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Abstract. To each lattice simplex ∆ we associate a poset encoding the additive structure of
lattice points in the fundamental parallelepiped for ∆. When this poset is an antichain, we say ∆
is antichain. To each partition λ of n, we associate a lattice simplex ∆λ having one unimodular
facet, and we investigate their associated posets. We give a number-theoretic characterization of the
relations in these posets, as well as a simplified characterization in the case where each part of λ is
relatively prime to n−1. We use these characterizations to experimentally study ∆λ for all partitions
of n with n ≤ 73. Further, we experimentally study the prevalence of the antichain property among
simplices with a restricted type of Hermite normal form, suggesting that the antichain property is
common among simplices with this restriction. We also investigate the structure of these posets
when λ has only one or two distinct parts. Finally, we explain how this work relates to Poincaré
series for the semigroup algebra associated to ∆, and we prove that this series is rational when ∆
is antichain.

1. Introduction

Given a lattice simplex ∆, the structure of the lattice points in the fundamental parallelepiped of
the cone over ∆ reflects a wealth of arithmetic and combinatorial properties of ∆. In this work, we
study a partial order on these lattice points that encodes the additive relations among these points.
Thus, our main results are primarily arithmetic in nature, and will hopefully be of interest to those
working in areas where fundamental parallelepipeds play a role, e.g. Ehrhart theory, partition
identities, coding theory, optimization, etc. Our motivation for this investigation comes from
questions regarding rationality of Poincaré series for infinite graded resolutions of graded algebras,
where it is of particular interest when the partial order associated to ∆ has no relations. Thus,
after developing our main results using number-theoretic techniques, we explain their algebraic
implications.

More precisely, in Section 2 we define the fundamental parallelepiped poset P (∆) associated
to ∆, where we say ∆ is antichain if P (∆) r {0} has no relations. To each partition λ of n, we
associate a lattice simplex ∆λ having one unimodular facet, and we investigate the posets for these
simplices in depth. In Theorem 2.17 we give a number-theoretic characterization of the relations in
P (∆λ), and in Corollary 2.18 we give a simplified characterization in the case where each part of λ
is relatively prime to n− 1. In Section 3 we use these characterizations to generate empirical data,
experimentally studying those ∆λ for all partitions of n with n ≤ 73. These experiments reveal that
a substantial fraction of those λ satisfying the relatively prime condition appear to have ∆λ that
are antichain. Further, we experimentally study the prevalence of the antichain property among
simplices with a restricted type of Hermite normal form, suggesting that the antichain property is
common among simplices with this restriction. In Section 4 we shift perspective and investigate
partitions having only one or two distinct parts. Finally, in Section 5 we explain the algebraic
implications of our work to Poincaré series of semigroup algebras associated to ∆. Specifically, we
prove that if ∆ is antichain, then the associated Poincaré series is rational.

Date: 10 January 2019.

1

ar
X

iv
:1

90
1.

01
41

7v
2 

 [
m

at
h.

C
O

] 
 1

0 
Ja

n 
20

19
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2. Fundamental Parallelepiped Posets and Their Structure

2.1. Lattice Simplices and Associated Posets. Details regarding polytopes, cones, Hilbert
bases, etc. as discussed in the following can be found in [4, 13]. For a collection V = {v0, . . . , vm}
of points in Rd, we denote by conv(V) the convex hull of V. In the case that m = d and the set
V◦ := {(v1−v0), . . . , (vd−v0)} is a vector space basis of Rd, then we call ∆ := conv(V) a d-simplex.
We call the vi’s the vertices of ∆, and if each vi is an integer point, i.e., lies in Zd, we call ∆ a
lattice simplex . We define the conical hull of V to be the set

cone(V) :=

{
m∑
i=0

γivi such that 0 ≤ γi

}
⊂ Rd.

Notice that the conical hull is unbounded, as in particular it contains the rays R≥0 ·vi for 0 ≤ i ≤ m.
We are particularly interested in conical hulls of the following kind. Let V = {v0, . . . , vd} with ∆ a

lattice d-simplex. Then the cone over ∆ is the conical hull of the points {(1, v0), . . . , (1, vd)} ⊂ Rd+1,
and is denoted cone(∆). We next recall the fundamental parallelepiped, a distinguished subset of
cone(∆).

Definition 2.1. For a lattice d-simplex ∆ with vertices v0 through vd, the fundamental paral-
lelepiped Π∆ is the set

Π∆ :=

{
d∑
i=0

γi(1, vi) such that 0 ≤ γi < 1

}
⊂ cone(∆).

Interest in the fundamental parallelepiped Π∆ arises mainly from the following well-known fact:
every lattice point in cone(∆) can be written uniquely as a non-negative integer combination of the
(1, vi)’s and a lattice point in Π∆. To see this, note that because any element z of cone(∆) ∩ Zd+1

lies in cone(∆), it is a non-negative linear combination of the (1, vi)’s, i.e., there exist non-negative
real coefficients gi such that

z =

d∑
i=0

gi(1, vi) =

(
d∑
i=0

bgic (1, vi)

)
+

(
d∑
i=0

{gi}(1, vi)

)
where {gi} means the fractional part of gi. By setting γi equal to {gi}, we see that any point z may
be written as a non-negative integral combination of the (1, vi)’s and an integer point in Π∆∩Zd+1.
In particular, it is well-known that the set cone(∆) ∩ Zd+1 has a unique finite minimal additive
generating set.

Definition 2.2. The unique minimal additive generating set of cone(∆)∩Zd+1 is called the Hilbert
basis H of cone(∆). It consists of the (1, vi)’s and some lattice points h1 through hm in Π∆ such
that

cone(∆) ∩ Zd+1 =


(

d∑
i=0

ri(1, vi)

)
+

 m∑
j=1

si hi

 such that ri , sj ∈ Z≥0

 .

The Hilbert basis consists of the cone generators (1, vi) together with the additively minimal
elements hj of Π∆∩Zd+1. If the matrix whose columns are given by (1, vi) has determinant ±v, we
say that the simplex ∆ has normalized volume v. Since v is precisely the index of the sub-lattice
generated by (1, v0) through (1, vd), we see that the normalized volume is equal to the number of
lattice points in Π∆. If the normalized volume of ∆ is equal to one, then we call ∆ a unimodular
simplex.

The set of lattice points Zd+1 ∩ Π∆ can be equipped with the following partial order, inherited
from a well-known partial order on the lattice points in Zd+1 ∩ cone(∆).
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Definition 2.3. The set Zd+1 ∩Π∆ is partially ordered by letting σ ≺ µ if and only if µ− σ is an
element of Zd+1 ∩Π∆. We call this poset the fundamental parallelepiped poset P(∆).

Observe that the zero element of Zd+1 ∩ Π∆ is below every other element of P(∆), and that
the minimal elements of P(∆) r {0} are precisely the elements h1, . . . , hm of the Hilbert basis of
cone(∆). Our interest is in the case where the Hilbert basis contains all the elements of P(∆)r{0},
leading to the following definition.

Definition 2.4. If ∆ is a simplex such that P (∆) r {0} is an antichain, we call ∆ an antichain
simplex and say ∆ is antichain.

Example 2.5. Recall that an empty simplex is one whose only lattice points are its vertices. In
the case that ∆ is a 2- or 3-dimensional simplex, it is sufficient that ∆ be empty in order for it
to be antichain. This follows since no lattice points of Π∆ have 0-th coordinate, i.e. height, equal
to one, and thus the only possible 0-th coordinates of lattice points in Π∆ are 2 or 3. However,
sums of pairs of such lattice points have 0-th coordinate equal to 4, 5, or 6, and hence P(∆) has
no relations.

When attempting to determine whether or not ∆ is antichain, the first problem encountered is to
enumerate the elements of Π∆∩Zd+1. As an initial attempt in this direction, let the matrix A have
columns given by {(1, vi)}0≤i≤d, where the vi’s are the vertices of ∆. Recall that the normalized
volume v, the number of elements of Π∆, may be computed by v = |detA|. Recall also that the
set Π∆ is the image of [0, 1)d+1 under the linear transformation A, so that the preimage of a lattice
point of Π∆ must be a rational point of [0, 1)d+1 with denominator v. We may therefore compute
the set of points in Π∆ ∩ Zd+1 by considering each element of the form{

A ·
(
b0
v
, · · · , bd

v

)T
such that 0 ≤ bi < v

}
,

throwing out the ones which are not integer points. Unfortunately, this test set grows as vd+1, and
there is no easy way to describe the lattice points among them.

The software Normaliz [8] gives a more efficient implementation based on the fact that (possibly
after a lattice translation) the matrix A has a representation A = UH where U is a unimodular
matrix and H is in Hermite normal form. Bruns et al. [9] show that, for {ci,i}0≤i≤d given by the
diagonal entries of the matrix H, lattice points in

[0, c0,0)× · · · × [0, cd,d)

are representatives of the quotient classes (in Zd+1 modulo the (1, vi)’s) of the elements of Π∆∩Zd+1.
It is then sufficient to consider the image under A of the elements

(
A−1 · x

)
mod Zd+1 for x ∈

[0, c0,0)× · · · × [0, cd,d). This modular arithmetic is implemented in a computer easily enough, but
introduces number theory to any analysis of the poset P (∆).

2.2. Lattice Simplices with a Unimodular Facet and their Posets. In this work, we study a
restricted class of simplices in order to avoid both of the methods described above for determining
Π∆ ∩ Zd+1.

Definition 2.6. We say that a lattice d-simplex has a unimodular facet if there exists a permutation
π in Sd+1 such that conv({vπ1 , . . . , vπd}) is a unimodular lattice (d− 1)-simplex.

If ∆ has a unimodular facet, then we may define a lattice preserving transformation taking ∆ to
conv(e1, . . . , ed, z) where the ei are the standard basis vectors of Rd and z is a lattice point in Zd.
Our goal in this chapter is to find a description of the relations in P (∆) in terms of the coordinates
of the point z. To further simplify the situation, we consider only z with positive entries.
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Definition 2.7. Let λ = (λ1, . . . , λd) be a lattice point in Nd such that
∑d

i=1 λi = n. We define

∆λ := conv(e1, . . . , ed, λ) ⊂ Rd and use the shortened notation Πλ := Π∆λ
and P (λ) := P (∆λ).

Remark 2.8. In the definition above, we can assume that λ is a partition of n, as permuting the
entries of λ corresponds to a unimodular transformation of ∆λ.

Remark 2.9. The simplices ∆λ are defined in a similar manner to the simplices ∆(1,q) that have
recently been studied by multiple authors [5, 6, 7, 10, 14, 17, 18]. However, these are not the
same families of simplices. Specifically, the matrix giving the Hermite normal form of ∆λ (after
translating ∆λ by −e1) is 

0 1 0 · · · 0 λ2

0 0 1 · · · 0 λ3
...

...
...

. . .
...

...
0 0 0 · · · 1 λd
0 0 0 · · · 0 −1 +

∑
i λi

 .
Note that

∑d
i=2 λi ≤ −1 +

∑d
i=1 λi.

Setting Q = 1 +
∑

i qi, the Hermite normal form for ∆(1,q) is
0 1 0 · · · 0 Q− q2

0 0 1 · · · 0 Q− q3
...

...
...

. . .
...

...
0 0 0 · · · 1 Q− qd
0 0 0 · · · 0 Q

 .
Note that for d ≥ 3, we have

∑d
i=2Q− qi > Q. Thus, these are distinct classes of simplices.

Remark 2.10. Simplices with Hermite normal form having only a single non-trivial column, such
as the ones given above, were previously considered by Hibi, Higashitani, and Li [12, Section 3] in
the context of Ehrhart theory.

The following is a straightforward determinant calculation that also follows from the Hermite
normal form given above.

Proposition 2.11. The number of lattice points in Πλ, which is equal to the normalized volume

of ∆λ, is
∑d

i=1 λi − 1 = n− 1.

We can now describe the integer points in Πλ using only the entries of λ.

Proposition 2.12. For each integer b with 0 ≤ b < n − 1, there is a unique lattice point p(b) in
Πλ given by

(1) p(b) =

((
d∑
i=1

⌈
bλi
n− 1

⌉)
− b ,

⌈
bλ1

n− 1

⌉
, . . . ,

⌈
bλd
n− 1

⌉)
.

Every integer point in Πλ arises in this manner, and thus we identify the integer b with the lattice
point p(b).

Proof. For an element
∑d

i=1 γi(1, ei) + γd+1(1, λ) ∈ Πλ ∩ Zd+1, we have((
d+1∑
i=1

γi

)
, (γ1 + γd+1λ1) , . . . , (γd + γd+1λd)

)
∈ Zd+1 .

Because of the condition that each γi is strictly less than one, for each i we have

γi = dγd+1λie − γd+1λi ,
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thus (
γd+1 +

d∑
i=1

(dγd+1λie − γd+1λi) , dγd+1λ1e, . . . , dγd+1λde

)

=

(
γd+1

(
1−

d∑
i=1

λi

)
+

d∑
i=1

dγd+1λie, dγd+1λ1e, . . . , dγd+1λde

)
.

Observe that the first coordinate of this vector is an integer, hence

γd+1

(
1−

d∑
i=1

λi

)
= γd+1(1− n) ∈ Z .

It follows that γd+1 is a rational number of the form b/(n− 1), and every lattice point arises in this
manner and is of the form((

d∑
i=1

⌈
bλi
n− 1

⌉)
− b ,

⌈
bλ1

n− 1

⌉
, . . . ,

⌈
bλd
n− 1

⌉)
.

Since there are n − 1 lattice points in Πλ by Proposition 2.11, there must be one unique lattice
point for each 0 ≤ b < n− 1. �

Using the notation from (1), for 0 ≤ b < n− 1 we have that the zeroth coordinate of p(b) is

p(b)0 :=

(
d∑
i=1

⌈
bλi
n− 1

⌉)
− b .

Recall that we freely identify the integer b with the lattice point p(b). The following lemma provides
a connection between the parameterization of the integer points in Πλ and the order in P (λ).

Lemma 2.13. For i, j ∈ P (λ) with i 6= j, we have i ≺ j if and only if i < j and p(i)+p(j−i) = p(j).

Proof. For the forward direction, if i ≺ j, then by Proposition 2.12 there exists a point p(`) ∈ P (λ)
such that p(i) + p(`) = p(j). Note that ` > 0 since p(0) = 0. It follows that for all 1 ≤ t ≤ d, we
have ⌈

iλt
n− 1

⌉
+

⌈
`λt
n− 1

⌉
=

⌈
jλt
n− 1

⌉
.

Given this, we have that p(i)1 + p(`)1 = p(j)1 reduces to i+ ` = j, forcing ` = j− i > 0, as desired.
For the reverse direction, if i < j and p(i) +p(j− i) = p(j), then we have i ≺ j by definition. �

We now give two propositions demonstrating how Lemma 2.13 can be used in practice.

Proposition 2.14. If i ≺ j in P (λ), then also j − i ≺ j in P (λ).

Proof. By Lemma 2.13, we have i ≺ j if and only if i < j and p(i) + p(j − i) = p(j) if and only if
j − i < j and p(i) + p(j − i) = p(j) if and only if j − i ≺ j. �

Proposition 2.15. Let λ = (n − 2, 2). Then P (n − 2, 2) is equal to the following poset on the
elements {1, 2, . . . , n − 2}: The minimal elements of P (n − 2, 2) are {1, 2, . . . ,

⌊
n−1

2

⌋
} and the

maximal elements are {
⌊
n−1

2

⌋
+ 1, . . . , n − 2}. The cover relations are that the maximal element⌊

n−1
2

⌋
+ j covers {j, j + 1, . . . ,

⌊
n−1

2

⌋
}.
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5 6 7 8

1 2 3 4

Figure 1. The poset P (8, 2).

Proof. By Lemma 2.13, we see that i ≺ j if and only if i < j and the following hold:⌈
2i

n− 1

⌉
+

⌈
2(j − i)
n− 1

⌉
=

⌈
2j

n− 1

⌉
(2) ⌈

i(n− 2)

n− 1

⌉
+

⌈
(j − i)(n− 2)

n− 1

⌉
=

⌈
j(n− 2)

n− 1

⌉
(3)

It is straightforward to verify that these equations hold for the values claimed in the proposition
statement.

To show that no other pairs i < j lead to relations i ≺ j, suppose that 1 ≤ i < j ≤
⌊
n−1

2

⌋
. Then

in (2), we obtain 1 + 1 = 1, which is false. Similarly, if
⌊
n−1

2

⌋
+ 1 ≤ i < j ≤ n− 2, then in (2) we

obtain 2 + 2 = 2, which is again false. �

2.3. Characterizing the Relations in P (λ). While Lemma 2.13 is a reasonable first tool, as
Propositions 2.14 and 2.15 illustrate, in general it is difficult to compute these relations directly.
Thus, we need to create a more sophisticated mechanism through which to study P (λ). In this
section, we establish in Theorem 2.17 a number-theoretic characterization of the relations in P (λ).
Further, Corollary 2.18 provides a particularly simple characterization in the case where each part
of λ is relatively prime to n− 1.

For 0 ≤ i < n− 1, define the non-negative integers rt,i and 0 ≤ st,i < n− 1 by

(4) iλt = rt,i(n− 1) + st,i .

Lemma 2.16. We have i ≺ j in P (λ) if and only if i < j and for every t ∈ {1, . . . , d} we have

(5)
st,i + st,j−i − st,j

n− 1
=

⌈
st,i
n− 1

⌉
+

⌈
st,j−i
n− 1

⌉
−
⌈
st,j
n− 1

⌉
Proof. After adding and subtracting (4) for the values i, j − i, and j, we obtain

(6) rt,i + rt,j−i − rt,j =
−st,i − st,j−i + st,j

n− 1
.

By dividing both sides of (4) by n− 1 and taking the ceiling of both sides, we see that

(7)

⌈
`λt
n− 1

⌉
= rt,` +

⌈
st,`
n− 1

⌉
.

Adding (7) with itself for ` equal to i and j − i, then subtracting the equation with ` = j, and
further applying (6), we obtain⌈

iλt
n− 1

⌉
+

⌈
(j − i)λt
n− 1

⌉
−
⌈
jλt
n− 1

⌉
= rt,i + rt,j−i − rt,j +

⌈
st,i
n− 1

⌉
+

⌈
st,j−i
n− 1

⌉
−
⌈
st,j
n− 1

⌉
=
−st,i − st,j−i + st,j

n− 1
+

⌈
st,i
n− 1

⌉
+

⌈
st,j−i
n− 1

⌉
−
⌈
st,j
n− 1

⌉
.
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Recall that i ≺ j in P (λ) if and only if p(i) + p(j − i) = p(j) if and only if for all t, we have that⌈
iλt
n− 1

⌉
+

⌈
(j − i)λt
n− 1

⌉
−
⌈
jλt
n− 1

⌉
= 0 ,

which by our computation above holds if and only if

st,i + st,j−i − st,j
n− 1

=

⌈
st,i
n− 1

⌉
+

⌈
st,j−i
n− 1

⌉
−
⌈
st,j
n− 1

⌉
.

�

Theorem 2.17. Let λ be a partition of n. We have i ≺ j in P (λ) if and only if i < j and for each
t ∈ {1, . . . , d}, one of the following holds:

(1) st,i > st,j > 0,
(2) st,i = 0 and st,j = st,j−i, or
(3) st,j = st,i > 0 and sj−i = 0.

Proof. Forward implication: Suppose that i ≺ j in P (λ), and thus by Lemma 2.16 the s-values
satisfy (5). We consider five cases:

• st,i = 0
• st,i > st,j = 0
• st,i = st,j > 0
• st,i > st,j > 0
• st,j > st,i > 0

Case 1: st,i = 0. If st,i = 0, then by (5) we have that

st,j−i − st,j
n− 1

=

⌈
st,j−i
n− 1

⌉
−
⌈
st,j
n− 1

⌉
.

Thus
st,j−i − st,j
n− 1

is equal to an integer, and the fact that 0 ≤ st,` < n−1 implies that st,j−i−st,j = 0.

Thus, we must have st,j−i = st,j . This establishes the second condition in the theorem statement.
Case 2: st,i > st,j = 0. In this case, (5) implies

st,i + st,j−i
n− 1

=

⌈
st,i
n− 1

⌉
+

⌈
st,j−i
n− 1

⌉
.

Thus
st,i + st,j−i
n− 1

is an integer, and again since 0 ≤ st,` < n− 1 and 0 < st,i < n− 1 we have that

Thus, it is impossible to have st,i > st,j = 0.
Case 3: st,i = st,j > 0. In this case, (5) implies

st,j−i
n− 1

=

⌈
st,j−i
n− 1

⌉
.

This forces st,j−i = 0, resulting in the third condition in the theorem statement.

Case 4: st,i > st,j > 0. In this case, (5) implies
st,i + st,j−i − st,j

n− 1
is equal to an integer, and

the fact that every 0 ≤ st,` < n − 1 implies this integer is 0 or 1. Since n − 1 > st,i − st,j > 0, we

must have
st,i + st,j−i − st,j

n− 1
= 1, and also the right-hand side of (5) is equal to 1. Thus, the first

condition in the theorem statement is possible if i ≺ j.
Case 5: st,j > st,i > 0. Following the same logic as in the previous case, we must have

st,i + st,j−i − st,j
n− 1

= 0 and thus st,j−i 6= 0. But then the right-hand side of (5) is equal to 0

while the right-hand side is equal to 1, a contradiction.
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Reverse implication: We verify that each of the three conditions listed in the theorem statement
imply that (5) is valid.

First, by equation (6) we have
st,i + st,j−i − st,j

n− 1
∈ Z. Combining n − 1 > st,i > st,j > 0

and the general bounds 0 ≤ st,` < n − 1 for all `, it follows that
st,i + st,j−i − st,j

n− 1
= 1. Thus,

st,i + st,j−i − st,j = n − 1. Since n − 1 > st,i − st,j > 0, we have st,j−i = n − 1 − (st,i − st,j) > 0,
and thus ⌈

st,i
n− 1

⌉
+

⌈
st,j−i
n− 1

⌉
−
⌈
st,j−i
n− 1

⌉
= 1 .

We conclude that equation (5) holds.
Second, if st,i = 0 and st,j = st,j−i, then it is immediate that (5) holds.
Finally, if st,j = st,i > 0 and sj−i = 0, then again it is immediate that (5) holds. �

The following corollary illustrates a special case of Theorem 2.17 that we will focus on in the
remainder of this paper.

Corollary 2.18. Let λ be a partition of n where each coordinate is coprime to n− 1, i.e. gcd(n−
1, λt) = 1. Then i ≺ j in P (λ) if and only if st,i > st,j > 0 for every t.

Proof. If gcd(n − 1, λt) = 1, then st,i 6= 0 for all i. Thus, the second and third conditions in
Theorem 2.17 do not apply. �

Remark 2.19. Ehrhart-theoretic properties of simplices ∆λ that satisfy the relatively prime con-
dition in Corollary 2.18 have been previously studied by Hibi, Higashitani, and Li [12, Section
3].

We can use Corollary 2.18 to prove the following structural result regarding P (λ) in the case
where each part of λ is coprime to n− 1.

Theorem 2.20. Let λ be a partition of n such that each λt is coprime to n − 1. Then P (λ) is
self-dual.

Proof. We claim that ϕ : x→ n− 1− x for x ∈ [n− 2] is an order-reversing poset isomorphism. It
is clear that ϕ is a bijection. To see that ϕ is order-reversing, observe that by Corollary 2.18, we
have that i ≺ j if and only if

(8) st,i > st,j for all t .

Due to the fact that gcd(n − 1, λt) = 1, we have that st,i + st,n−i−i = n − 1 for all i and t, and
thus (9) holds if and only if

(9) st,n−1−j > st,n−1−i for all t .

This final condition holds if and only if n− 1− j ≺ n− 1− i, as desired. �

3. Experimental Results

3.1. Exhaustive search of ∆λ over all partitions of n. The results in Section 2, particularly
Theorem 2.17 and Corollary 2.18, provide explicit tools for studying the relations in P (λ). Also,
Corollary 2.18 and Theorem 2.20 demonstrate that the condition that the parts of λ be relatively
prime to

∑
i λi − 1 imposes additional structure on P (λ), leading us to the following definitions.

Given a partition λ of n, if gcd(λi, n − 1) = 1 for all i, we say λ satisfies the relatively prime
condition. Let Part(n) denote the set of partitions of n, and let part(n) := |Part(n)|. Let
Relprime(n) denote the set of partitions of n that satisfy the relatively prime condition, and set
relprime(n) := |Relprime(n)|. Finally, let Rpac(n) denote the subset of Relprime(n) for which ∆λ

is an antichain simplex, and set rpac(n) := |Rpac(n)|.
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Using SageMath [19] via CoCalc.com [16], we computed part(n), relprime(n), and rpac(n) for
all 1 ≤ n ≤ 73; the results are given in the table in Appendix A. Figure 2 plots the ratio
relprime(n)/part(n) for these values, and Figure 3 plots the ratio rpac(n)/relprime(n).

10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1

Figure 2. The ratio
relprime(n)/part(n) for 1 ≤ n ≤
73.

0 10 20 30 40 50 60 70

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 3. The ratio
rpac(n)/relprime(n) for 1 ≤ n ≤
73.

What follows are some observations regarding this experimental data.

(1) Figure 3 shows that regardless of the total value of relprime(n), the ratio rpac(n)/relprime(n)
appears to be generally above 0.8 and as n grows it is clustering between 0.85 and 0.95.
Thus, these experiments suggest that when λ satisfies the relatively prime condition, it is
likely that ∆λ is antichain.

(2) Figure 2 shows that when n−1 is not prime or the square of a prime, the ratio relprime(n)/part(n)
appears to be small, and thus our consideration of the relatively prime condition does not
broadly apply to partitions in this case. However, it is immediate that when n− 1 is prime,
every partition of n except for 1 + (n− 1) satisfies the relatively prime condition, and thus
rpac(n)/relprime(n) = rpac(n)/(part(n) − 1). Thus, it appears that one likely source of
antichain simplices are those ∆λ for which n− 1 is prime.

(3) In Figure 3, the values of rpac(n)/relprime(n) for n ≥ 13 that lie on the upper hull of
the data plot arise from n in {13, 19, 31, 43, 61, 67, 73}. These are all prime numbers, and
an OEIS [1] search finds that these values arise in three known sequences, including the
sequence A040047 of those primes p such that x3 = 6 has no solution mod p.

(4) Again in Figure 3, the values of rpac(n)/relprime(n) for 70 ≥ n ≥ 20 that lie on the lower
hull of the data plot arise from n in {20, 26, 32, 38, 44, 50, 62, 68}. These values are all of
the form 6k + 2, though whether by coincidence or mathematics it is not clear.

(5) When n − 1 is a superabundant (OEIS A004394) or highly composite (OEIS A002182)
number, one might expect to see particularly low numbers of relatively prime antichain
simplices, which is supported by the data given in Appendix A.

At this time, the authors do not have an explanation for why the ratio rpac(n)/relprime(n)
appears to be clustering as n grows, leading to the following problems.

Problem 3.1. Determine if there is a limiting value to which the sequence rpac(n)/relprime(n)
converges as n increases. Alternatively, determine if there are any connections between a liminf or
limsup value for rpac(n)/relprime(n) and the values of n corresponding to subsequences achieving
those values, as hinted at in the observations above.

3.2. Random sampling of simplices with one non-trivial column in Hermite normal
form. It is worthwhile to compare the results for our restricted ∆λ simplices to arbitrary simplices
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with Hermite normal form given by
0 1 0 · · · 0 a1

0 0 1 · · · 0 a2
...

...
...

. . .
...

...
0 0 0 · · · 1 ad−1

0 0 0 · · · 0 n


where for i = 1, . . . , d − 1 we have 0 ≤ ai < n. We will call a simplex of this form a one-column
(n,d) Hermite normal form simplex. Let OCH(n, d) denote the family of one-column (n, d) Hermite
normal form simplices, and let

OCH+(n, d) := {A ∈ OCH(n, d) : 1 ≤ ai < n for all i} .

Thus, OCH+(n, d) contains those simplices in OCH(n, d) that are not obviously arising as lattice
pyramids over simplices of smaller dimension.

There are (n − 1)d−1 simplices in OCH+(n, d). For 67 random choices (uniform without re-
placement) of (n, d) ∈ {3, . . . , 20} × {3, . . . , 20}, we selected n3 random samples from OCH+(n, d)
and computed the resulting fraction f(n, d) of antichain simplices in this sample. We plotted the
points (n/d, f(n, d)) in Figure 4. It is particularly interesting that when d is large relative to n,
the percentage of antichain simplices among those sampled appears to be close to 1, leading to the
following problem.

Problem 3.2. Fix n ≥ 2. Is it true that the fraction of antichain simplices in OCH+(n, d) goes

to 1 as d→∞? Alternatively, let acn(d) denote the fraction of

d⋃
j=3

OCH+(n, j) that are antichain

simplices; what is the liminf of acn(d) as d→∞?

Figure 4. For 67 random choices (uniform without replacement) of (n, d) ∈
{3, . . . , 20}×{3, . . . , 20}, we plot the point (n/d, f(n, d)) where f(n, d) is the fraction
of antichain simplices among n3 random samples from OCH+(n, d).

4. Partitions With a Small Number of Parts

Rather than consider all partitions of n as we did for our experimental data, in this section we
consider ∆λ for λ having only one or two distinct parts. The results in this section illustrate the
complications involved in computing P (λ) even in relatively “simple” cases for λ that satisfy the
relatively prime condition.
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4.1. Partitions With One Distinct Part. When λ = (x, x, . . . , x) has v occurrences of x, it is
immediate that x is coprime to n− 1 = vx− 1. In this case, P (λ) has a direct interpretation as a
subposet of Z2.

Theorem 4.1. For λ = (x, x, . . . , x) with v occurrences of x, we have that P (λ) is isomorphic to
the poset with elements

{(r, p) : 0 ≤ r < x, 0 ≤ p < v} \ {(0, 0), (x− 1, v − 1)}

and order relation (r, p) ≺ (r′, p′) if both p > p′ and r′ > r.

Proof. For 1 ≤ i ≤ vx− 2, write

i = riv + pi

where 0 ≤ ri < x and 0 ≤ pi < v, but we do not have simultaneously ri = x − 1 and pi = v − 1.
Then

si = ix−
⌊

ix

xv − 1

⌋
(xv − 1)

= x(riv + pi)−
⌊

(riv + pi)x

xv − 1

⌋
(xv − 1)

= xriv + xpi −
⌊
xriv − ri + ri + pix

xv − 1

⌋
(xv − 1)

= xriv + xpi −
(
ri +

⌊
ri + pix

xv − 1

⌋)
(xv − 1)

= ri + xpi −
⌊
ri + pix

xv − 1

⌋
(xv − 1)

= ri + xpi

where the final equality is a result of the bounds on ri and pi forcing the floor function to be zero.
Thus, if i = riv + pi and j = rjv + pj , then we have i ≺ j in P (λ) if and only if i < j and si > sj ,
which happens if and only if the following two conditions simultaneously occur:

• pi > pj or pi = pj with ri > rj
• rj > ri or rj = ri with pj > pi

The only way for both conditions to simultaneously occur is to have pi > pj and rj > ri, and thus
our proof is complete. �

The following corollary follows immediately.

Corollary 4.2. The posets for λ = (x, x, . . . , x) where x occurs v times and λ′ = (v, v, . . . , v) where
v occurs x times are isomorphic.

Corollary 4.2 is interesting because the two lattice simplices corresponding to λ and λ′ are in
different dimensions. As an aside, we remark that the order on the lattice points within a rectangular
grid given in Theorem 4.1 corresponds to the reflexive closure of the direct product of two strict
total orders.

Example 4.3. Figures 5 and 6 show the Hasse diagrams of the posets P (4, 4, 4, 4, 4, 4) and P (6, 6, 6, 6),
respectively, embedded in Z2 as described in Theorem 4.1. This illustrates the isomorphism ob-
tained by switching the roles of x and v.
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Figure 5. P (4, 4, 4, 4, 4, 4).

Figure 6. P (6, 6, 6, 6).

4.2. Partitions With Two Distinct Parts. The situation for λ with two distinct parts is sig-
nificantly more complicated than for one distinct part. Rather than consider arbitrary pairs of
distinct parts for λ, we will consider the special case where one of the parts is a multiple of the
other. Our main result of this subsection is Theorem 4.6, and we give an example illustrating how
it can be applied to construct our posets. Specifically, we use the following setup.

Setup 4.1. Let λ = (x, . . . , x, ax, . . . , ax) with 3 ≤ a ≤ x where the multiplicity of x is ua+ v and
the multiplicity of ax is v − (u+ 1). This places an implicit restriction on the values of u and v as
follows:

0 ≤ u ≤ a− 3

u+ 2 ≤ v ≤ min

(
a− 1,

a(x− 1)

x

)
.

Let n = |λ|, so that

(10) n− 1 = x[(a+ 1)(v − 1) + 1]− 1 = (xa(v − 1)) + xv − 1 .

For 0 ≤ i ≤ n− 2, define as usual

s1,i := ix− (n− 1)

⌊
ix

n− 1

⌋
and s2,i := iax− (n− 1)

⌊
iax

n− 1

⌋
.

As in the proof of Theorem 4.1, our analysis will require us to represent i as a quotient with
remainder. In this case, we will use a combination of two quotients-with-remainder from applying
the division algorithm twice. Observing that n/x = (a+ 1)(v − 1) + 1, we write 0 ≤ i ≤ n− 2 as

(11) i =
n

x
ri + (v − 1)pi + qi

subject to the following inequalities:

(12) 0 ≤ ri < x

with

0 ≤ (v − 1)pi + qi < n/x = (a+ 1)(v − 1) + 1 ,

and

(13) 0 ≤ pi < a+ 2
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with

(14) 0 ≤ qi < v − 1 ,

where pi = a+ 1 implies qi = 0.
Our first goal is to express s1,i and s2,i as explicit functions of ri, pi, qi, x, a, and v.

Lemma 4.4. s1,i = ri + x
[
(v − 1)pi + qi

]
.

Proof. By (11), since ix = nri + x
[
(v − 1)pi + qi

]
, we have that

s1,i = nri + x
[
(v − 1)pi + qi

]
− (n− 1)

⌊
nri + x

[
(v − 1)pi + qi

]
n− 1

⌋

= ri + x
[
(v − 1)pi + qi

]
− (n− 1)

(
−ri +

⌊
nri + x

[
(v − 1)pi + qi

]
n− 1

⌋)

= ri + x
[
(v − 1)pi + qi

]
− (n− 1)

⌊
ri + x

[
(v − 1)pi + qi

]
n− 1

⌋
.

Observe that equations (10), (14), (13), and (12) imply that

0 ≤ ri + x
[
(v − 1)pi + qi

]
≤ x− 1 + x(a+ 1)(v − 1) = n− 1 ,

with equality only if ri = x− 1 and pi = a+ 1 simultaneously. But in this case, we have that

ix = (x− 1)n+ x(a+ 1)(v − 1) = (n− 1)x ,

a contradiction with i ≤ n − 2. Thus the right hand floor term is zero in our expression for s1,i,
and the result follows. �

Define the function

f(i) := ari − (xv − 1)pi + xaqi ,

and associated set partition [n− 2] = ]kFk given by

Fk :=

{
i : k = −

⌊
f(i)

n− 1

⌋}
.

Lemma 4.5. If i is in Fk, then s2,i = f(i) + k(n− 1).

Proof. Observe that
s2,i

n− 1
=

{
iax

n− 1

}
.

Further, notice that using (10) we have

axi− f(i) = axi− (ari − (xv − 1)pi + xaqi)

= a(n− 1)ri + pi(ax(v − 1) + (xv − 1))

= (n− 1)(ari + pi) ,

an integer multiple of n− 1, so that {
iax

n− 1

}
=

{
f(i)

n− 1

}
.

It follows that

s2,i = (n− 1)

(
f(i)

n− 1
−
⌊
f(i)

n− 1

⌋)
= f(i) + k(n− 1) .

since i ∈ Fk. �
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Theorem 4.6. Suppose that n − 1 is coprime to both x and a, and let ` ∈ Z. If i ∈ Fk and
j ∈ Fk+`, then i ≺ j if and only if (pj − pi, qj − qi, rj − ri) lies in the open polyhedral cone defined
by Cx > (`(n− 1), 0, 0)T , where C is the matrix

C :=

xv − 1 −ax −a
1− v −1 0

0 0 1

 .
Proof. Summarizing our results from the above lemmas,

(1) i < j if and only if ri < rj or ri = rj and (v − 1)pi + qi < (v − 1)pj + qj .

(2) s1,i > s1,j if and only if ri− rj > x
[
(v− 1)(pj − pi) + (qj − qi)

]
. If i < j, then ri− rj < 0 or

ri − rj = 0 and (v− 1)(pj − pi) + qj − qi > 0. Since −(x− 1) ≤ ri − rj ≤ x− 1, we see that
for i < j, we have s1,i > s1,j if and only if ri < rj and

[
(v − 1)pi + qi

]
>
[
(v − 1)pj + qj

]
.

(3) If i is in Fk and j is in Fk+`, then s2,i > s2,j if and only if f(i) > f(j) + `(n− 1), i.e., if and
only if (xv − 1)(pj − pi)− ax(qj − qi) + a(rj − ri) > `(n− 1).

Notice that these conditions correspond to affine half-spaces and are simultaneously satisfied
exactly when (pj − pi, qj − qi, rj − ri) ∈ Z3 lies in the open polyhedral cone defined by the matrix
equation Cx > (`(n− 1), 0, 0)T . �

The following proposition shows that there are a limited number of values of k for which Fk is
non-empty.

Proposition 4.7. [n− 2] = F0 ] F1 ] F2

Proof. We show that −2(n− 1) < f(i) < n− 1 for every i ∈ [n− 2], from which the result follows.
To prove −2(n − 1) < f(i), we observe the following, using equations (12), (14), and (13) for the
first inequality and the fact that (by definition) v ≥ 2 and a ≥ 1 for the second inequality:

f(i) + 2(n− 1) = ari − pi(xv − 1) + xaqi + 2(xa(v − 1) + xv − 1)

= a(ri + xqi + 2x(v − 1))− (xv − 1)(pi − 2)

≥ a(2x(v − 1))− (xv − 1)(a− 1)

= (v − 2)ax+ xv + a− 1

≥ 0

To prove the f(i) < n−1, we observe that using the same inequalities as before together with (10)
we have:

n− 1− f(i) = n− 1− ari + (xv − 1)pi − xaqi
≥ n− 1− a(x− 1)− xa(v − 2)

= xa(v − 1) + xv − 1− a(x− 1)− xa(v − 2)

= a− 1 + xv

≥ 0

�

To illustrate Theorem 4.6 in a specific application, let v = 2, so that λ = (x, x, ax) ∈ Z3. Thus,
n = x(a+ 2) and i = (a+ 2)ri + pi, with 0 ≤ pi < a+ 2, and qi = 0 for all i. In this case, Theorem
4.6 is equivalent to i ≺ j if and only if i ∈ Fs, j ∈ Fs+`, and2x− 1 −ax −a

−1 −1 0
0 0 1

pj − pi0
rj − ri

 =

(2x− 1)(pj − pi)− a(rj − ri)
pi − pj
rj − ri

 >
`(n− 1)

0
0

 .
The following two propositions are used in Example 4.10 that follows.
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Proposition 4.8. For v = 2,

ri + rn−1−i = x− 1 and pi + pn−1−i = a+ 1.

Proof. Notice that

n = i+ (n− i− 1) + 1

= (a+ 2)(ri + rn−1−i) + pi + pn−1−i + 1

= (a+ 2)x,

so that

x = (ri + rn−1−i) +
pi + pn−1−i + 1

a+ 2
.

Since x is an integer, this implies that (pi + pn−1−i) mod (a + 2) ≡ a + 1 and pi + pn−1−i =
a+ 1 + k(a+ 2). Since 0 ≤ pj < a+ 2, the result follows. �

Proposition 4.9. For v = 2,

i ∈ Fs if and only if n− 1− i ∈ F2−s.

Proof. Since by definition i ∈ Fs if and only if

s = −
⌊
ari − (2x− 1)pi)

n− 1

⌋
,

the proposition is equivalent to the claim that

−
⌊
ari − (2x− 1)pi

n− 1

⌋
−
⌊
arn−1−i − (2x− 1)pn−1−i

n− 1

⌋
= 2.

Using the previous proposition and some tedious but straightforward algebra, we have that

−
⌊
ari − (2x− 1)pi

n− 1

⌋
−
⌊
arn−1−i − (2x− 1)pn−1−i

n− 1

⌋
= −

⌊
ari − (2x− 1)pi

n− 1

⌋
−
⌊
a(x− 1− ri)− (2x− 1)[(a+ 1)− pi]

n− 1

⌋
= −

⌊
ari − (2x− 1)pi

n− 1

⌋
−
⌊
−(n− 1)− [ari − (2x− 1pi]

n− 1

⌋
= −

⌊
ari − (2x− 1)pi

n− 1

⌋
+

⌈
(n− 1) + [ari − (2x− 1)pi]

n− 1

⌋
= 1 +

(⌈
ari − (2x− 1)pi

n− 1

⌋
−
⌊
ari − (2x− 1)pi

n− 1

⌋)
,

so that unless ari − (2x− 1)pi is a multiple of (n− 1), the claim holds.
Let ari − (2x − 1)pi equal k(n − 1); we will show that k is not an integer. Observe that pi =

i− (a+ 2)ri (by definition) and that n = x(a+ 2). We obtain

k(n− 1) = ari − (2x− 1)pi

= ari − (2x− 1)(i− (a+ 2)ri)

= ri[a+ (2x− 1)(a+ 2)]− (2x− 1)i

= ri[2x(a+ 2)− 2]− (2x− 1)i

= 2ri(n− 1)− (2x− 1)i,
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so that

k = 2ri −
(2x− 1)i

n− 1

= 2ri − i
(n− 1)− ax

n− 1

= 2ri − i+
iax

n− 1
.

Since we assume that both a and x are relatively prime to n− 1 and i is less than n− 1, k is not
an integer. �

We next give an example to demonstrate how to use our results to construct P (x, x, ax).

Example 4.10. Let a = x = 3, so that n − 1 is equal to 14, and note that this is relatively prime
to 3. Since i is in F0 if and only if ari ≥ (2x− 1)pi, we draw the elements of P (3, 3, 3 · 3) r {0} in
the plane as shown in Figure 7, where the diamonds correspond to elements of F0 and the triangles
correspond to elements of F2.

pi

ri

2

1

0

10 2 3 4

Figure 7. Constructing the
poset P (3, 3, 9).

pj − pi = 0

rj − ri = 0

3(rj − ri) = 14 + 5(pj − pi)

Figure 8. Relations in P (3, 3, 9)
for ` = −1

If i ∈ Fs and j ∈ Fs+1, then i ≺ j if and only if the point (pj − pi, rj − ri) is among the three
points in Figure 8. For example, we see that for i = 1, i ≺ j if and only if (pj −pi, rj − ri) is among
the points (−1, 1), (−1, 2), and (−2, 1). The only suitable values of j are 5 and 10. The induced
relations in P (3, 3, 9) r {0} are depicted in Figure 9.

Figure 9. Constructing relations.

For ` = −2 one can construct a similar but larger diagram as shown in Figure 8, which leads to
the additional relations given in Figure 10. Combining these leads to our construction of the poset
P (3, 3, 9), depicted in Figure 11.
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Figure 10. Constructing addi-
tional relations.

10 11 12 13

5 6 7 8 9

4321

0

Figure 11. The poset P (3, 3, 9).

5. Algebraic Implications

In this section, we discuss the algebraic implications of our analysis of the fundamental paral-
lelepiped poset. Our main result is Theorem 5.5 showing that the Poincaré series for the semigroup
algebra associated to an antichain simplex is rational. Unlike previous work of the authors [5] es-
tablishing rationality of Poincaré series for lattice simplex semigroup algebras, our proof technique
in this work involves the bar resolution.

5.1. A Review of Resolutions and Poincaré Series. For all background regarding graded
resolutions of algebras, see Peeva’s book [15]. Recall that the semigroup (Λ,+) associated to a
d-simplex ∆ is the intersection Λ := cone(∆) ∩ Zd+1 with + given by the usual coordinate-wise
addition on Zd+1. The semigroup algebra K[Λ] associated to a semigroup Λ ⊂ Zd+1 is the K vector
space with basis {eα}α∈Λ equipped with the product eα · eβ = eα+β. For K a field, a K-algebra R
is called graded with respect to Zn if it can be written as a direct sum

R =
⊕
α∈Zn

Rα,

where for x ∈ Rα and y ∈ Rβ, we have that x · y ∈ Rα+β. It is immediate that K[Λ] is a

Zd+1–graded K–algebra. It is common to “coarsen” the grading of K[Λ] by considering it to be a
Z-graded algebra with grading given by the zeroth coordinate of its Zd+1–grading.

In this context, the seemingly arbitrary definition of the cone over a simplex ∆ is shown to be
natural and helpful by the following observation. For a point x = (x0, x1, . . . , xd) in Rd+1, we define
the height of x to be height(x) = x0. Letting Xn denote the collection of points x ∈ Rd+1 with
height equal to n, we have the set equality

Xn ∩ cone(∆) = {(n, n · x) ∈ Rd+1 such that x ∈ ∆}.
Observe that the set Zd+1 ∩Xn ∩ cone(∆) is in bijection with the set of lattice points of n∆ (by
dropping the zeroth coordinate). Thus, the coarsened grading of K[Λ] corresponds to the height
function in the cone.

We need to consider complexes of vector spaces in order to define free resolutions of K-algebras.
Given a collection of vector spaces {Fi}i∈Z≥0

, together with linear maps ∂i from Fi to Fi−1, we call
the sequence

F : F0
∂1←− F1

∂2←− · · · ∂i←− Fi
∂i+i←−− Fi+1

∂i+2←−−− · · ·
a complex of vector spaces if the image of ∂i+1 is contained in the kernel of ∂i for all i ≥ 1. The
i’th homology of the complex F is the quotient vector space Hi(F ) := ker ∂i/im∂i+1. Let M be
a finitely generated graded module over R, Fi be a free R-module and ∂i be a graded R-module
homomorphism such that the image of ∂i+1 is equal to the kernel of ∂i for all i ≥ 1. Then the
complex F is a free resolution of M over R if M ∼= F0/im∂1. Because it is graded, we may split
the free resolution F into a direct sum of K vector space complexes by writing each Fi as a direct
sum

⊕
α∈Zn Fi,α.
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For (F, ∂) a complex of free R-modules, we can define a tensor complex (M ⊗ F, Id ⊗ ∂). If F
is a graded free resolution of M , the Betti number βRi,α(M) of a graded R-module M is the vector
space dimension of the i’th homology of the graded component of K ⊗ F of degree α. This leads
to our primary object of interest.

Definition 5.1. The Poincaré series PMR (z; t) is the ordinary generating function for the Betti
numbers of the R-module M , i.e.,

PMR (z; t) =
∑
α∈Zn

∑
i≥0

βRi,α(M)zitα.

In the case that R is a polynomial ring in n variables, the Hilbert Syzygy Theorem says that the
Poincaré series PMR (z; t) is a polynomial for any finitely generated R-module M . However, when
R is not a polynomial ring, the growth of the Betti numbers is not so simple — the Poincaré series
may not even be rational.

5.2. Rational Poincaré Series. We call a Zn-graded algebra R connected if R0
∼= K (as in the

case of a semi-group ring K[Λ] associated to a lattice simplex ∆). By a slight abuse of notation,
we write

m :=
⊕
α∈Λ\0

Rα and K ∼= R/m

as R-modules. It has been shown [11] that if the Poincaré series for the ground field K as an R-
module is rational for all R, then the Poincaré series is rational for any finitely generated module.
Hence the question of Serre-Kaplansky:

Question 5.1. Is the Poincaré series of the ground field K over R rational for all K-algebras R?

This question was answered in the negative by Anick [2], and much subsequent work has focused
on determining the properties of R that lead to rationality or irrationality. Our interest is in the
rationality of the Poincaré series for K[Λ], which leads us to define a related algebra as follows.

Because K[Λ] is finitely generated (by its Hilbert basis H given in Definition 2.2) it has a
presentation

(15) 0→ kerϕ→ K[V0, . . . , Vd, x1, . . . , xm]
ϕ−→ K[Λ]→ 0,

where the map ϕ is defined by the image of variables: the image of Vi is the vector space basis
element e(1,vi) associated with the Hilbert basis element (1, vi) in Λ, and the image of xi is ehi
where the hi are the remaining elements of the Hilbert basis. This defines a surjective degree map
deg(·) from the set of monomials of K[V1, . . . , Vd+1, x1, . . . , xm] onto Λ by

deg
(∏

V si
i ·

∏
x
rj
j

)
=
∑

si(1, vi) +
∑

rjhj .

Extending deg(·) K-linearly, we see that kerϕ is the toric ideal I generated by all binomials

VuV xux −VwV xwx

such that deg (VuV xux) = deg(VwV xwx).

Definition 5.2. The Fundamental Parallelepiped Algebra FPA(∆) associated with the simplex ∆
may be constructed in two ways; firstly as the quotient

K[V0, . . . , Vd, x1, . . . , xm] / kerϕ+
(
V0, . . . , Vd

)
,

and secondly as the algebra with K vector space basis{
eσ such that σ ∈ Zd+1 ∩Π∆

}
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and with multiplication given by

eσ · eµ =

{
eσ+µ if σ + µ ∈ Zd+1 ∩Π∆, and

0 otherwise.

One inspiration for defining this algebra is the fact that, due to an argument presented earlier,
every element of Λ may be written uniquely as a non-negative sum of points (1, vi) and a single
point in Π∆. Because the generators e(1,vi) form a linear system of parameters for K[Λ], we have
the following result which follows from [3, Prop. 3.3.5].

Theorem 5.3. For the Z-graded algebra K[Λ], we have the following equality:

PKK[Λ](z; t) =
∏
i

(
1 + zt(1,vi)

)
· PKFPA(∆)(z; t)

= PKK[V0,...,Vd](z; t) · P
K
FPA(∆)(z; t).

5.3. Bar Resolutions and Antichain Simplices. We will use the Bar resolution of K, with K
as a module over a graded K-algebra, which is a standard construction. In the definition we use
the bar symbol | to mean a tensor over K, and reserve the tensor symbol ⊗ to mean a tensor over
the ring under consideration.

Definition 5.4. The Bar resolution B of the module K over the Zn-graded K algebra FPA(∆) has
graded components [Bi]α with vector space basis given by δ0 | · · · | δi such that δ0 is in Π∆, each δj
is in Π∆ r {0} (for j ≥ 1), and

∑i
j=0 δj = α. The differential map ∂i acts by sending δ0 | · · · | δi to

the sum
i−1∑
j=0

(−1)jδ0 | · · · | δj−1 | δj + δj+1 | δj+2 | · · · | δi

in Bi−1.

Recall that in order to compute the Betti number βi,α we must compute homology in the tensor
complex B := K ⊗ B. Because we identify K with the vector sub-space R0 with basis e0, we see
that [Bi]α is generated as a vector space by the collection {e0 ⊗ δ0 | δ1 | · · · | δi}. Observe that unless
δ0 is equal the point 0 in Λ, the product e0⊗ δ0 is equal to zero, since for σ not equal to zero, e0 ·eσ
is equal to zero in the module K, and hence

e0 ⊗ eσ = e0 · eσ ⊗ e0 = 0⊗ e0 = 0.

Consequently, for i ≥ 1, [Bi]α has a vector space basis in bijection with the collection of δ1 | · · · | δi
such that each δj is in Π∆ r {0} and

∑i
j=1 δj = α. We further have that [B0]α is the trivial vector

space unless α is zero in Λ, and that [B0]0 is isomorphic to K.
For a unimodular simplex ∆, it is clear that the FPA(∆) is one-dimensional as a K vector space,

and has basis e0. Consequently, [Bi]α has empty basis (and dimension zero) unless α is equal to
zero in Λ and i = 0. It follows that the complex B is given by

0← K ← 0← 0← · · ·

and that

βi,α =

{
1 if i = 0 and α = 0,

0 otherwise.

Thus, PKFPA(∆)(z; t) = 1. The result is consistent with the fact that K[Λ] is a polynomial ring in

the case that ∆ is unimodular.
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In the case of an antichain simplex, the differential map is uniformly zero, since eδj · eδj+1
equals

zero for all j. Further, βi,α is equal to the dimension of [Bi]α. By considering the recurrence (for
large i and α)

dimK [Bi]α =
∑

σ∈P(∆)
σ 6=0

dimK [Bi]α−σ,

we obtain the following.

Theorem 5.5. For an antichain simplex ∆, we have

PKFPA(∆)(z; t) =

 1−
∑

σ∈P(∆)
σ 6=0

ztσ


−1

,

and thus the Poincaré series is rational.
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C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 16, A729–A732. MR 577145
3. Luchezar L. Avramov, Infinite free resolutions, Six lectures on commutative algebra, Mod. Birkhäuser Class.,
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Appendix A. Experimental Data

n rpac(n) relprime(n) part(n)

1 1 1 1
2 2 2 2
3 2 2 3
4 3 4 5
5 3 3 7
6 7 10 11
7 3 3 15
8 15 21 22
9 7 8 30
10 17 22 42
11 8 8 56
12 58 76 77
13 7 7 101
14 103 134 135
15 18 21 176
16 45 56 231
17 33 38 297
18 316 384 385
19 15 16 490
20 513 626 627
21 36 41 792
22 180 215 1002
23 78 89 1255
24 1317 1574 1575
25 31 34 1958
26 1169 1414 2436
27 148 170 3010
28 750 874 3718
29 143 162 4565
30 4779 5603 5604
31 26 28 6842
32 7050 8348 8349
33 392 448 10143
34 1675 1951 12310
35 478 539 14883
36 4850 5625 17977
37 115 126 21637
38 22109 26014 26015
39 816 918 31185
40 4410 5047 37338
41 433 481 44583
42 45819 53173 53174
43 104 112 63261
44 64731 75174 75175
45 1362 1522 89134
46 4192 4747 105558
47 2202 2468 124754
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48 129242 147272 147273
49 365 399 173525
50 106948 123165 204226
51 1233 1362 239943
52 24641 27874 281589
53 3597 3986 329931
54 339300 386154 386155
55 623 679 451276
56 128590 145176 526823
57 3426 3781 614154
58 54230 60927 715220
59 8575 9496 831820
60 864231 966466 966467
61 302 324 1121505
62 1146930 1300155 1300156
63 13151 14458 1505499
64 55541 61850 1741630
65 16496 18200 2012558
66 522255 586074 2323520
67 1012 1091 2679689
68 2761384 3087734 3087735
69 20580 22503 3554345
70 234794 261034 4087968
71 3040 3287 4697205
72 4875893 5392782 5392783
73 2715 2931 6185689


