 k-1}^{\prime}=2 b_{k}+b_{k-1} .
$$

This is A007729. If we prepend a zero, defining $\hat{b}_{0}=0$ and $\hat{b}_{k}=b_{k-1}$ we obtain

$$
\begin{align*}
\hat{b}_{2 k} & =2 \hat{b}_{k}+\hat{b}_{k-1} \\
\hat{b}_{2 k+1} & =2 \hat{b}_{k}+\hat{b}_{k+1} . \tag{4}
\end{align*}
$$

The same recurrence with the same initial conditions gives A174868, the partial sums of the Stern-Brocot sequence [1]. The Stern-Brocot sequence itself can be defined by $s_{0}=0, s_{1}=1$, and

$$
\begin{align*}
s_{2 k} & =s_{k} \tag{5}\\
s_{2 k+1} & =s_{k}+s_{k+1}
\end{align*}
$$

The partial sums are $\sigma_{k}=\sum_{0 \leq i \leq k} s_{k}$. Letting $\ell_{j}=s_{2 j-1}+s_{2 j}=2 s_{j}+s_{j-1}$ we get

$$
\sigma_{2 k}=\sum_{1 \leq j \leq k} \ell_{j}=2 \sigma_{k}+\sigma_{k-1}
$$

and similarly with $\ell_{j}^{\prime}=s_{2 j}+s_{2 j+1}=2 s_{j}+s_{j+1}$,

$$
\sigma_{2 k+1}=\sum_{0 \leq j \leq k} \ell_{j}^{\prime}=2 \sigma_{k}+\sigma_{k+1}
$$

References

[1] OEIS Foundation Inc. The on-line encyclopedia of integer sequences, http://oeis.org/a002487, 2018.
[2] OEIS Foundation Inc. The on-line encyclopedia of integer sequences, http://oeis.org/a007729, 2018.
[3] OEIS Foundation Inc. The on-line encyclopedia of integer sequences, http://oeis.org/a174868, 2018.

