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ABSTRACT
Recently, some high-performance IEEE 754 single precision
floating-point software has been designed, which aims at best
exploiting some features (integer arithmetic, parallelism) of
the STMicroelectronics ST200 Very Long Instruction Word
(VLIW) processor. We review here the techniques and soft-
ware tools used or developed for this design and its imple-
mentation, and how they allowed very high instruction-level
parallelism (ILP) exposure. Those key points include a hi-
erarchical description of function evaluation algorithms, the
exploitation of the standard encoding of floating-point data,
the automatic generation of fast and accurate polynomial
evaluation schemes, and some compiler optimizations.
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D.2.3 [Software Engineering]: Coding Tools and Tech-
niques—standards; G.1.0 [Numerical Analysis]: General—
computer arithmetic, parallel algorithms; G.4 [Mathematical
Software]: algorithm design and analysis, parallel and vec-
tor implementations; D.3.4 [Programming Languages]:
Processors—code generation, compilers
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1. INTRODUCTION
Although binary floating-point arithmetic has been stan-

dardized since over two decades and is widely used in media-
intensive applications, not all embedded media processors
have floating-point hardware. An example is the ST231, a
4-way VLIW processor from the STMicroelectronics ST200
family whose native arithmetic consists exclusively of 32-bit
integer arithmetic. Consequently, for such so-called integer
processors floating-point arithmetic must be implemented
entirely in software.

Various software implementations of the IEEE 754 stan-
dard [1] for binary floating-point arithmetic already exist,
such as the SoftFloat package [16]. SoftFloat is written in
portable C and could thus be compiled for the ST231 us-
ing the ST200 C compiler. While being entirely satisfactory
in terms of correctness, such a reference library may fail
to exploit some key features of the given target, thus offer-
ing standard floating-point support at a possibly prohibitive
cost. For example, for the five basic arithmetic operations
(addition, subtraction, multiplication, division, and square
root) in single precision and with rounding ’to nearest even’,
we get the following latencies (measured in number of clock
cycles):

+ − × /
√

48 cycles 49 cycles 31 cycles 177 cycles 95 cycles

This motivated the study of how to exploit the various
features of the ST231, and resulted in the design and im-
plementation of improved C software for floating-point func-
tionalities gathered in a library called FLIP [14].1 Compared
1The earliest report on this study is [4] and the latest release,
FLIP 1.0, is available from http://flip.gforge.inria.fr/
and delivered under the CeCILL-v2 license.
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to SoftFloat, this alternative implementation of IEEE 754
arithmetic allows to obtain speed-ups from 1.5x to 5.2x, the
new latencies being as follows (see [38, p. 4]):

+ − × /
√

26 cycles 26 cycles 21 cycles 34 cycles 23 cycles

This study has shown further that similar speed-ups hold
not only for rounding to nearest but in fact for all rounding
modes and, perhaps more interestingly, that supporting so-
called subnormal numbers (the tiny floating-point numbers
that make gradual underflow possible) has an extra-cost of
only a few cycles. Also, square root is now almost as fast
as multiplication, and even slightly faster than addition. Fi-
nally, the code size (number of assembly instructions) has
been reduced by a factor ranging between 1.2 and 4.2 de-
pending on the operator.

To achieve such performances required the combination of
various techniques and tools. The main techniques used are
a careful exploitation of some nice features of the IEEE stan-
dard, a novel algorithmic approach to increase ILP exposure
in function evaluation, as well as some compiler optimiza-
tions. The software tools used to assist the design and its
validation are Gappa, Sollya, and CGPE. The goal of this
paper is to review such techniques and tools through a few
examples, showing how they can help expose more ILP while
keeping code size small and allowing for the validation of the
resulting codes. Although the optimizations we present here
have been done for the ST231, most of them could still be
useful when implementing IEEE floating-point arithmetic on
other VLIW integer processors.

The paper is organized as follows. Section 2 provides
some reminders about the IEEE 754 floating-point standard
(Section 2.1), the architecture of the ST231 processor (Sec-
tion 2.2), and the associated compiler (Section 2.3). In Sec-
tion 3 we provide a high-level description of typical floating-
point arithmetic implementations, which already allows to
expose a great deal of ILP and to identify the most critical
subtasks. We then detail three optimization examples: Sec-
tion 4 presents two ways of taking advantage of the encoding
of floating-point data prescribed by the IEEE 754 standard;
Section 5 shows how some automatically-generated parallel
polynomial evaluation schemes allow for even higher ILP ex-
posure and can be used to accelerate the most critical part
of the implementation; Section 6 details an example of op-
timization done at the compiler level. We conclude in Sec-
tion 7 with some remarks on the validation of the optimized
codes thus produced.

2. BACKGROUND

2.1 IEEE 754 floating-point arithmetic
Floating-point arithmetic is defined rigorously by the IEEE

754 standard [1, 2], whose initial motivation was to make
it possible to “write portable software and prove that it
worked” [25]. We simply recall some important features of
this standard and refer to [6, 17, 34, 35] for in-depth descrip-
tions.

The data specified by this standard consist of finite num-
bers, signed infinities, and quiet or signaling Not-a-Numbers
(NaNs). This standard also defines several formats charac-
terized by the values of three integers: the radix β, the pre-
cision p, and the maximal exponent emax. Although β can

be either 2 or 10, we shall restrict here to binary formats,
for which β = 2 and where emax has the form

emax = 2w−1 − 1

for some positive integer w; in our implementation examples
we shall restrict further to the binary32 format (formerly
called single precision), for which p = 24 and emax = 127 =
27 − 1.

For a given format, finite numbers have the form

x = (−1)sx · mx · 2ex , (1)

where

• sx ∈ {0, 1};
• ex ∈ {emin, . . . , emax} with emin = 1 − emax;

• mx = Mx·21−p with Mx an integer such that 0 ≤ Mx <
2p if ex = emin, and 2p−1 ≤ Mx < 2p if ex > emin.

The number x in (1) is called subnormal if 0 < |x| < 2emin ,
and normal if |x| ≥ 2emin . In particular, one may check that
x is subnormal if and only if ex = emin and 1 ≤ Mx < 2p−1.
Subnormals are a key feature of the IEEE 754 standard, as
they allow for gradual rather than abrupt underflow [26].
Another important feature of the above definition of x is
that it gives two signed zeros, +0 and −0.

Every floating-point datum x can be represented by its
standard encoding into a k-bit integer

X =

k−1X
i=0

Xi2
i, (2)

where k = p + w. When x is a finite number, the bits Xi of
X must be interpreted as follows:

[Xk−1 · · ·X0] = [sign| biased exponent| {z }
w bits

| trailing significand| {z }
p−1 bits

],

where the sign bit equals sx, the biased exponent equals
ex+emax for x normal, and 0 for x subnormal, and where the
trailing significand contains the fraction bits of mx. When
x is infinite or NaN, special values of X are used, having
in particular all the bits of the biased exponent field set to
one. In our case, the input and output of the implemented
operators correspond to this encoding for k = 32. We will
see in Section 4 how to take advantage of the nice properties
of this encoding to optimize implementations.

Correct rounding is of course another key feature of the
IEEE 754 standard: it means that the result to return is
the one which would have been produced by first using in-
finite precision and unbounded exponent range, and then
rounding to the target format according to a given round-
ing direction. The 2008 revision of the standard [2] defines
five rounding directions, the default being ‘to nearest even.’
Correct rounding has been mandatory for the five basic op-
erations since 1985 [1]. Since 2008, this requirement has
been extended to several operations and most notably the
fused multiply-add (FMA); it is also now recommended that
elementary functions (exp, cos, ...) be implemented with
correct rounding.

Finally, five exception flags must be set after each opera-
tion, thus offering a diagnostic of specific behaviors: division
by zero, overflow, underflow, inexactness, and non validity of
an operation. Although such flags can be very useful when
debugging applications, they have not been implemented yet
in our context.
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2.2 ST200 VLIW architecture
The ST200 is a 4-way VLIW family of cores dedicated

to high performance media processing. It was originally de-
signed by Fisher at HPLabs and further developed by STMi-
croelectronics for use as an IP block in their Systems On
Chip (SOCs), such as the 710x family of High Definition TV
(HDTV) decoders, where several instances of that core are
used for audio and video processing. (We refer to [13] for a
comprehensive study of VLIW architectures.)

The flagship processor of this family is the ST231, which
has specific architectural features and specific instructions
that turn out to be key to support floating-point emulation.

The execution model of the ST200 is the one of a classical
VLIW machine where several instructions are grouped in a
bundle and execute all at once, with a significant departure
from that principle: when a register read-after-write (RAW)
dependency is not fulfilled due to the latency of one instruc-
tion, the core waits until the result is available for reading.
The most important benefit of that feature is that it achieves
a very simple form of code compression, avoiding the usage
of ’nop’ operations that could otherwise be necessary to wait
until a result is available.

The ST200 has 64 32-bit general-purpose integer registers
and 8 1-bit predicate registers. It has no status flag or simi-
lar mechanism: all conditions are computed explicitly either
in integer or boolean registers. Boolean registers are then
used as predicates for branching instructions, or for specific
instructions like addition with carry, or the ’select’ instruc-
tion that chooses a value among two according to a boolean
predicate value. This large set of registers implies that in
practice, for the 32-bit code that we consider here, the reg-
ister pressure is low, and every value can be computed and
kept in a register.

The ST200 arithmetic-logic units (ALUs) are replicated
for every execution lane available, except for some instruc-
tions requiring a relatively large silicon surface to be imple-
mented: for instance four adders are available, meaning that
a bundle can execute up to four simultaneous additions, but
only two multipliers are implemented, restricting the num-
ber of simultaneous multiplications. These ALUs are fully
pipelined, and all arithmetic operations have a one cycle la-
tency except the multipliers which have a three cycle latency.

Most ST200 arithmetic instructions can have a 9-bit signed
immediate argument, and a specific extension mechanism en-
ables any instruction to have a 32-bit immediate argument
by using an extra lane in a bundle. Though this reduces
available instruction parallelism, it is an effective mecha-
nism to build large constants, avoiding any access through
the data memory, as we will see further.

The two previous features—two pipelined multipliers avail-
able along with long immediate operands—are key for effi-
cient polynomial evaluation; see Section 5.

In addition to the usual operations, the ALUs also imple-
ment several specific one-cycle instructions dedicated to code
optimization: leading zero count (which is key to subnormal
numbers support), computation of minimum and maximum,
arbitrary left and right shifts, and combined shift and add.

The core accesses the memory system through two sepa-
rated L1 caches: a 32-Kbyte 4-way associative data cache
(D-cache), and a 32-Kbyte direct-mapped instruction cache
(I-cache).

The direct mapped organization of the I-cache creates a
specific difficulty to obtain good and reproducible perfor-

mance, since its caching performance is very sensitive to the
code layout, due to conflict misses. This has been addressed
by post link time optimizations [15] that are either driven
by heuristics or by actual code profile.

Note also that in the code presented in this article, the
choice was made not to use any in-memory table, to avoid
any access through the D-cache side of the system, because
a cold miss entails a significant performance hit and the
prefetch mechanism cannot be efficient on these types of ran-
dom accesses.

Finally, we conclude this section with a remark about la-
tency and throughput. For instance, on IA64, Markstein [27]
takes care to devise two variants of the emulated floating-
point operators, one optimized for latency, one optimized
for throughput, that are selected by compiler switches. This
makes sense for ’open code generation,’ where the operator
low-level instructions are emitted directly by the compiler in
the instruction stream and not available as library runtime
support. This is made possible by the fact that the IA64 has
a rich instruction set, that enables emulation of complex op-
erations in a few instructions. This technique enables further
optimization and scheduling by the compiler, at the cost of
a higher code size. On the contrary for the ST200 where em-
ulation of floating-point operations entails a significant code
size, our operators are available only in their library variant,
thus optimizing for latency is the criteria of choice.

2.3 ST200 VLIW compiler
The ST200 compiler is based on the Open64 technology,2

open-sourced by SGI in 2001, and then further developed
by STMicroelectronics and more generally by the Open64
community.

The Open64 compiler has been re-targeted to support dif-
ferent variants of the ST200 family of cores by a dedicated
tool, called the Machine Description System (MDS), provid-
ing an automatic flow from the architectural description of
the architecture to the compiler and other binary utilities.

Though the compiler has been developed in the begin-
ning to achieve very high performance on embedded media
C code, it has been further developed and is able to compile a
fully functional Linux distribution, including C++ graphics
applications based on WebKit.

It is organized as follows: the gcc-4.2.0 based front-end
translates C/C++ source code into a first high level target
independent representation called WHIRL, that is further
lowered and optimized by the middle-end, including WOPT
(WHIRL global Optimizer, based on SSA representations)
and optionally LNO (Loop Nest Optimizer). It is then trans-
lated in a low-level target dependent representation called
CGIR for code generation, including code selection, low level
loop transformations, if-conversion, scheduling, and register
allocation.

In addition the compiler is able to work in a specific Inter-
procedural Analysis (IPA) and Interprocedural Optimization
(IPO) mode where the compiler builds a representation for
a whole program, and optimizes it globally by global propa-
gation, inlining, code cloning, and other optimizations.

Several additions have been done by STMicroelectronics
to achieve high performance goals for the ST200 target:

• A dedicated Linear Assembly Optimizer (LAO) is in
charge at the CGIR level of software pipelining, pre-

2http://www.open64.net
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pass and post-pass scheduling. It embeds a nearly opti-
mal scheduler based on an Integer Linear Programming
(ILP) formulation of the pipelining problem [3]. As the
problem instances are very large, a large neighborhood
search heuristic is applied as described in [11] and the
ILP problem is further solved by an embedded GLPK
(GNU Linear Programming Kit) solver.

• A specific if-conversion phase, designed to transform
control flow into ’select’ operations [7].

• Some additions to the CGIR ’Extended Block Opti-
mizer’ (EBO), including a dedicated ’Range Analysis’
and ’Range Propagation’ phase.

• A proved and efficient out-of-SSA translation phase,
including coalescing improvements [5].

Besides efficient code selection, register allocation, and in-
struction scheduling, the key optimizations contributing to
the generation of the low-latency floating-point software are
mostly the if-conversion optimization, and to a lesser extent
the range analysis framework.

Note also that a compiler intrinsic ( builtin clz) is used to
select the specific ’count leading zero’ instruction: this is a
small restriction to portability since this builtin is supported
in any gcc compiler.

3. HIGH LEVEL DESCRIPTIONS
As recalled in Section 2.1, IEEE 754 floating-point data

can be either numbers or NaNs, finite or infinite, subnormal
or normal, etc. Such a diversity typically entails many par-
ticular cases, and considering each of them separately may
slow down both the implementation process and the result-
ing code.

In order to make the implementation process less cum-
bersome, a first step can be to systematically define which
operands should be considered as special cases. This means
to exhibit a sufficient condition Cspec on the input such that
the IEEE result belongs to, say, {NaN,±∞,±0}. (For NaNs,
this condition should be necessary as well.) Then it remains
to perform the following three independent tasks:

(T1) Handle generic cases (inputs for which Cspec is false);

(T2) Handle special cases;

(T3) Evaluate the condition Cspec.

The output is produced by selecting the result of either T1 or
T2, depending on the result of T3. These three tasks define
our highest-level description of an operator implementation.
At this level, ILP exposure is clear. To reduce the overall la-
tency, we optimize T1 first, and then only optimize both T2
and T3 (in particular by reusing as much as we can the in-
termediate quantities used for T1). This is motivated by the
fact that task T1 is the one where actual numerical com-
putations, and especially rounding, take place. Thus, for
most operators it can be expected that T1 will dominate the
costs, and even allow for both T2 and T3 to be performed
meanwhile.

The next level of description corresponds to a more de-
tailed view of task T1. Handling generic input typically
involves a range reduction step, an evaluation step on the
reduced range, and a reconstruction step [33]. For example,

for a unary real-valued operator f , the exact value of f at
floating-point number x can always be written

f(x) = ±� · 2d,

for some real number � ∈ [1, 2) and some integer d. Here �
will in general have the form � = F (s, t, . . .), where F is a
function either equal to f or closely related to it, and where
s, t, . . . are parameters that encode both range reduction and
reconstruction. In our case, s can be a real, non-rational
number and t lies in a range smaller than that of x, like [0, 1].
Now assume for simplicity that d ≥ emin. (The general case
can be handled in a similar way at the expense of suitable
scalings.) The correctly-rounded result to be returned has
the form

r = ±RNp(�) · 2d, (3)

where RNp means rounding ’to nearest even’ in precision p.
Task T1 can then be decomposed into three independent

sub-tasks: compute the sign sr of r, the integer d, and the
floating-point number RNp(�). Although � < 2, its rounded
value RNp(�) can be as large as 2. Again, ILP exposure is
explicit at the level within task T1.

For the operators considered here, the most difficult of the
three sub-tasks is the computation of RNp(�). Classically,
this sub-task can itself be decomposed into three steps [12],
yielding a third level of description: given f and x,

• compute (possibly approximate) values for s, t, ...;

• deduce from F , s, and t a “good enough”
approximation v to �; (�)

• deduce RNp(�) be applying to v a suitable correction.

Unlike the two previous levels, this level has steps which
are fully sequential. The good news, however, is that the
computation of v allows many algorithmic choices, some of
them leading to very high ILP exposure; see Section 5.

When the binary expansion (1.�1�2 · · · )2 of � is finite, as
is the case for the addition and multiplication operators,
correction is done via computing explicitly a rounding bit B
such that

RNp(�) = (1.�1 . . . �p−1)2 + B · 21−p. (4)

When the expansion of � can be infinite, as for square
root or division, the situation is more complicated but one
can proceed by correcting “one-sided truncated approxima-
tions” [12, 20, 21]. With u the truncated value of v after p
bits, the correction to apply is now based on whether u ≥ �
or not. For functions like square root or reciprocal, this
predicate can be computed exactly by means of their inverse
functions. (Note however that this kind of decision problem
is much more involved for elementary functions (exp, cos,
...) because of the “tablemaker’s dilemma” [33].)

The computation of B or the evaluation of u ≥ � can in
general be simplified when the function f to be implemented
has properties like

� cannot be exactly halfway between two consecutive
floating-point numbers.

Therefore, in order to get simpler and thus potentially faster
rounding procedures, a thorough study of the properties of
f in floating-point arithmetic can be necessary. Properties
like the one above have been derived in [18, 22] for some
commonly used algebraic functions.
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4. EXPLOITING STANDARD ENCODINGS
The standard encoding of floating-point data into k-bit in-

tegers X as in (2) has several interesting properties, and es-
pecially a well-known ordering property (see for example [34,
p. 330]). The two examples below show how such properties
of the standard encodings of the operand(s) and the result
can be exploited to optimize floating-point implementations.

First, the standard encoding can be used to obtain explicit
and ready-to-implement formulas for evaluating the condi-
tion Cspec (task T3). Consider for example the square root
operator x �→ √

x. Its IEEE 754 specification implies that

Cspec = (x = ±0) ∨ (x < 0) ∨ (x = ±∞) ∨ (x is NaN).

A possible implementation of this predicate would thus con-
sist in checking on X if x = ±0, and so on. However, the
following more compact expression was shown in [20]:

Cspec =
h
(X − 1) mod 2k ≥ 2k−1 − 2p−1 − 1

i
, (5)

where the notation [S] means 1 if the statement S is true,
and 0 otherwise. For the binary32 format, this amounts
to comparing (X − 1) mod 232 to the constant value 231 −
223 − 1. Since on ST231 integer addition is done modulo 232

the above formula can thus be immediately implemented as
shown in the C fragment below:

Cspec = (X - 1) >= 0x7F7FFFFF;

In this case, exploiting the standard encoding allows us to
filter out all special cases (task T3) in only 2 cycles and 2
instructions. A similar filter can be designed for addition,
multiplication, and division. The overhead due to the fact
that these are binary operators is quite reasonable: only 1
more cycle and 3 more instructions are used (see [34, §10]).

As a second example, let us now see how one can exploit
the standard encoding at the end of task T1, when packing
the result. Let

n = RNp(�) = (1.n1 . . . np−1)2.

For r as in (3), once we have computed its sign sr as well
as n and d, it remains to set up the k-bit integer R that
corresponds to the standard encoding of r. One could have
concatenated sr with a biased value

D = d + emax

of d and with the fraction bits of n, but removing the leading
1 in n would have increased the critical path. To avoid this,
it has been shown in [20] that one may prefer to compute
D−1 instead of D (at no extra cost since it suffices to modify
the value of the bias) and then deduce R as

R =
`
sr · 2k−1 + (D − 1) · 2p−1´

+ n · 2p−1. (6)

Since the latency of n is in general higher than that of sr

and D−1, the evaluation order indicated by the parentheses
in (6) may reduce the overall latency of R. Note also that
the exponent field is automatically increased by 1 in the
case where n = 2. In particular, when n = 2 and D − 1 =
2emax − 1 then the returned value of R is the encoding of
±∞, which means that overflow due to rounding is handled
transparently thanks to the standard encoding.

Finally, in the cases where n is computed via adding the
rounding bit B as in (4), since getting B is the most expen-
sive step, one may rewrite (6) with the following evaluation

order:

R =
“`

sr · 2k−1 + (D − 1) · 2p−1´
+ L

”
+ B, (7)

with L the integer given by L = (1.�1 . . . �p−1)2 · 2p−1.

5. PARALLEL POLYNOMIAL EVALUATION
When implementing operators like floating-point square

root or division, the trickiest part is to write the code com-
puting the approximation v to the real number �; see (�) in
Section 3. The goal here is to achieve the lowest possible la-
tency while being“accurate enough”(in a sense made precise
in [20], for example −2−p < � − v ≤ 0).

Recall from Section 2.2 that the ST231 can issue up to
four integer additions (A + B) mod 232 (latency of 1 cy-
cle), up to two multiplications �AB/232� (latency of 3 cy-
cles, pipelined), and that these arithmetic instructions can
have 32-bit immediate arguments. These features allow us
to consider several methods, such as

• variants of Newton-Raphson and Goldschmidt itera-
tive methods based on low-degree polynomial evalua-
tion followed by 1 or 2 iterations [23, 36];

• methods based on evaluating piecewise, univariate poly-
nomial approximants [19];

• methods based on the evaluation of a single bivariate
polynomial [20, 21, 24, 38].

So far the highest ILP exposure and the smallest latencies
have been obtained using the third approach: v is obtained
by evaluating a very special bivariate polynomial P (s, t) that
approximates � “well enough” and has the form

P (s, t) = 2−p−1 + s · a(t), a(t) =

dX
i=0

ait
i.

For example, for the square root design introduced in [20],
the degree d equals 8 and the coefficients ai are such that
a0 = 1 and, for 1 ≤ i ≤ 8, ai = (−1)i+1Ai · 2−31 with Ai a
32-bit positive integer. These numbers as well as a rigorous
upper bound on the approximation error entailed by using
P (s, t) instead of the true square root function have been
produced by the software tool Sollya [9].

Once the polynomial P (s, t) is given, it remains to choose
an evaluation scheme that will be fast on ST231 and to
bound the rounding errors and check the absence of overflow.
Rounding errors come from the fact that each multiplication
does not give the full 64-bit product AB but only its highest
part �AB/232�. For a given evaluation order, this analysis
of rounding errors and overflows can be done automatically
using the tool Gappa [29, 30, 10].

Because of distributivity and associativity, the number μd

of all possible evaluation orders of P (s, t) grows extremely
fast with the degree d. The first values have been computed
recently [31] and, in the above example of square root where
d = 8, one has

μ8 = 1055157310305502607244946 ≈ 1024

different schemes. Among all these schemes, we want one
having the lowest latency while satisfying a prescribed round-
ing error bound.

Since exhaustive search is out of reach, heuristics have
been used instead, leading to the design of a tool called
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CGPE (Code Generation for Polynomial Evaluation) [37,
38]. CGPE currently implements some heuristics allowing to
quickly produce evaluation schemes (in the form of portable
C code) that are accurate enough and have reduced latency
(and a reduced number of multiplications) on a target like
the ST231. It also computes lower bounds on the latency,
which made it possible to conclude in our cases (square root,
division) that the retained schemes are optimal (square root)
or 1 cycle from the optimal (division). The accuracy/over-
flow certificates are produced by Gappa.

As an example, we show in Figure 1 and Listing 1 the
scheme that CGPE has found in the case of square root and
the corresponding C code it has generated. Its latency on
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Figure 1: Generated evaluation scheme for square
root using the bivariate polynomial approach of [20].

ST231 is of 13 cycles, which matches the computed lower
bound. For comparison, Horner’s rule, which is fully se-
quential, takes 36 cycles on ST231. Interestingly, the 13-
cycle scheme uses only 4 more multiplications compared to
Horner’s rule (which is known to be the evaluation order
minimizing the number of multiplications [8]).

Finally, it should be noted that the combination of the
three tools Sollya, CGPE, and Gappa allows us to tackle
more functions than just square root and division, and sev-
eral other implementations have been [24, 38] or are cur-
rently being written using them.

6. COMPILER OPTIMIZATION
As we have seen in Section 2.3, the compiler is key to gen-

erate efficient target code. As many techniques are classical
or have been described elsewhere (see for example [32]), we
will focus on describing the ’Range Analysis’ framework, and
show a motivating case for its use in a specific optimization
linked with the code generation for floating-point support.

Listing 1: Generated C code for the scheme of Fig. 1.
uint32_t r0 = mul(T, 0x3ffffafc);
uint32_t r1 = 0x80000007 + r0;
uint32_t r2 = mul(S, r1);
uint32_t r3 = 0x00000020 + r2;
uint32_t r4 = mul(T, T);
uint32_t r5 = mul(S, r4);
uint32_t r6 = mul(T, 0x07f9a6be);
uint32_t r7 = 0x0fff6f59 - r6;
uint32_t r8 = mul(r4, 0x04db72ce);
uint32_t r9 = r7 + r8;
uint32_t r10 = mul(r5, r9);
uint32_t r11 = r3 - r10;
uint32_t r12 = mul(T, r4);
uint32_t r13 = mul(r12 , r5);
uint32_t r14 = mul(T, 0x0198e4c7);
uint32_t r15 = 0x0304d2f4 - r14;
uint32_t r16 = mul(T, 0x0019b4c0);
uint32_t r17 = 0x0093fa25 - r16;
uint32_t r18 = mul(r4, r17);
uint32_t r19 = r15 + r18;
uint32_t r20 = mul(r13 , r19);
uint32_t r21 = r11 + r20;

Range analysis is a variant of the analysis used by con-
stant propagation algorithm [39] operating on SSA where
we bound the value (possibly) taken by any variable with a
value (range) in a lattice.

We will briefly give an overview of this constant propaga-
tion algorithm.

For constant propagation the lattice contains, in addition
to initial constant values, the following specific values:

• � meaning that the variable is unvisited,

• ⊥ meaning that the value is unknown.

The algorithm proceeds by visiting instructions and low-
ering the lattice values on the variables according to the
following meet (�) rules, as more information is discovered,
until a fixed-point is reached:

any � � = any
any � ⊥ = ⊥
c1 � c1 = c1

c1 � c2 = ⊥ if c1 �= c2

In its simplest form, the range analysis uses an extension
of the constant propagation lattice: the lattice represents
the ranges of possible values of a variable, the meet rules
are an extension of constant propagation, and the constant
propagation algorithm can be used almost unchanged.

With [x, y] used here to represent the range of integer val-
ues between x and y, the following rule replaces the constant
rule:

[x1, y1] � [x2, y2] = [min(x1, x2), max(y1, y2)]

A whole family of range analyzes can be defined with
slightly different range lattices: for instance analyzes oper-
ating on used bit values. In all cases the framework remains
the same, only the lattice implementation changes.

It is also useful to have a backward analysis, using the
same lattices as for the forward analysis but visiting the
instructions backward. This enables for instance the com-
putation of ranges of values needed by the use of a variable,
useful to remove useless sign extensions.
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In the Open64 compiler, these analyzes are split into generic
and target specific parts. First target specific parts are used
to handle unusual, target specific instructions (for instance
the ST200 clz instruction creates values in the [0, 32] range
regardless of its input). Then target independent part acts
on generic instruction types based on standard Open64 com-
piler predicates.

After the range analysis has assigned a value range to each
variable, this information is used by the Range Propagation
phase to perform various code improvements, that are first
target specific, then generic.

For the ST200, the target specific parts include:

• re-selection of specific instructions, such as lower pre-
cision multiplication;

• generalized constant folding (cases leading to constant
results whereas operands are not constant);

• long to short immediate transformations;

• shift-or transformations using the shift-add ST200 in-
struction;

• non-wrapping subtract to zero;

• constant result cases for special multiplications.

The generic parts generally tend to create dead code that
is further removed by later phases:

• constant propagation (if the variable is found in the
range [x, x]);

• removal of unnecessary sign/zero extensions;

• removal of unnecessary min/max instructions.

Range propagation is indeed very similar to a ’peepholing’
transformation, where the knowledge of ranges on operands
of operations enables more powerful and precise transforma-
tions.

One interesting example that we implemented in the com-
piler is the following, an oversimplified piece of code that we
generated for emulating the single precision floating-point
division:

1 inline
2 uint32_t minu(uint32_t a, uint32_t b)
3 { return a < b ? a : b ; }
4
5 uint32_t test5r(uint32_t x, uint32_t y,
6 int32_t z) {
7 int32_t C,u;
8 if(z>3) u = 6; else u = 1;
9 C = minu(y,2);

10 return x >> (u+C);
11 }

On the ST200, the right shift expression line 10, x >>
(u + C) (or similarly with a left shift), can be transformed
into (x >> C) >> u, which improves the parallelism by re-
laxing the data dependency on u, provided that the following
conditions hold:

u ∈ [0, 31], C ∈ [0, 31], u + C ∈ [0, 31].

This transformation is done in the target specific part of the
range analysis, since obviously we can enable it only when
can prove the preconditions.

Then, instead of x >> (u + C) that incurs the following
computations:

[1] computation of u
[2] tmp = u + C
[3] x >> tmp

we get a potentially better use of ILP (|| here means “in
parallel with”):

[1] tmp = x >> C || computation of u
[2] tmp >> u

For instance, the above test5r function now takes 3 cycles
instead of 4 with this optimization.

7. CONCLUDING REMARKS
Let us conclude with remarks on the validation of the nu-

merical quality of the codes produced by the techniques and
tools presented so far. Validating a floating-point implemen-
tation that claims to be IEEE 754 compliant is often tricky.
For the binary32 format, for which every data can take 232

different values, exhaustive testing is limited to univariate
functions. For example, the square root code of FLIP can
be compiled with Gcc under Linux and compared exhaus-
tively against the square root functions of GNU C (glibc3)
or GNU MPFR4 within a few minutes.

However, this is not possible anymore for bivariate func-
tions like +, −, ×, /. To get higher confidence, a first way is
to use some existing test programs for IEEE floating-point
arithmetic like the TestFloat package [16] and, for division
in particular, the Extremal Rounding Tests Set [28].

A second, complementary way is to get higher confidence,
already at the design stage, in the algorithms used for each
subtask of the high-level descriptions of Section 3. The tech-
niques and tools that have been reviewed make this possible
as follows:

• for the most regular parts of the computation (i.e.,
parallel polynomial evaluation schemes), we rely on the
automatic error analysis functionalities offered by tools
like Sollya and Gappa;

• for other subtasks (like special-value filtering and han-
dling, rounding algorithms, computation of the sign
and exponent of the result), we rely on proof-and-paper
analysis written in terms of the parameters p, k, ... of
the format. Typical examples are the symbolic expres-
sions in (5), (6), and (7).

Our experience with the implementation of floating-point
arithmetic shows that this kind of symbolic analysis can be
really helpful to produce algorithms and codes that are not
only faster but also a priori safer. Furthermore, establishing
properties parameterized by the format should allow to scale
easily from, say, binary32 to binary64 implementations. A
future direction in this area could be to automate the deriva-
tion of such symbolic properties. Another direction is about
automatic numerical error analysis: although CGPE pro-
duces C codes for polynomial evaluation that have a guar-
anteed accuracy, we have no guarantee that compilation will
preserve the order of evaluation, thus potentially spoiling the
accuracy and so the correctness of the whole implementation.

3http://www.gnu.org/software/libc/
4http://www.mpfr.org/mpfr-current/
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Therefore, another direction is to explore the possibility of
certifying numerical accuracy not only at the C level but also
at the assembly level.
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