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Abstract. We study the ramification divisors of projections of a smooth projective

variety onto a linear subspace of the same dimension. We prove that the ramification

divisors vary in a maximal dimensional family for a large class of varieties. Going further,

we study the map that associates to a linear projection its ramification divisor. We

show that this map is dominant for most (but not all!) varieties of minimal degree,

using (linked) limit linear series of higher rank. We find the degree of this map in some

cases, extending the classical appearance of Catalan numbers in the geometry of rational

normal curves, and give a geometric explanation of its fibers in terms of torsion points

of naturally occurring elliptic curves in the case of the Veronese surface and the quartic

rational surface scroll.

1. Introduction

Let f : X−→Y be a map between smooth algebraic varieties. A fundamental object

associated to f is the set R(f) ⊂ X consisting of critical points of f , namely the points

x ∈ X at which df : TxX−→Tf(x)Y has less than maximal rank. One might ask: To what

extent can f be recovered from R(f)? For example, does every non-trivial perturbation

of f induce a non-trivial perturbation of R(f)? If this is the case, then how many other

g : X−→Y have R(g) = R(f)? The goal of this paper is to better understand these

questions when X is a smooth projective variety and Y is a projective space of the same

dimension as X.

More precisely, let X ⊂ Pn be a smooth projective variety of dimension r, not contained

in a hyperplane. A general (n− r − 1)-dimensional linear subspace L ⊂ Pn defines a finite

surjective map X−→Pr. The set of critical points of this map is the ramification divisor

R(L) ⊂ X. By the Riemann–Hurwitz formula, R(L) lies in the linear series |KX+(r+1)H|,
where KX is the canonical class, and H is the hyperplane class on X. The association

L R(L) gives a rational map

ρ : Gr(n− r, n+ 1) 99K |KX + (r + 1)H|.

In terms of ρ, we can formulate questions more precisely. Knowing the behavior of the

ramification locus under a perturbation is equivalent to knowing whether the map ρ

is generically finite, or equivalently, whether the image of ρ has the maximal possible

dimension. In the literature, this question is known as the question of maximal variation

of the ramification locus. Knowing the number of maps with the same ramification locus

is knowing the degree of ρ. Our main goal is to address these questions.
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1.1. Maximal variation. Although very classical in nature, the question of maximal

variation of ρ first appeared explicitly in the work of Flenner and Manaresi [9] in connection

with the transcendence degree of the Stückrad-Vogel cycle in intersection theory. They

established maximal variation under a geometric condition we call “incompressibility.” We

prove the following more general theorem.

Theorem A. Let X ⊂ Pn be a non-degenerate, normal, projective variety over a field of

characteristic zero. Suppose at least one of the following holds:

(1) (incompressibility) for every linear subspace L ⊂ Pn of dimension (n − r − 1),

projection from L restricts to a dominant rational map X 99K Pr;

(2) (divisorial dual) the dual variety X∗ ⊂ Pn∗ is a hypersurface.

Then ρ is generically finite onto its image.

In the main text, Theorem A is Corollary 3.15.

Recall that the dual variety X∗ ⊂ Pn∗ is the closure of the locus of hyperplanes H ⊂ Pn

such that the intersection of H with the smooth locus of X is singular. We call X ⊂ Pn

satisfying (1) incompressible as it cannot be projected down (compressed) to a smaller

dimensional subvariety by a linear projection. The maximal variation result of [9] obtained

the conclusion of Theorem A assuming incompressibility.

Theorem A substantially increases the class of varieties where we now know maximal

variation. Indeed, it is easy to see that if X is any smooth surface over a field of

characteristic zero, then the dual variety X∗ is a hypersurface. Therefore, maximal

variation holds for all surfaces. Note, in contrast, that not all surfaces are incompressible.

The first counterexample is the cubic surface scroll X ⊂ P4—the projection from the

directrix L ⊂ X projects X onto a P1. Thus, even for surfaces, condition (2) of Theorem A

covers new ground. In general, let X be of arbitrary dimension embedded in Pn by a

sufficiently positive line bundle (for example, by a sufficiently high Veronese re-embedding).

Then X ⊂ Pn is usually not incompressible, but the dual variety X∗ will be a hypersurface.

As a result, X ⊂ Pn is covered by condition (2) of Theorem A.

The hypotheses in Theorem A are sufficient, but not necessary. Indeed, consider

X = Pr−1×P1 ⊂ P2r−1, embedded by the Segre embedding, for r ≥ 3. Then X is neither

incompressible nor is X∗ a hypersurface, and yet ρ is dominant (see Theorem E).

Given that maximal variation holds for a large class of varieties, it is natural to wonder

if it always holds. This is not the case.

Theorem B. There exist smooth, non-degenerate, rational normal scrolls X ⊂ Pn of

every dimension r ≥ 4 and degree d ≥ r + 1 for which the projection-ramification map ρ is

not generically finite onto its image.

In the main text, Theorem B is Corollary 4.6.

The possible existence of varieties for which the projection-ramification map is not

generically finite has been alluded to by Zak [19], and our examples of rational normal
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scrolls in Theorem B are the first known instances. We describe these rational normal

scrolls explicitly; it is worth mentioning that they include scrolls of general moduli.

Having considered the question of maximal variation in general, we turn our attention

to cases where the map ρ has a chance of being dominant. Our next result classifies such

X ⊂ Pn.

Theorem C. Let X ⊂ Pn be a smooth, non-degenerate projective variety of dimension r

over a field of characteristic zero. We have the inequality

dim Gr(n− r, n+ 1) ≤ dim |KX + (r + 1)H|.

Equality holds if and only if X is a variety of minimal degree, that is degX = n− r + 1.

In the main text, Theorem C is Theorem 4.2.

Recall the list of smooth varieties of minimal degree: quadric hypersurfaces, the Veronese

surface in P5, and rational normal scrolls. By Theorem A, ρ is dominant for hypersurfaces

and surfaces, so what remains are the scrolls. Among the scrolls, the curves (rational

normal curves) and surfaces are again covered by Theorem A. For threefold scrolls, we show

by an explicit calculation and a degeneration argument that ρ is dominant (Corollary 4.10).

In higher dimensions, the story is complicated, as evidenced by Theorem B. Nevertheless,

we prove the following.

Theorem D. Let X = PE ⊂ Pn be a rational normal scroll, where E is a ample vector

bundle of rank r on P1, general in its moduli. If degE = a · (r − 1) + b · (2r − 1) + 1 for

non-negative integers a, b, then the projection-ramification map ρ is dominant for X. In

particular, the conclusion holds if E is general of degree at least (r − 1)(2r − 1) + 1.

In the main text, Theorem D is Theorem 5.16.

The proof of Theorem D goes by degeneration. We degenerate X to a reducible variety

X0, namely the projectivization of a vector bundle on a two-component nodal rational

curve. Suppose we could define a projection-ramification map for X0 and show that it

is dominant, then the same holds X, by the upper semi-continuity of fiber dimensions.

Although promising, this line of attack fails with the most näıve definition of the projection-

ramification map. The right definition requires more sophisticated tools, specifically, the

spaces of (linked) limit linear series for vector bundles of higher rank developed by Teixidor

i Bigas [17] and Osserman [15].

1.2. Enumerative problems. Theorem C and Theorem D motivate a natural set of

enumerative questions: for X ⊂ Pn of minimal degree, what is the degree of the projection-

ramification map ρ? We make the convention that if a map is not dominant, then its

degree is 0.

For X of dimension 1, namely a rational normal curve, the answer is easy to find—the

degree of ρ is the Catalan number (2n−2)!
n!(n−1)! . Indeed, in this case, the projection-ramification

map

ρ : Gr(2, n+ 1)−→P2n−2
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is regular, and the pullback of O(1) is the Plücker line bundle. Therefore, the degree of ρ

is the top self-intersection of the Plücker bundle. Schubert calculus gives that this is the

Catalan number.

For X of codimension 1, namely a quadric hypersurface, the projection-ramification map

ρ : Gr(n, n+ 1) = Pn−→Pn∗

is again regular, and is in fact the duality isomorphism induced by the (non-degenerate)

quadric X. In particular, it has degree 1.

The cases of the Veronese surface X ∼= P2 ⊂ P5 and the quartic surface scroll X =

P(O(2) ⊕ O(2)) ⊂ P5 are particularly delightful. In these cases, the fibers of ρ have an

interpretation in terms of 2-torsion points of certain elliptic curves, which we now describe.

For the Veronese surface, the target of ρ is the linear series of cubics in P2. The points of

fiber of ρ over a cubic R ⊂ P2 correspond naturally to the non-trivial 2-torsion points of

PicR. In particular, the degree of ρ is 3. For the quartic surface scroll, the target of ρ

modulo the action of AutX is birational to the moduli space of (R, η) where R is a plane

cubic and η is a non-trivial 2-torsion point of PicR. The points of the fiber of ρ over (R, η)

correspond naturally to the two elements of PicE[2]\π∗ PicR[2], where E−→R is the étale

double cover defined by η. In particular, the degree of ρ is 2. In this case, the source of ρ

(the Grassmannian Gr(3, H0(X,O(1))) modulo the action of AutX) has several known

moduli interpretations. It is birational to the moduli of unordered triplets of unordered

pairs of points on P1, namely M0,6/(S2 × S2 × S2 o S3). This space, in turn, is isomorphic

to the moduli of hyperelliptic curves with a maximal isotropic subspace of the F2-vector

space of 2-torsion points, or equivalently, to the moduli of principally polarized abelian

surfaces with a maximal isotropic subspace of the F2-vector space of 2-torsion points [2,

Example 4.2]. The involution on this space induced by the 2-to-1 map ρ coincides with the

classical Richelot or Fricke involution [2, Remark 4.3]. See Remark 6.6 for more details.

The following result summarizes our knowledge of the degree of ρ.

Theorem E. Let ρ be the projection-ramification map for X ⊂ Pn of minimal degree.

(1) If X ⊂ Pn is a rational normal curve, then ρ is regular and deg ρ = (2n−2)!
n!(n−1)! .

(2) If X ⊂ Pn is a quadric hypersurface, then ρ is an isomorphism; in particular,

deg ρ = 1.

(3) If X = Pr−1 ×P1 ↪→ P2r−1 is the Segre embedding, then deg ρ = 1.

(4) If X ⊂ P5 is the Veronese surface, then deg ρ = 3.

(5) If X ⊂ P5 is a general quartic surface scroll, then deg ρ = 2.

(6) If X = P(OP1(1)⊕OP1(k+1)) ⊂ Pk+3 is the surface scroll with the most imbalanced

splitting type, then deg ρ = 1.

(7) If X = P(OP1(1)⊕ OP1(1)⊕ OP1(k + 1)) ⊂ Pk+5 is the threefold scroll with the

most imbalanced splitting type, then deg ρ = 1.

In the main text, the items in Theorem E are treated in § 6.1, § 6.2, Proposition 5.1,

Proposition 6.1, Proposition 6.7, Proposition 4.11, and Proposition 4.9, respectively.
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1.3. Further remarks. There are two natural enumerative problems regarding finite

coverings of curves. The first problem, originating in the work of Hurwitz, is to compute

the number of branched covers C−→P1 with a specified set of branch points B ⊂ P1.

These Hurwitz numbers are difficult to compute, but they exhibit remarkable structure

[6, 7]. The second problem is to compute the number of maps C−→P1 with a prescribed

set of ramification points R ⊂ C. In fact, it is easy to see that this problem is only

meaningful when C = P1, in which case it is immediately and easily answered by Schubert

calculus, yielding the Catalan numbers.

In higher dimensions, however, the analogue of the Hurwitz problem is expected to

be much less interesting, as evidenced by Chisini’s conjecture (proved by Kulikov [11]).

A branched cover S−→P2 with generic branching is uniquely determined by its branch

divisor B ⊂ P2, with finitely many well-understood counterexamples. In contrast, as

hinted by Theorem C, the enumerative problem regarding the ramification divisor persists,

and poses a significant challenge. In some sense, the enumerative problems regarding the

branch and ramification divisors trade places, certainly in terms of difficulty, but hopefully

also in terms of structure.

1.4. Further questions. Our work raises several questions, some of which we hope to

return to in the future.

1.4.1. The enumerative problem for scrolls. Recall that every vector bundle on P1 is

isomorphic to a direct sum of line bundles. In particular, an ample vector bundle of

rank r and degree d is isomorphic to O(a1) ⊕ · · · ⊕ O(ar) for positive integers a1, . . . , ar
satisfying a1 ≤ · · · ≤ ar and a1 + · · ·+ ar = d. It is thus specified up to isomorphism by

an r-term partition of d. Let Σr,d be the set of r-term partitions of d. We get a function

φ : Σr,d−→Z≥0 defined by

φ(a1, . . . , ar) = Degree of the projection-ramification map for X ⊂ Pr+d,

where X = P (O(a1)⊕ · · · ⊕ O(ar)) is embedded in Pr+d by OX(1). The set Σr,d is partially

ordered by the dominance order ≺. In terms of vector bundles, ≺ translates into isotrivial

specialization: (a1, . . . , ar) ≺ (b1, . . . , br) if and only if O(b1) ⊕ · · · ⊕ O(br) isotrivially

specializes to O(a1)⊕ · · · ⊕ O(ar). In this case, by the lower semi-continuity of degrees of

rational maps, we get

φ(a1, . . . , ar) ≤ φ(b1, . . . , br).

Thus, φ is order preserving.

We hope that the enumerative function φ : Σr,d−→Z admits a deeper structure, such

as a recurrence relation or generating function. Theorem C and Theorem E only scratch

the surface as far as φ is concerned. Theorem C states that φ is not identically zero, at

least if d is sufficiently large. Theorem E computes φ for the partitions (d), (1, . . . , 1),

(1, k + 1), (1, 1, k + 1), and (2, 2). Some more examples, calculated using randomized trials

over finite fields in Macaulay2 [10] and Magma [1], are tabulated in Table 1. There seems to

be some enchanting combinatorics behind φ. As a sample, we point out that the sequence

of numbers φ(n) are the Catalan numbers, and the sequence φ(bn/2c, dn/2e) (appearing
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Table 1. Degrees of the projection-ramification maps for X = P(O(a1)⊕ O(a2))

a1

a2 1 2 3 4

1 1

2 1 2

3 1 6 22

4 1 17 92 422

down the diagonal in Table 1: 1, 2, 6, 22, 92, 422, . . . ) seems to be [13, A001181], namely the

number of Baxter permutations on n− 2 letters. We plan on conducting a more complete

enumerative investigation of φ in a future paper.

1.4.2. Non-maximal variation. Given that our counterexamples to maximal variation are

all scrolls over curves, it is natural to wonder whether failure of maximal variation can only

occur for scrolls. Ideally, we would seek a clean classification of varieties failing maximal

variation – a good start would be to precisely classify all rational normal scrolls which fail

maximal variation.

It would especially be nice to establish maximal variation for all threefolds – by The-

orem A along with the well-known fact that the only threefolds which have degenerate

duals are scrolls, we need only establish maximal variation for scrolls, i.e. P2-bundles over

curves.

1.4.3. Compressible varieties. Another problem which naturally emerges from our work

is to classify those varieties which are compressible. For example, it is easy to see that

smooth, non-degenerate complete intersection varieties are automatically incompressible.

Therefore, it might be possible to prove incompressibility for varieties of small codimension

in large projective spaces. It may also be possible to classify the compressible varieties

having a fixed small codimension, starting with codimension two.

1.4.4. Positive characteristics. The analysis of maximal variation and the computation

of the degree of ρ will surely bring new surprises and require new techniques in positive

characteristics. We do not know if Theorem A or Theorem C holds in positive characteristic;

our proofs certainly do not work. The degrees in Theorem E, and likewise the values of the

enumerative function φ : Σr,d−→Z defined in § 1.4.1, depend on the characteristic due to

the presence of inseparable covers. Indeed, this is true even for rational normal curves [14].

1.4.5. Picture over the real numbers. Consider the projection-ramification map of a rational

normal curve of degree n, also called the Wronskian map,

ρ : Gr(2, n+ 1)−→P2n−2.

The real algebraic geometry surrounding ρ plays an important role in real enumerative

geometry, the theory of real algebraic curves, and control theory, thanks to the B. and

M. Shapiro conjecture. Proved by Eremenko and Gabrielov, this conjecture states that
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if L ∈ Gr(2, n+ 1) is such that the ramification divisor ρ(L) is the sum of (2n− 2) real

points in P1, then L is a real point of Gr(2, n + 1) [16, 8]. Theorem C potentially sets

the stage for a higher-dimensional generalization of the body of work around the Shapiro

conjecture. In particular, it would be interesting to find a uniform topological picture

explaining the numbers deg ρ, similar to the “nets” introduced by Eremenko and Gabrielov

which elegantly explain the appearance of Catalan numbers.

1.5. Notation and conventions. We work over an algebraically closed field K of charac-

teristic zero, not simply for convenience, but for necessity—we appeal to Bertini’s theorem,

generic smoothness, and Kodaira vanishing. All schemes are of finite type over K. A

variety is a separated integral scheme. For a scheme X, we let Xsm ⊂ X be the smooth

locus.

We go back and forth without comment between divisors and line bundles, and likewise,

between locally free sheaves and vector bundles. We follow Grothendieck’s convention for

projectivization. That is, the projectivization PE of a vector bundle E is the space of one

dimensional quotients of E. For a line bundle L on X, we denote by |L| the projective

space PH0(X,L)∗.

Given a vector bundle F on X, we denote by P (F ) the sheaf of principal parts of F .

This is defined by the formula

P (F ) = π2∗
(
π1
∗F ⊗ OX×X/I

2
∆

)
,

where the πi are the projections on the two factors and ∆ ⊂ X ×X is the diagonal. We

remind the reader of the exact sequence

0−→F ⊗ ΩS−→P (F )−→F−→0

and the evaluation map

e : H0(X,F )⊗ OX−→P (F ).

1.6. Organization. In Section 2, we give basic definitions, culminating in the precise

general definition of ρ (Definition 2.4). The subsequence sections are logically independent

of each other and can be read in any order after Section 2.

In Section 3, we prove Theorem A(1) (Proposition 3.1). We then introduce the notion

of non-defectivity, which generalizes the condition of having a divisorial dual. After

establishing basic properties of non-defectivity, we prove Theorem A(2) (Theorem 3.12).

In Section 4, we prove Theorem C (Theorem 4.2). In the same section, we derive explicit

formulas for the ramification divisors for scrolls in § 4.1, give the examples advertised in

Theorem B (§ 4.2), and treat the threefold scrolls in § 4.3.

In Section 5, the main goal is the proof of Theorem D (Theorem 5.16). For this, we lay

the groundwork by doing some low degree cases by hand (§ 5.1). We then recall the theory

of (linked) limit linear series for vector bundles of higher rank in § 5.2, and define the

projection-ramification map for linked linear series in § 5.3 and § 5.4. By a degeneration

argument involving linked linear series, we prove Theorem D in § 5.5.
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In Section 6, we turn to the enumerative problem of finding the degree of ρ, namely

the results in Theorem E. We treat the cases of rational normal curves and quadric

hypersurfaces quickly in § 6.1 and § 6.2. We devote § 6.3 to the case of the Veronese surface

and § 6.4 to the case of the quartic surface scroll.
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2. The projection-ramification map

In this section, we define a projection-ramification map for a linear series on a proper,

normal, variety X. For X ⊂ Pn, taking the linear series cut out by the hyperplanes

recovers the projection-ramification map introduced in Section 1. Working with abstract

linear series, however, offers more flexibility that is helpful in inductive proofs.

Let X be a proper variety of dimension r over an algebraically closed field k of char-

acteristic zero. A linear series on X is a pair (L,W ) consisting of a line bundle L on X

and a subspace W ⊂ H0(X,L). The complete linear series associated to L is (L,W ) with

W = H0(X,L). A projection is a linear series (L, V ) with dimV = r + 1. A projection of

(L,W ) is a projection (L, V ) with V ⊂W . As a convention, we use V for projections and

W for more general linear series.

Definition 2.1 (Properly ramified projection). We say that a projection (L, V ) is properly

ramified if the evaluation homomorphism

e : V ⊗ OX−→P (L)

is an isomorphism over a general point in X. If (L, V ) is properly ramified, its ramification

divisor

R(L, V ) ⊂ X

is the closure of the scheme defined by the determinant of e : V ⊗ OXsm−→P (L)|Xsm .

In most cases, L is clear from context, so we drop it from the notation and denote the

ramification divisor simply by R(V ).

Remark 2.2. Suppose for simplicity that V is a base-point free linear series that yields

a surjective map φ : X−→PV . Then the ramification divisor may be defined as the

degeneracy locus of the map

dφ : TX−→φ∗TPV
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on tangent spaces. The degeneracy locus is the zero locus of detφ, which in local coordinates,

is given by the determinant of the Jacobian matrix
(
∂φi
∂xj

)
. Therefore, the ramification

divisor R(L, V ) is also often called the Jacobian of the linear series (L, V ) (see, for example,

[3, 1.1.7]).

A projection (L, V ) gives the evaluation map

e : V ⊗ OX−→L.

The evaluation map yields a map pV,L : X 99K PV , regular on the non-empty open set of

X where e is surjective. The following is an easy observation, whose proof we skip.

Proposition 2.3. The projection (L, V ) is properly ramified if and only if the map on

tangent spaces induced by pV,L is generically an isomorphism. In characteristic zero, this

is equivalent to the condition that pV,L is dominant.

For a fixed (L,W ), the set of all projections of (L,W ) are parametrized by the Grass-

mannian Gr(r+ 1,W ). The property of being properly ramified is a Zariski open condition

on the Grassmannian.

We now define a map that assigns to a projection its ramification divisor. To do so, we

interpret the ramification divisor as an element of a linear series.

Assume, furthermore, that X is normal. Let KX be the canonical sheaf of X. Denoting

by i : Xsm−→X the inclusion, KX is given by the push-forward

KX = i∗KXsm .

Note that, since X is normal, the complement of Xsm ⊂ X has codimension at least 2.

The sheaf KX is coherent, reflexive, and satisfies Serre’s S2 condition.

Let L be a line bundle on X. The sheaf P (L) is locally free of rank (r+ 1) on Xsm, and

we have a canonical isomorphism

r+1∧
P (L)|Xsm ∼= KXsm ⊗ Lr+1.

Given a subspace V ⊂ H0(X,L), we apply
∧r+1 to the evaluation map

e : V ⊗ OXsm−→P (L)|Xsm ,

to get

det e : detV ⊗ OXsm−→KXsm ⊗ Lr+1.

By applying i∗ and taking global sections, we get

rV : detV−→H0(X,KX ⊗ Lr+1). (2.1)

If (L, V ) is properly ramified, then this map is non-zero, and hence gives a point of the

projective space PH0(X,KX ⊗ Lr+1)∗. Doing the same construction universally over the

Grassmannian Gr = Gr(r + 1,W ) yields a map

r : detV−→H0(X,KX ⊗ Lr+1)⊗ OGr, (2.2)
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where V ⊂W ⊗ OGr is the universal sub-bundle of rank (r + 1). Let U ⊂ Gr be the open

subset of properly ramified projections. Then the map in (2.2) is non-zero at every point

of U , and defines a map U−→PH0(X,KX ⊗ Lr+1)∗ given by the surjection

H0(X,KX ⊗ Lr+1)∗ ⊗ OU−→ detV|∗U . (2.3)

Note that U is non-empty if and only if W separates tangent vectors at a general point of

X.

Definition 2.4 (Projection-ramification map). Let (L,W ) be a linear series that separates

tangent vectors at a general point of X. The projection-ramification map for (L,W ) is the

rational map

ρ(X,L,W ) : Gr(r + 1,W ) 99K PH0(X,KX ⊗ Lr+1)∗

defined on the non-empty open subset of properly ramified maps by (2.3).

If any ofX, L, orW are clear from context, we drop them from the notation. In particular,

for a non-degenerate X ⊂ Pn, we denote by ρX the map ρX,L,W with L = OX(1) and W

the image in H0(X,L) of H0(Pn,O(1)).

Note that the map (2.3) factors as

detV
a−→

r+1∧
W ⊗ OGr

b−→ H0(X,KX ⊗ Lr+1)⊗ OGr,

where a is ∧r+1 applied to the universal inclusion V ⊂ W ⊗ OGr, and b is induced by

∧r+1 applied to the evaluation map e : W ⊗ OX−→P (L). The map a defines the Plücker

embedding

i : Gr(r + 1,W )−→P

(
r+1∧

W ∗

)
,

and the map b defines a linear projection

p : P

(
r+1∧

W ∗

)
99K PH0(X,KX ⊗ Lr+1).

Thus, ρX,L,W factors as the Plücker embedding followed by a linear projection.

3. Maximal variation for incompressible and non-defective X

The goal of this section is to prove Theorem A. We begin by proving part (1), which is

substantially easier.

Proposition 3.1 (Theorem A (1)). Let X ⊂ Pn be a non-degenerate, normal, incom-

pressible projective variety over a field of characteristic zero. Then ρX is a finite map.

Proof. Set L = O(1) and let W ⊂ H0(X,L) be the image of H0(Pn,O(1)). Let V ⊂ W

be an (r + 1)-dimensional subspace. Since X is incompressible, the projection map

pV,L : X 99K PV induced by (L, V ) is dominant. By Proposition 2.3, this implies that

(L, V ) is properly ramified. Since V was arbitrary, the projection-ramification map

ρ : Gr(r + 1,W )−→|KX + (r + 1)H|
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is regular. Since the Picard rank of a Grassmannian is 1, a regular map from a Grassmannian

is either constant or finite. It is easy to check that ρ is not constant; so it must be finite. �

For the proof of part (2) of Theorem A, we proceed inductively by showing that a

general (n− r − 1)-dimensional linear subspace which is incident to X is an isolated point

in its fiber under ρ. Again, it is more convenient to work with the more abstract set-up of

a linear series, allowing for series that are not very ample.

Let X be a proper variety of dimension r, and let (L,W ) be a linear series on X. For

an ideal sheaf I ⊂ OX we denote by W ⊗ I the subspace of W consisting of the sections

that vanish modulo I. More precisely, if K is the kernel of the evaluation map

W ⊗ OX−→L⊗ OX/I,

then W ⊗I = H0(X,K). In particular, for W = H0(X,L), we have W ⊗I = H0(X,L⊗I).

For s ∈ W ⊗ I, the vanishing locus v(s) refers to the vanishing locus of s as a section

of L. We set |W | = PW ∗, the space of one-dimensional subspaces of W , and likewise

|W ⊗ I| = P(W ⊗ I)∗. For a complete linear series, we write |L| for |W |. Note that

v(s) = v(λs) for a non-zero scalar λ, so it causes no ambiguity to talk about v(s) for

s ∈ |W |.

3.1. Non-defective linear series. We study a positivity property of linear series that

generalizes the property of having a divisorial dual.

Definition 3.2 (Non-defective linear series). We say that a linear series (L,W ) is non-

defective if, for a general point x ∈ X either W ⊗m2
x = 0, or there exists s ∈W ⊗m2

x such

that v(s) has an isolated singularity at x.

Note that for s ∈ |W |, the condition that v(s) have an isolated singularity at x is a

Zariski open condition on |W |. Therefore, if there exists an s ∈ |W ⊗m2
x| such that v(s)

has an isolated singularity at x, then a general s ∈ |W ⊗m2
x| has the same property.

Remark 3.3. Let x be a point of X. Suppose there exists s ∈ |W | with an isolated

singularity at x. It may be tempting to conclude from this that (L,W ) is non-defective.

This is not necessarily true! For example, take X = F3. Denote by E the section of

self-intersection −3 and F the fiber of the projection F3−→P1. Let L = OX(E + 2F ) and

W = H0(X,L). For x ∈ E, the general member of |W ⊗m2
x| has an isolated singularity at

x, but the same is not true for a general x ∈ X.

Remark 3.4. Suppose (L,W ) is non-defective. Let x ∈ X be general, and let s ∈ |W | be

such that v(s) has an isolated singularity at x. For all such s, it may be the case v(s)

has singularities away from x, even along a positive dimensional locus. For example, let

π : X−→P2 be the blow-up at a point, and E the exceptional divisor. The complete linear

series associated to L = π∗O(2)⊗O(2E) is non-defective, but for every global section of L,

the singular locus of v(s) contains E.
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We now define the conormal variety of a linear series, which plays an important role in

our analysis of non-defectivity. Let K be the kernel of the evaluation map

e : W ⊗ OX−→P (L).

Let U ⊂ X be an open subset such that K|U is locally free and the dual of the inclusion

W ∗ ⊗ OU−→K|∗U
is a surjection. This surjection defines a closed embedding P(K|U ) ⊂ U × |W |. The

conormal variety of (L,W ), denoted by PL,W , is the closure of P(K|U ) in X × |W |.

Proposition 3.5. Suppose (L,W ) is non-defective. If dimW ≥ r + 2, then PL,W is

irreducible of dimension dimW − 2. If dimW ≤ r + 1, then PL,W is empty.

Proof. Set n = dim |W | = dimW −1. Let k be the (generic) rank of K, namely the rank of

the locally free sheaf K|U . Then k ≥ n− r. The statement of the proposition is equivalent

to showing that if k > 0, then k = n− r.
For brevity, set P = PL,W . Consider the projection σ : P−→|W |, obtained by restricting

the second projection X × |W |−→|W |. For s ∈ |W |, we view σ−1(s) as a subscheme of X.

We then have

σ−1(s) ∩ U = Sing(v(s)) ∩ U.

Suppose r > 0. Then P is non-empty and irreducible, since it is the closure of a

non-empty and irreducible variety. Since (L,W ) is non-defective, a general point (x, s) ∈ P
is such that x is an isolated point of Sing(v(s)). Therefore, σ : P−→|W | is generically finite

onto its image. We conclude that dimP ≤ dim |W |, and hence k ≤ n− r + 1.

To show that k = n − r, it suffices to show that σ : P−→|W | is not surjective. We

do so using Bertini’s theorem. Let B ⊂ X denote the union of the base locus of |W |
and the singular locus of X. Then B is a proper closed subset of X. Let PB ⊂ P be

the pre-image of B under the projection π : P−→X. By the definition of P , the map

π : P−→X is surjective, and hence PB is a proper closed subset of P . Since P is irreducible,

we have dimPB < dimP ≤ dim |W |, so the projection PB−→|W | cannot be dominant.

Let s ∈ |W | be general, in particular, not in the image of PB−→|W |. By Bertini’s theorem

v(s) is non-singular away from B. Thus, for any x ∈ X, the point (x, s) ∈ X × |W | does

not lie in P . For x ∈ B, this is because s is not in the image of PB, and for x 6∈ B, this is

because v(s) is non-singular at x. We conclude that s does not lie in the image of P−→|W |.
Hence P−→|W | is not surjective. �

Proposition 3.6. Let (L,W ) be a linear series with dimW ≥ r + 2, and let P = PL be

its conormal variety. The projection σ : P−→|W | is generically finite onto its image if and

only if (L,W ) is non-defective.

Proof. Since dimW ≥ r + 2, the conormal variety P = PL,W is non-empty. Let (x, s) ∈ P
be a general point. We may assume that x ∈ U . Then x is a singular point of v(s), and

it is an isolated singularity of v(s) if and only if (x, s) is an isolated point in the fiber of

σ : P−→|W | over s. The conclusion follows. �



PROJECTION AND RAMIFICATION 13

The following observation relates non-defectivity with the non-degeneracy of the dual.

Proposition 3.7. Let X ⊂ Pn be a non-degenerate projective variety. Let L = OX(1)

and W ⊂ H0(X,L) the image of H0(Pn,O(1)). Then (L,W ) is non-defective if and only

if the dual variety X∗ ⊂ Pn∗ is a hypersurface.

Proof. Since X ⊂ Pn is not contained in a hyperplane, we have dimW = n+ 1 ≥ r + 1.

Since (L,W ) is very ample, it separates tangent vectors on X, so the evaluation map

e : W ⊗ OX−→P (L)

is surjective. It follows that the rank of the kernel is n− r, and hence

dimPL,W = (n− r − 1) + r = n− 1.

By definition, the dual variety X∗ ⊂ Pn∗ = |W | is the image of the conormal variety under

the projection PL,W−→|W |. By Proposition 3.6, (L,W ) is non-defective if and only if

dimX∗ = n− 1. �

Proposition 3.8. Let (L,W ) be a non-defective linear series on X with dimW ≥ r + 2.

Let x ∈ X be a general point. Then there exists s ∈ |W | such that v(s) has an ordinary

double point singularity at x.

Proof. By Proposition 3.6, the projection σ : P−→|W | is generically finite onto its image.

Let (x, s) ∈ P be a general point. Since our ground field is of characteristic zero, we may

assume that P is smooth at (x, s), that x ∈ U ∩Xsm, and σ : P−→|W | is a local immersion

at (x, s). This implies that x ∈ Sing(v(s)) is isolated, and also that x is a reduced point of

the scheme Sing(v(s)). These two properties show that v(s) possesses an ordinary double

point at x. To see this, choose local coordinates (x1, ..., xn) so that the complete local ring

ÔX,x is isomorphic to kJx1, . . . , xrK. After choosing a local trivialization for L around x,

the section s corresponds to a power series s(x1, . . . , xr) contained in m2
xÔX,x. The germ

of Sing(v(s)) at x is cut out by the power series ∂s
∂x1

, . . . , ∂s∂xr . Since the germ of Sing(v(s))

at x is the reduced point x, we get that ∂s
∂x1

, . . . , ∂s∂xr are linearly independent as elements

of mx/m
2
x. From this, it is easy to check that the tangent cone of s(x1, . . . , xr) at x is a

non-degenerate quadric cone. �

Proposition 3.9. If (L,W ) is a non-defective linear series with dimW ≥ r + 1, then W

separates tangent vectors at a general point x ∈ X. That is, the evaluation map

ex : W ⊗ OX−→L/m2
xL

is surjective for general x ∈ X.

Proof. By the definition of P (L), we have a natural isomorphism

P (L)|x = L/m2
xL,

so it suffices to show that the evaluation map

e : W ⊗ OX−→P (L)
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is surjective at x. Let k be the generic rank of K, the kernel of e. From the proof of

Proposition 3.5, we get

k = dimW − r − 1.

Since (r + 1) is the generic rank of P (L), we conclude that e is generically surjective. �

Corollary 3.10. Suppose (L,W ) is a non-defective linear series on X with dimW ≥ r+1.

Then there exists a properly ramified projection (L, V ) of (L,W ).

Proof. This follows immediately from Proposition 3.9. �

As a consequence of Corollary 3.10, the projection-ramification rational map ρX,L,W is

defined for a non-defective linear series (L,W ) with dimW ≥ r + 1.

Let π : X̃−→X be the blow-up at a point x ∈ X, and E ⊂ X̃ the exceptional divisor. A

linear series (L,W ) on X gives a linear series (L̃, W̃ ) as follows. Take L̃ = π∗L⊗O
X̃

(−E).

Note that H0(X,L) = H0(X̃, π∗L), so we may think of W as a subspace of H0(X̃, π∗L).

Take W̃ = W ⊗ O
X̃

(−E) with its natural inclusion W̃ ⊂ H0(X̃, L̃).

Proposition 3.11. In the setup above, if (L,W ) is non-defective, dimW ≥ r + 2, and

x ∈ X is general, then (L̃, W̃ ) is also non-defective.

Proof. Let y be a general point of X̃. We have the equality

W̃ ⊗m2
y = W ⊗mx ·m2

y.

By Proposition 3.9, for a general y ∈ X, we have

dim(W ⊗m2
y) = dimW − (r + 1).

Since x ∈ X is general, we get

dim(W ⊗mx ·m2
y) = dimW − (r + 2).

If dimW = r + 2, then we get W̃ ⊗m2
y = 0, so we are done. Assume that dimW ≥ r + 3.

Then dim(W ⊗m2
y) ≥ 2. Since (L,W ) is non-defective, a general s ∈W ⊗m2

y is such that

v(s) has an isolated singularity at y. Moreover, since dim(W ⊗m2
y) ≥ 2, for every x ∈ X,

there exists s ∈ V such that v(s) passes through x. Hence, as x ∈ X is general, there exists

s ∈W ⊗m2
y such that v(s) has an isolated singularity at y and passes through x. That is,

there exists s ∈ W̃ ⊗m2
y that has an isolated singularity at y. We conclude that (L̃, W̃ ) is

non-defective. �

3.2. Maximal variation for non-defective pairs. In this section, we prove part (2) of

Theorem A. In fact, we prove a more general result (Theorem 3.12).

As before, X is a proper, normal variety of dimension r over an algebraically closed field

of characteristic zero.

Theorem 3.12. Let (L,W ) be a non-defective linear series on X with dimW ≥ r + 2.

Then the projection-ramification map ρX,L,W is generically finite onto its image.
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For the proof, we need two lemmas, which are essentially local computations. Throughout,

X, L, and W are as in the statement of Theorem 3.12.

Lemma 3.13. Let x ∈ X be a general point and V ⊂W⊗mx a general (r+1)-dimensional

subspace. Then V is properly ramified, and the ramification divisor R(V ) has an ordinary

double point singularity at x.

Proof. Using Proposition 3.8 and Proposition 3.9, we get a basis (s1, ..., sn, t) of V satisfying

the following two conditions:

(1) s1, . . . , sn generate L⊗ (mx/m
2
x), and

(2) v(t) has an ordinary double point singularity at x.

Let ÔX,x denote the completion of the local ring at x ∈ X along its maximal ideal.

Upon trivializing L, we may regard si and t as elements of ÔX,x, and can also assume

ÔX,x = kJs1, . . . snK. In the bases (s1, . . . , sn, t) for V and (1, s1, . . . , sn) for P (L), the

evaluation map

e : V ⊗ ÔX,x−→P (L)⊗ ÔX,x

has the matrix 
s1 s2 . . . t

1 0 . . . ∂1t

0 1 . . . ∂2t
...

...
...

...

0 0 . . . ∂nt

 , (3.1)

where ∂i denotes ∂
∂si

. The determinant of the matrix (3.1)

t−
∑
i

si∂it

is an analytic local equation for the ramification divisor R(V ) near x. By applying the

Euler identity to the degree 2 part of t (expressed as a power series in the si), we see that

R(V ) shares the same tangent cone as v(t) at x. The proposition follows. �

Lemma 3.14. Let x ∈ X be a general point and V ⊂W an (r + 1)-dimensional subspace

with a basis (u, a1, . . . , ar−1, b) where

(1) u does not vanish at x,

(2) a1, . . . , ar−1 vanish at x, and reduce to linearly independent elements of L⊗(mx/m
2
x),

and

(3) v(b) has an ordinary double point at x.

Then R(V ) contains x and is smooth at x.

Proof. That R(V ) contains x is clear since V ⊗m2
x 6= 0.

For smoothness, we again work in the completion ÔX,x. After trivializing L, we assume

u, a1, ..., b are elements of ÔX,x. We choose an element z ∈ ÔX,x such that (a1, . . . , ar−1, z)
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forms a system of coordinates, that is ÔX,x ∼= kJa1, . . . , ar−1, zK. With respect to the given

basis of V and the basis 1, a1, . . . , ar−1, z for P (L), the evaluation map

e : V ⊗ ÔX,x−→P (L)⊗ ÔX,x

has the matrix 
u a1 a2 . . . b

∂1u 1 0 . . . ∂1b

∂2u 0 1 . . . ∂2b
...

...
...

...

∂zu 0 0 . . . ∂zb

 (3.2)

The determinant of the matrix (3.2) is the analytic local equation for R(V ). It is given by

ū · ∂zb± ∂zu · b̄,

where, for r ∈ ÔX,x we set

r̄ = r − a1∂1r − a2∂2r − · · · − z∂zr.

Since b ∈ m2
x, we get that b̄ ∈ m2

x, and so ∂zb ∈ mx. Furthermore, since the tangent cone of

b is a non-degenerate quadric, we also get that ∂zb 6∈ m2
x. Since u is a unit, we see that the

tangent cone of R(V ) at x is the hyperplane cut out by ∂zb ∈ mx/m
2
x. So R(V ) is smooth

at x. �

We now have all the tools for the proof of Theorem 3.12.

Proof of Theorem 3.12. We induct on dimW . The base case dimW = r + 1 is clear.

We now do the induction step. Suppose dimW ≥ r + 2. Choose a general point

x ∈ X such that the induced linear series (L̃, W̃ ) on X̃ = BlxX is non-defective as in

Proposition 3.11. Choose a general (r + 1)-dimensional subspace V ⊂W ⊗mx = W̃ that

satisfies the hypotheses of Lemma 3.13. By the induction hypothesis, V considered as a

projection of (L̃, W̃ ) is an isolated point in the projection-ramification map for X̃. We now

show that it is also an isolated point in the projection-ramification map for X.

Let (C, 0) be a pointed smooth curve and V ⊂ W ⊗ OC a sub-bundle of rank (r + 1)

such that

(1) V0 = V , and

(2) Vc 6= V0 for c ∈ C \ {0}.

We must show that R(Vc) 6= R(V ) for a general c ∈ C.

Suppose Vc ⊂W ⊗mx = W̃ for all c ∈ C. Denote by R̃(Vc) the ramification divisor of

Vc considered as a projection of X̃. Since V = V0 is an isolated point in the projection-

ramification map for X̃, we know that R̃(Vc) 6= R̃(V0) for a general c ∈ C. Clearly,

R(Vc) and R̃(Vc) agree away from the exceptional divisor, and hence we conclude that

R(Vc) 6= R(V0) for a general c ∈ C.



PROJECTION AND RAMIFICATION 17

On the other hand, suppose Vc 6⊂ W ⊗ mx = W̃ for a general c ∈ C. Consider the

evaluation maps

ec : Vc−→L/m2
xL

between an (r+1)-dimensional source and (r+1)-dimensional target. Since V = V0 satisfies

the hypotheses of Lemma 3.13, rk e0 = r. Therefore, by semi-continuity, rk ec ≥ r for all

c ∈ C. If rk ec = (r + 1) for a general c ∈ C, then x 6∈ R(Vc), and hence R(Vc) 6= R(V ).

Otherwise, by shrinking C if necessary, assume rk ec = r for all c ∈ C. In other words,

dim(Vc ⊗ m2
x) = 1 for all c ∈ C. Let bc ∈ Vc ⊗ m2

x be a non-zero element. Since v(b0)

has an ordinary double-point singularity at x, so does v(bc). Also, since rk(ec) = r and

Vc 6∈W⊗mx for a general c, there exists uc ∈ Vc not vanishing at x, and a set of (r−1) other

elements that vanish at x but reduce to linearly independent elements modulo m2
x. That

is, Vc satisfies the hypotheses of Lemma 3.14 for a general c ∈ C. But Lemma 3.14 implies

that R(Vc) is smooth at x. Since R(V0) is singular at x, we conclude that R(V0) 6= R(Vc).

The induction step is now complete. �

We immediately get part (2) of Theorem A.

Corollary 3.15. Let X ⊂ Pn be a non-degenerate projective variety such that the dual

variety X∗ ⊂ Pn∗ is a hypersurface. Then ρX is generically finite onto its image.

Proof. By Proposition 3.7 the linear series on X that gives the embedding X ⊂ Pn is

non-defective. Now apply Theorem 3.12. �

Corollary 3.16. Let X ⊂ Pn be a non-degenerate smooth curve or a surface. Then ρX is

generically finite onto its image.

Proof. Curves and surfaces have divisorial duals, so Corollary 3.15 applies. �

4. Projection-ramification for varieties of minimal degree

In this section, we prove Theorem C, which relates varieties of minimal degree and

the projection-ramification map. We then prove Theorem B by constructing examples of

rational scrolls where maximal variation fails. Finally, we obtain an alternate and more

explicit description of the projection-ramification map for scrolls, which we use repeatedly.

The following is an easy application of the Kodaira vanishing theorem.

Proposition 4.1. Let X ⊂ Pn be a non-degenerate, smooth, projective, variety of dimen-

sion r ≥ 1 over a field of characteristic zero. For all m ≥ r, we have the inequality(
m

r

)
(n− r) +

(
m− 1

r

)
≤ h0(X,KX +mH). (4.1)

If equality holds for any m ≥ r, then X is a variety of minimal degree, that is degX =

n− r + 1. Conversely, for a variety of minimal degree, equality holds for all m ≥ r.
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Proof. Without loss of generality, X is embedded by the complete linear series. Indeed,

passing to the complete linear series only increases the left side of the desired inequality,

and does not change the right side.

We first prove the inequality (4.1), using a double induction–first on r, and then on m.

For the base case r = 1, Riemann–Roch gives

h0(X,KX +mH) = gX − 1 +mn, (4.2)

from which (4.1) follows for all m.

Assume that (4.1) holds for varieties of dimension (r− 1) and all m ≥ r− 1. Let D ⊂ X
be a general member of the linear series |H|. By Bertini’s theorem, D is a smooth variety.

The adjunction formula KD = (KX +H)|D yields the exact sequence

0−→OX(KX + (m− 1)H)−→OX(KX +mH)−→OD(KD + (m− 1)H)−→0. (4.3)

Note that, by the Kodaira vanishing theorem, we have h1(KX + nH) = 0 for all n > 1;

we use this repeatedly, without further comment. For m = r, the long exact sequence in

cohomology associated to (4.3) gives

h0(KD + (r − 1)H) ≤ h0(KX + rH).

By applying the induction hypothesis to D, we have

n− r ≤ h0(KD + (r − 1)H) (4.4)

Therefore, we conclude that

n− r ≤ h0(KX + rH). (4.5)

Let m > r, and assume that (4.1) holds for X for m − 1. The long exact sequence in

cohomology associated to (4.3) gives

h0(KX + (m− 1)H) + h0(KD + (m− 1)H) = h0(KX +mH). (4.6)

By applying the induction hypothesis to m− 1, we get

h0(KX + (m− 1)H) + h0(KD + (m− 1)H)

≥
(
m− 1

r

)
(n− r) +

(
m− 2

r

)
+

(
m− 1

r − 1

)
(n− r) +

(
m− 2

r − 1

)
=

(
m

r

)
(n− r) +

(
m− 1

r

)
.

Together with (4.6), we conclude(
m

r

)
(n− r) +

(
m− 1

r

)
≤ h0(KX +mH), (4.7)

which is (4.1) for m. The proof of the inequality is thus complete.

We now examine when equality holds in (4.1). For r = 1, the equation (4.2) shows

that equality holds for some m if and only if gX = 0, that is X ⊂ Pn is a rational normal

curve, and in this case, equality holds for all m. Furthermore, we observe in the inductive

proof that if equality holds for an X of dimension r > 1 and some m, then it must hold
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for the hyperplane slice D and (m− 1). Again, by an induction on r, we conclude that

degX = n− r + 1, that is, X ⊂ Pn is a variety of minimal degree.

Finally, for X ⊂ Pn of minimal degree, induction on r shows that equality holds in (4.1)

for all m. �

As a consequence, we immediately deduce Theorem C.

Theorem 4.2 (Theorem C). Let X ⊂ Pn be a smooth, non-degenerate projective variety

of dimension r ≥ 1 over a field of characteristic zero. We have the inequality

dim Gr(n− r, n+ 1) ≤ dim |KX + (r + 1)H|,

where equality holds if and only if X is a variety of minimal degree, that is degX = n−r+1.

Proof. Apply Proposition 4.1 with m = r + 1. �

4.1. Projection-ramification for scrolls. Theorem C motivates a deeper investigation

of the projection-ramification map for varieties of minimal degree. Indeed, for X ⊂ Pn

of minimal degree, the projection-ramification map is potentially generically finite and

dominant. Recall that a large class of varieties of minimal degree are the rational normal

scrolls, namely X = PE for an ample vector bundle E on P1 embedded by the complete

linear series OX(1). If dimX ≥ 3, then X is neither incompressible nor does it have a

divisorial dual variety. Therefore, for such X, Theorem A leaves the question of maximal

variation unanswered.

We now examine the projection-ramification map for projectivizations of vector bundles

on smooth curves in more detail. Let C be a smooth curve and E an ample vector bundle

on C of rank r. Set X = PE, the space of one-dimensional quotients of E, and L = OX(1).

Denote by π : X−→C the natural map.

Let (L, V ) be a projection of X. Recall from (2.1) that such a projection gives a map

rV : detV−→H0(X,KX ⊗ Lr+1),

whose zero locus is the ramification divisor R(V ) ⊂ X. Note that we have an isomorphism

KX
∼= π∗(detE ⊗KC)⊗ L−r, and hence, we may view rV as a map

rV : detV−→H0(C,E ⊗ detE ⊗KC).

We now describe another construction of a section of E ⊗ detE ⊗KC from V , which

we call the differential construction. The subspace V ⊂ H0(X,L) = H0(C,E) gives the

evaluation map

e : V ⊗ OC−→E.
If V is generic, then e is a surjection, and its kernel is canonically isomorphic to detE∗ ⊗
detV . Consider the diagram

0 detE∗ ⊗ detV V ⊗ OC E 0

0 KC ⊗ E P (E) E 0,

dV

e

e (4.8)
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where the bottom row is the standard sequence associated to P (E), both maps labeled e

are evaluation maps, and the map dV is the map induced by them. The map dV gives a

map

dV : detV−→H0(C,E ⊗ detE ⊗KC).

Proposition 4.3. In the setup above, the two maps dV and rV are equal.

Proof. Recall that rV is induced by the determinant of the evaluation map

V ⊗ OX−→P (L).

Denote by Pπ(L) the bundle of principal parts of L along the fibers of π. More explicitly,

Pπ(L) = π1∗
(
π∗2L⊗

(
OX×πX/I

2
∆

))
,

where ∆ ⊂ X×πX is the diagonal and πi for i = 1, 2 are the two projections X×πX−→X.

It is easy to check that the evaluation map π∗E−→L induces an isomorphism π∗E−→Pπ(L).

Furthermore, we have the sequence

0−→π∗KC ⊗ L−→P (L)−→Pπ(L)−→0.

By combining this with the identification π∗E = Pπ(L), and the top row of (4.8), we get

the diagram

0 π∗(detE∗ ⊗ detV ) V ⊗ OX π∗E 0

0 π∗KC ⊗ L P (L) Pπ(L) 0.

p e (4.9)

From the diagram, we see that det e = p, interpreted as elements of the appropriate Hom

spaces. By definition, after taking global sections, det e gives the section rV . Note that,

applying π∗ to the bottom row of (4.9) yields the bottom row of (4.8). Hence, after

applying π∗, twisting by detE and taking global sections, p gives the section dV . We

conclude that rV = dV . �

Let R = R(V ) ⊂ X be the ramification divisor of the projection given by V . Note

that R is a divisor of class π∗(detE ⊗KC)⊗ OX(1). Therefore, R ⊂ X is a sub-scroll, or

equivalently, the fibers of R−→C are hyperplanes in the corresponding fiber of X−→C.

We can obtain an explicit description of these hyperplanes in two ways, one using the

original definition, and one using the differential construction. Fix a point c ∈ C, and a

uniformizer t of C at c. Let Xc ⊂ X and Rc ⊂ R be the fibers of X−→C and R−→C over

c, respectively.

By definition R ⊂ X is the set of points x ∈ X for which there exists s ∈ V such

that v(s) is singular at x. Since s is a section of L = OX(1), the hypersurface v(s) is

singular at x if and only if it contains the entire fiber of π : X−→C through x. Suppose

π(x) = c. Then, in an open set of X containing Xc, we have s = ts1 for a section s1 of

OX(1). Observe that, we have Sing(v(s)) ∩ F = v(s1) ∩ F , and therefore, Rc ⊂ Xc is the

hyperplane cut out by s1.
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To obtain the same description using the differential construction, consider the top

row of (4.8). Let v be a local section of V ⊗ OC around c that generates the kernel of

e : V ⊗OC−→E at c. The fiber of the evaluation map V ⊗OC−→P (L) over c sends v ∈ V
to the image of e(v) in L/m2

cL. Since v generates the kernel of e : V ⊗ OC−→L at c, we

know that image of e(v) in L/mcL is zero. Writing e(v) = ts1 for a section s1 of E around

c, we see that dV (v) = s1 ⊗ t ∈ E ⊗mc/m
2
c . Thus, the fiber of the sub-scroll defined by dV

over c is the hyperplane in Xc cut out by s1.

Finally, we write an equation ofR(V ) ⊂ X over an open subset of C containing c explicitly

in coordinates. Choose a trivialization X1, . . . , Xr for E over an open set U ⊂ C containing

c. Then XU
∼= Pr−1 × U = ProjOU [X1, . . . , Xr]. We have a trivialization of KC over U

given by dt. We then get a trivialization of P (E)|U by X1, . . . , Xr, dt⊗X1, . . . , dt⊗Xr.

Choose a basis v0, . . . , vr of V , and suppose the map e : V ⊗ OU−→EU is given by

e(vi) =
∑

mi,jXj ,

for mi,j ∈ OU , where 0 ≤ i ≤ r and 1 ≤ j ≤ r. Then the map detE∗ ⊗ detV−→V ⊗ OU
defining the kernel of e is given by the r × r minors of the matrix (mi,j). Denote the `-th

minor by M`; that is M` = (−1)` det(mi,j | i 6= `). Then the map dV sends the generator

to the element of E ⊗KC given by∑
i,j

Mi ·
∂mi,j

∂t
· (dt⊗Xj).

Note that the expression above is the determinant of the (r + 1)× (r + 1) matrix
m0,1 m0,2 . . . m0,r

∑r
i=1

∂m0,j

∂t · dt⊗Xj

m1,1 m1,2 . . . m1,r
∑r

i=1
∂m1,j

∂t · dt⊗Xj
...

. . . . . .
...

...

mr,1 mr,2 . . . mr,r
∑r

i=1
∂mr,j
∂t · dt⊗Xj

 . (4.10)

This gives an equation for RU ⊂ XU = ProjOU [X1, . . . , Xr].

4.2. Failure of maximal variation. In this section, we show that there exist ample

vector bundles E of rank r ≥ 4 on P1 such that the projection-ramification map for

X = PE is not generically finite. In other words, a generic projection of X can be

deformed in a one-parameter family so that the ramification divisor remains unchanged.

Recall that the projection-ramification map for X = PE and the complete linear series

of L = OX(1) is a map

ρ : Gr(r + 1, H0(X,L)) 99K |KX ⊗ Lr+1|,

or equivalently a map

ρ : Gr(r + 1, H0(P1, E)) 99K PH0(P1, E ⊗ detE ⊗KP1)∗.

By construction, ρ is equivariant with respect to the action of Aut(X), and in particular,

by the subgroup Aut(X/P1).

We engineer the failure of maximal variation using the following observation.
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Proposition 4.4. Let E be an ample vector bundle of rank r on P1. Then a generic point

of Gr(r + 1, H0(P1, E)) has a trivial stabilizer under the action of Aut(PE/P1).

Proof. Fix (r + 1) distinct points p0, . . . , pr ∈ P1. Let V ⊂ H0(P1, E) be a generic

(r + 1) dimensional subspace. Let e : V ⊗ OP1−→E be the evaluation map. The points

p0, . . . , pr give vectors v0, . . . , vr ∈ V , unique up to scaling, defined by the property that

e(vi) = 0 in the fiber E|pi . Choose a generic point t ∈ P1. We get (r + 1) points

x0, . . . , xr ∈ PE∗|t ∼= Pr−1 given by e(v0), . . . , e(vr) evaluated at t. For generic V and

t, it is easy to check that these points are in linear general position, using the fact that

E⊗O(−1) is generated by global sections. Any element of Aut(PE/P1) that fixes V must

fix x0, . . . , xr. But then it must act as the identity on the projective space PE∗|t, and

hence on the dual projective space PE|t. Since t ∈ P1 is general, it follows that it must be

the identity. �

Proposition 4.5. There exist ample vector bundles E of every rank ≥ 4 such that a

general point of PH0(P1, E ⊗ detE ⊗KP1) has a positive-dimensional stabilizer under

Aut(PE/P1). In particular, we may take E = O(1)r−1 ⊕ O(k + 1) where k ≥ 1 and r ≥ 4.

Proof. Take

E = O(a)r−1 ⊕ O(b),

where 0 < a < b are to be determined. Elements of Aut(E/P1) can be represented by

block lower triangular square matrices

M =

(
A

U B

)
,

where A ∈ GLa(K), B ∈ K×, and U = (ui) is an (r − 1) length row with entries in

H0(P1,O(b− a)). Set d = (r− 1)a+ b so that detE = O(d). Suppose a, b, and r, are such

that

(r − 1)(b− a+ 1) ≥ b+ d− 1 = (r − 1)a+ 2b− 1. (4.11)

Take a general element of H0(P1, E ⊗ detE ⊗KP1); say it is given by the column vector

v = (p1, . . . , pr−1, q)
T ,

where the pi (resp q) are homogeneous polynomials in X,Y of degree a + d − 2 (resp

b+ d− 2). We take A = idr−1 and B = λ for some λ ∈ K×, and show that there exists a

U = (ui) such that Mv = v. Indeed, we have Mv = (p1, . . . , pr, q
′), where

q′ = λq +
∑

uipi.

Let W ⊂ H0(P1,O(a+ d− 1)) be the vector space spanned by p1, . . . , pr−1. Consider the

multiplication map

H0(P1,O(b− a))⊗W−→H0(P1,O(b+ d− 2)).

Thanks to (4.11), the dimension of the source is at least as much as the dimension of the

target. It is easy to check that the map is in fact surjective for generic p1, . . . , pr−1. In
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particular, there exist ui ∈ H0(P1,O(b− a)) for i = 1, . . . , r − 1, such that

q(1− λ) =
∑

uipi.

With this choice of U = (ui), we get M such that Mv = v.

Finally, note that the requirement (4.11) is satisfied for a = 1 and b = k + 1 if k ≥ 1

and r ≥ 4. �

Corollary 4.6 (Theorem B). Let r ≥ 3 and d ≥ r + 1. There exist ample vector bundles

E of rank r and degree d on P1 such that for X = PE and the complete linear series

L = OX(1), the projection-ramification map ρX is not generically finite onto its image.

Proof. Take E such that the action of Aut(X/P1) on a generic point of |KX ⊗Lr+1| has a

positive-dimensional stabilizer (see Proposition 4.5). Since ρX : Gr(r + 1, H0(X,L)) 99K
|KX ⊗Lr+1| is equivariant with respect to the action of Aut(X/P1), and a generic point of

the source does not have a positive-dimensional stabilizer (see Proposition 4.4), it follows

that ρX cannot be dominant. Since the dimension of the source and target of ρX are the

same, ρX is not generically finite. �

Remark 4.7. In all the examples of scrolls where we know that maximal variation fails, the

failure is implied by the presence of generic stabilizers. We do not know, however, if the

presence of stabilizers is equivalent to the failure of maximal variation.

Remark 4.8. If k = 1 and r ≥ 4, then X is the most balanced scroll of its degree and rank,

and hence, generic in moduli. Therefore, the non-dominance of projection-ramification is

not directly connected to the eccentricity of the splitting type of a scroll.

4.3. Eccentric threefold scrolls. Theorem B leaves open the case of threefold scrolls

(surface scrolls are covered by Corollary 3.16). We settle this case in this section by showing

that the projection-ramification map for threefold scrolls is always generically finite, and

thus the statement of Theorem B is sharp in r.

Let E = O(1)⊕ O(1)⊕ O(k + 1), for k ≥ 0. Set X = PE and L = OX(1).

Proposition 4.9. The map ρX : Gr(4, H0(X,L)) 99K |KX + 4L| is birational.

Proof. The proof is by direct calculation. Consider the standard open subset A1 =

SpecK[t] ⊂ P1. Choose trivializations of the three summands of E over A1 given by

sections X1, X2, X3.

Let W ⊂ H0(X,L) be a general 4-dimensional subspace. Then the projection map

W−→H0(P1,O(1)⊕O(1)) will be an isomorphism. Therefore, we can choose a basis of W

of the form

X1 + aX3, X2 + bX3, tX1 + cX3, tX2 + dX3,

where a, b, c, d ∈ K[t] have degree at most k+ 1. Using (4.10), we get that the ramification

divisor of this W is

ρ(W ) = (d− bt)X1 + (at− c)X2 +
(
(a′t− c′)(bt− d) + (at− c)(d′ − b′t)

)
X3

= αX1 + βX2 + γX3, say.
(4.12)
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In this calculation, p′ denotes the derivative dp
dt . Note that we have

α = d− bt
β = at− c
γ = α′β − β′α+ αa+ βb.

(4.13)

The degrees of α, β, γ are (at most) k + 2, k + 2, and 2k + 2, respectively.

Consider the affine space A4k+8 whose coordinates correspond to the coefficients of

a, b, c, d, and likewise, the affine space A4k+9 whose coordinates correspond to the coeffi-

cients of α, β, γ. The expression in (4.12) defines a map

ρ∗ : A4k+8−→A4k+9

(a, b, c, d) 7→ (α, β, γ).

Note that the choice of basis of W gives a birational isomorphism Gr(4, H0(X,L)) ∼= A4k+8.

Via this isomorphism, the projection-ramification map ρ is simply the composite of ρ∗ and

the standard projection π : A4k+9 \ {0}−→P4k+8 = PH0(P1, E ⊗ detE ⊗ O(−2))∗. Let

Z ⊂ A4k+9 be the image of ρ∗.

Let (a, b, c, d) ∈ A4k+8 be a generic point. We show that the map induced by ρ on

tangent spaces is injective at this point. For ε2 = 0, we have

ρ∗ : (a+ âε, b+ b̂ε, c+ ĉε+ d+ d̂ε) 7→ (α+ α̂ε, β + β̂ε, γ + γ̂ε),

where

α̂ = d̂− b̂t,

β̂ = ât− ĉ, and

γ̂ = (bt− d)(â′t− ĉ′) + (at− c)(d̂′ − b̂′t)

+ (ât− ĉ)(d′ − b′t) + (b̂t− d̂)(a′t− c′).

Suppose α̂ = β̂ = γ̂ = 0. Then (bt − d)(â′t − ĉ′) + (at − c)(d̂′ − b̂′t) = 0. However, for

generic a, b, c, d, the polynomials (bt− d) and (at− c) have degree (k+ 2) and are relatively

prime. So they have no non-trivial syzygy with coefficients of degree at most k + 1. As a

result, we get â′t− ĉ′ = 0 and d̂′ − b̂′t = 0. Along with ât− ĉ = 0 and d̂− b̂t = 0, we get

â = b̂ = ĉ = d̂ = 0. Thus, dρ∗ is injective, and hence ρ∗ : A4k+8−→Z is generically finite.

We now prove that if (α, β, γ) is a general point in the image of ρ∗, and λ 6= 0, 1 is

a constant, then λ(α, β, γ) is not in the image of ρ∗. In other words, the projection

π : A4k+9 \ {0}−→P4k+8 restricted to Z \ {0} is generically injective. To this end, suppose

(a, b, c, d) is a general point in A4k+8. Then α = d − bt and β = at − c will be degree

k + 2 polynomials which are relatively prime. For any polynomial p(t), let p+ denote the

highest degree coefficient of p. Observe that β+ = a+. If λ(α, β, γ) is also realized by some
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quadruple (ã, b̃, c̃, d̃) then we get the equations:

λα = d̃− b̃t (4.14)

λβ = ãt− c̃

λγ = λ2(α′β − β′α) + λαã+ λβb̃

The second equation gives ã+ = λβ+. The last equation gives

γ = λ(α′β − β′α) + αã+ βb̃.

Combining the above with the equation for γ in (4.13), we get

α(a− β′) + β(b+ α′) = α(ã− λβ′) + β(b̃+ λα′).

Since α and β are relatively prime and have degree greater than a, b, ã, b̃, the same syzygy

argument gives

a− β′ = ã− λβ′

b+ α′ = b̃+ λα′.

By examining top coefficients, and using a+ = β+, ã+ = λβ+ we get

β+ − (k + 2)β+ = λβ+ − λ(k + 2)β+, or equivalently

(1− λ)β+ = (1− λ)(k + 2)β+.

Given our assumption on λ, this is only possible if β+ = 0. However, since (a, b, c, d) were

chosen generically, β+ = a+ would not be zero, providing our desired contradiction.

We have proved that π : Z \ {0}−→P4k+8 is of degree 1. Therefore, it suffices to show

that the degree of ρ∗ : A4k+8−→Z is 1. Since we know that the map is generically finite,

it suffices to show that a generic fiber is connected. Let (α, β, γ) ∈ Z be a generic point.

The preimage of this point is cut out by the equations in (4.13). Note that these are

affine linear equations in a, b, c, d, and hence their intersection is an affine space, which is

connected. �

Corollary 4.10. The projection-ramification map ρX is dominant for every smooth three

dimensional rational normal scroll X ⊂ Pn.

Proof. Every such X isotrivially specializes to P (O(1)⊕ O(1)⊕ O(k + 1)). The statement

now follows from the upper semi-continuity of fiber dimension. �

The case of eccentric surface scrolls follows by similar calculations as in the proof of

Proposition 4.9; we omit the details.

Proposition 4.11. Let E = O(1) ⊕ O(k + 1), for k ≥ 0. Set X = PE and L = OX(1).

Then the projection-ramification map ρX : Gr(3, H0(X,L)) 99K |KX + 3L| is birational.
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5. Maximal variation for generic scrolls

In this section, we establish that the projection-ramification map is generically finite

(equivalently, dominant) for most scrolls, notwithstanding the examples provided by

Theorem B. We begin by treating the cases of some particular scrolls by hand. We then

bootstrap these to more general results using degeneration arguments.

5.1. Maximal variation for some particular cases. Given an ample vector bundle E

on P1, we say that maximal variation holds for E if the projection-ramification map is

generically finite (equivalently, dominant) for X = PE embedded by the complete linear

series associated to L = OX(1).

Proposition 5.1. Maximal variation holds for E = O(1)r. In fact, the degree of the

projection-ramification map in this case is 1.

Proof. We know that the projection-ramification map

ρ : Gr(r + 1, H0(P1,O(1)r)) 99K PH0(P1,O(r − 1)r)∗

is Aut PE equivariant. In this case, it is easy to check that the action of Aut(PE/P1) =

PGLr has a unique open orbit and trivial generic stabilizers on both the source and the

target of ρ. Hence, ρ must be birational. �

Proposition 5.2. Maximal variation holds for E = O(2)r.

Compared to Proposition 5.1, our proof of Proposition 5.2 is significantly more involved,

and does not yield the degree.

Proof. We exhibit a point Gr(r + 1, H0(P1, E)) at which ρ is defined, and at which the

induced map dρ on the tangent space is non-singular. It follows that ρ is a local isomorphism

at this point, and hence dominant overall.

Our proof is by direct calculation. We calculate on A1 = SpecK[x] ⊂ P1 and identify

O(n) with O(n · ∞). Then the global sections of O(n) are identified with polynomials

in x of degree at most n. Denote the generator of the ith summand of E(−2) by Xi.

Consider the point of Gr(r+1, H0(P1, E)) represented by the vector space V ⊂ H0(P1, E)

spanned by the (r + 1) sections v1, . . . , vr+1 defined as follows. Set vi = (x − ai)2Xi for

0 ≤ i ≤ r − 1, and vr =
∑
piXi, where ai ∈ K, and pj ∈ H0(P1,O(2)) are generic. By

(4.10), the ramification divisor associated to V is cut out by the determinant of the matrix

M =


(x− a1)2 0 · · · 0 2(x− a1)X1

0 (x− a2)2 · · · 0 2(x− a2)X2

0 0
. . . 0

...

0 0 · · · (x− ar)2 2(x− ar)Xr

p1 p2 · · · pr
∑
p′iXi

 .

We leave it to the reader to check that R = detM is not identically zero.
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To do the tangent space computation, we choose elements wi ∈ H0(P1, E), and change

vi to vi + εwi, where ε2 = 0. Let Rε be the equation of the discriminant of the projection

given by Vε ⊂ H0(P1, E) ⊗ K[ε]/ε2, where Vε is spanned by v1 + εw1, . . . , vr+1 + εwr+1.

Concretely, Rε is the determinant of a matrix Mε given by (4.10), which reduces to M

modulo ε. Note that Rε is an element of H0(P1, E ⊗ O(2r − 2))⊗K[ε]/ε2, and we have

Rε = R+ εS(w1, . . . , wr+1),

for some S(w1, . . . , wr+1) ∈ H0(P1, E ⊗ O(2r − 2)). Furthermore, the map

S : H0(P1, E)r+1−→H0(P1, E ⊗ O(2r − 2)) (5.1)

is a linear map. To show that dρ is non-singular at V , it suffices to show that S is surjective.

For 1 ≤ i ≤ r and 1 ≤ j ≤ r + 1, let Ei,j ∈ H0(P1, E)r+1 be the element corresponding

to (w1, . . . , wr+1) where wj = Xi and w` = 0 for all ` 6= j. For i 6= j and 1 ≤ j ≤ r and

q ∈ H0(P1,O(2)), by direct calculation we get

S (qEi,j) =
(x− a1)2 · · · (x− ar)2pj

(x− ai)2(x− aj)2
· [q, (x− ai)2] ·Xi,

where the notation [a, b] means a′b− ab′. Similarly, we get

S (qEi,r+1) = −(x− a1)2 · · · (x− ar)2

(x− ai)2
· [q, (x− ai)2] ·Xi,

and

S (qEi,i) = detMi, (5.2)

where Mi is obtained from M by changing the (i, i)-th entry from (x− ai)2 to q and the

(i, r + 1)-th entry from 2(x− ai)Xi to q′Xi.

Fix an i with 1 ≤ i ≤ r, and consider the subspace Wi ⊂ H0(P1, E)r+1 spanned by qEi,j
for j 6= i. By our calculations above, S maps Wi to the subspace of H0(P1, E ⊗O(2r− 2))

spanned by H0(P1,O(2r))⊗Xi. We begin by identifying S(Wi).

For 1 ≤ j ≤ r and j 6= i, set

Qi,j =
(x− a1)2 · · · (x− ar)2pj

(x− ai)2(x− aj)2
,

and

Qi,r+1 = −(x− a1)2 · · · (x− ar)2

(x− ai)2
.

We claim that, there is no non-trivial linear relation among the r polynomials Qi,j for

j ∈ {1, . . . , r + 1} \ {i}. Indeed, suppose we had a linear relation∑
ljQi,j = 0,

then dividing throughout by (x−a1)2···(x−ar)2
(x−ai)2 gives the relation

r∑
j=1

lj
pj

(x− aj)2
+ lr+1 = 0.
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If lj 6= 0 for some j with 1 ≤ j ≤ r, then we have a pole on the left side at x = aj , but not

on the right side (note that (x− aj) does not divide pj by the genericity of pj). Therefore,

we must have lj = 0 for all j, and hence also lr+1 = 0. Consider the map

H0(P1,O(1))⊗ 〈Qi,j | j ∈ {1, . . . , r + 1} \ {i}〉−→H0(P1,O(2r − 1)). (5.3)

We just saw that this map is injective. But both sides have the same dimension, and hence

the map must be surjective. Finally, it is easy to see that the image of the map

H0(P1,O(2))−→H0(P1,O(2)), q 7→ [q, (x− ai)2] (5.4)

is (x− ai) ·H0(P1,O(1)). By (5.3) and (5.4), we conclude that the image of the map

S : Wi = 〈qEi,j | j ∈ {1, . . . , r + 1} \ {i}−→H0(P1,O(2r))⊗Xi

is (x− ai)H0(P1,O(2r− 2))⊗Xi. In other words, the cokernel of the map is K⊗Xi where

the map

H0(P1,O(2r))⊗Xi−→K⊗Xi

is given by evaluation at ai. Putting together the maps for various i, we see that the

cokernel of the map

S :
⊕
i

Wi−→H0(P1, E ⊗ O(2r − 2)) = H0(P1,O(2r))⊗ 〈X1, . . . , Xr〉

is K⊗ 〈X1, . . . , Xr〉, where the map

H0(P1, E ⊗ O(2r − 2)) = H0(P1,O(2r))⊗ 〈X1, . . . , Xr〉−→K⊗ 〈X1, . . . , Xr〉 (5.5)

on H0(P1,O(2r))⊗Xi is given by evaluation at ai.

To show that S is surjective, it is now enough to show that the map

H0(P1,O(2))⊗ 〈qEi,i | i ∈ {1, . . . , r + 1}〉−→K⊗ 〈X1, . . . , Xr〉 (5.6)

obtained by composing (5.1) and (5.5) is surjective. Recall from (5.2) that we have

S(qEi,i) = detMi, where Mi is obtained from M by changing the (i, i)-th entry to q and

the (i, r + 1)-th entry to q′Xi. Taking q = (x− ai) gives

S(qEi,i) = detMi = ±
∏
j 6=i

(ai − aj)2pi(ai)Xi,

which is a non-zero multiple of Xi. That is, the images of (x − ai)Ei,i under S span

K⊗〈X1, . . . , Xr〉, and hence the map in (5.6) is surjective. The proof is now complete. �

Our next goal is to bootstrap from Proposition 5.1 and Proposition 5.2 to deduce maximal

variation for generic scrolls of sufficiently high degree. We do this by a degeneration

argument. We degenerate a vector bundle E to a vector bundle E0 on the nodal rational

curve P0 = P1 ∪P1, and show that the projection-ramification map for E0 is dominant.

For this to work, we have to define the projection-ramification map for nodal curves. It

turns out that with the most näıve definition of linear series on scrolls on nodal curves,

we do not get a dominant projection-ramification map. As a remedy, we work with the

(linked) limit linear series of higher rank as developed in [17] and [15]. In the literature,

there are a few different versions of the notion of a limit linear series. We use [15] for the
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foundations of the theory, and following the terminology there, call our limit linear series

linked linear series.

5.2. Linked linear series. We need linked linear series for the simplest singular curve,

namely a (projective, connected) nodal curve C which is the nodal union of two smooth

(projective, connected) curves C1 and C2, but we need them for vector bundles of rank

higher than 1. Let B be the spectrum of a DVR with special point 0, general point η.

Let π : X−→B be a smoothing of C with non-singular total space X. That is, π is a flat,

proper, family of connected curves, smooth over η, and isomorphic to C over 0. Such a

family is a particularly simple example of an almost local smoothing family [15, § 2.1–2.2].

Let gi be the genus of Ci for i = 1, 2, and g = g1 + g2 the genus of Xη.

Let E be a vector bundle of rank r on C. The multi-degree of E is the pair of integers

(degE|C1 ,degE|C2). The degree or total degree of E is the sum degE = degE|C1+degE|C2 .

Once and for all, fix a vector bundle E of rank r on X, and set E = E|C . Let E have

degree d and multi-degree (w1, w2). Fix a positive integer k. Our next task is to recall the

definition of the space of linked linear series of dimension k. It will be a B-scheme whose

fiber over η is the Grassmannian Gr(k,H0(Xη,Eη)). The key idea is to not only consider

the sections of E, but also of its various twists, namely the vector bundles obtained by

tensoring with the powers of OX(Ci).

Fix maps θ1 : OX−→OX(C1) and θ2 : OX−→OX(C2). The choice of these maps is

auxiliary, and each one is unique up to multiplication by an element of O∗B. For n ∈ Z, set

En =

{
E⊗ OX(C1)⊗n if n ≥ 0,

E⊗ OX(C2)⊗(−n) if n < 0.

The maps θ1 and θ2 induces maps

θn : Em−→Em+n

given by

θn =

{
θn1 if n ≥ 0,

θ−n2 if n < 0.

Note that the multi-degree of En is (w1−nr,w2 +nr). In particular, for sufficiently negative

n, say for n ≤ n1, we have H0(C2,En|C2) = 0, and similarly, for sufficiently positive n, say

n ≥ n2, we have H0(C1,En|C1) = 0. Assume, without loss of generality, that n2 ≥ n1. Set

d1 = w1 − n1r, and d2 = w2 + n2r, and b = n2 − n1.

Observe that

d1 + d2 − rb = d.

Definition 5.3 (linked linear series). Let S be a B-scheme. A k-dimensional linked linear

series on ES consists of sub-bundles Vn−→π∗(En)S of rank k for every n ∈ Z satisfying

the following compatibility condition. For every m,n ∈ Z, the map

π∗θn : π∗(Em)S−→π∗(Em+n)S maps Vm−→Vm+n. (5.7)
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Definition 5.3 is a special case of [15, Definition 3.3.2]. From now on, we will talk about

the image of an element in Vm in Vm+n; this should be understood as the image under the

map π∗θn.

Remark 5.4. The notion of a sub-bundle of a push-forward is a bit subtle; it is treated

in depth in [15, Definition B.2.1]. We recall the main points. For a flat proper morphism

X−→S and a vector bundle E on S, a sub-bundle of π∗E is a vector bundle V on S along

with a map i : V−→π∗E such that for every T−→S, the pull-back iT : VT−→π∗(ET ) is

injective. Note that this is a local condition on S. For Noetherian schemes such as ours,

it is enough to check this condition for the T−→S that are inclusions of closed points.

Alternatively, if F0−→F1−→· · · is a complex of vector bundles on S quasi-isomorphic to

Rπ∗E, then a sub-bundle of π∗E is a vector bundle V along with a map i : V−→π∗E such

that the composite V−→F0 is an injection of vector bundles (that is, the dual map is

surjective).

Remark 5.5. Definition 5.3 defines linked linear series on a particular vector bundle E. We

can also vary the choice of the vector bundle, as is done in [15]; in that case, one imposes

an additional vanishing condition on the vector bundles to ensure boundedness of the

moduli space of linked linear series.

Definition 5.6 (Simple linked linear series). Let S = SpecK, where K is a field, and let

V = (Vn | n ∈ Z) be a linked linear series on S. We say V is simple if there exist integers

w1, . . . , wk, not necessarily distinct, and elements vi ∈ Vwi such that for every w ∈ Z, the

images of v1, . . . , vk in Vw form a basis of Vw.

Note that if S−→B maps to the generic point η, then the data of a linked linear series

V = (Vn) is equivalent to the data of an individual Vn for any n ∈ Z, and in particular,

for n = 0. As a result, the functor that associates to S−→η the set of k-dimensional

linked linear series of ES is represented by the Grassmannian Gr(k,H0(Xη,Eη)). The

main theorem of [15] is the following representability theorem.

Theorem 5.7 ([15, Theorem 3.4.7]). The functor that associates to a B-scheme S−→B
the set of linked linear series on ES is representable by a projective B-scheme G(k,E)

isomorphic to the Grassmannian Gr(k,H0(Xη,Eη)) over η. The locus of simple linear

series Gsimple(k,E) ⊂ G(k,E) is an open subscheme, and the map Gsimple(k,E)−→B has

universal relative dimension at least k(d− k − r(g − 1)).

The last statement implies that if v ∈ Gsimple is such that Gsimple has relative dimension

at most k(d− k − r(g − 1)) at v, then it has relative dimension exactly k(d− k − r(g − 1))

at v and, furthermore, it is an open map near v. In particular, v is in the closure of

Gr(k,H0(Xη,Eη)).

Remark 5.8. Osserman proves a stronger theorem, namely a relative version of the statement

above, over the stack of vector bundles on X. But the statement above is enough for our

purposes.
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Although the definition of a linked linear series demands that we specify infinitely many

vector bundles Vn, one for each n ∈ Z, this is neither practical nor necessary. In the best

case, only specifying the extremal ones, namely Vn1 and Vn2 , suffices, provided that they

satisfy some compatibility conditions. The original definition of limit linear series due to

Eisenbud–Harris [5, 4] in the rank 1 case and Teixidor i Bigas [17] in the general case, took

this minimalist approach.

Let En be the restriction of En to the central fiber C = X0, and set p = C1 ∩ C2.

Definition 5.9 (EHT limit linear series). A k-dimensional EHT limit linear series on

E consists of k-dimensional subspaces Wi ⊂ H0(Ci, Eni |Ci) for i = 1, 2 that satisfy the

following two conditions.

(1) If ai1 ≤ · · · ≤ aik is the vanishing sequence for (Eni |Ci ,Wi) at p for i = 1, 2, then for

every v = 1, . . . , k we have

a1
v + a2

k+1−v ≥ b.

(2) There exist bases si1, . . . , s
i
k for Wi for i = 1, 2, such that siv has order of vanishing

aiv at p, and if we have a1
v + a2

k+1−v = b for some v, then

φ̃(s1
v) = s2

k+1−v,

where φ̃ : En1(−a1
v ·p)|p−→En2(−a2

k+1−v ·p)|p is the isomorphism obtained by taking

the appropriate twist of the identity map.

We say that (W1,W2) is a refined EHT limit linear series if equality holds in (1) for all

v = 1, . . . , k.

This definition is adapted from [15, Definition 4.1.2]. Note that, due to the vanishing

condition on the twists of E, the restriction map

H0(C,Eni)−→H0(Ci, Eni |Ci)

is an injection. Via this injection, we sometimes treat Wi as a subspace of H0(Ci, Eni |Ci).
Although the notions of a linked linear series and an EHT limit linear series differ in

general, they essentially agree when we restrict to the simple linked linear series and the

refined EHT limit linear series. More precisely, we have the following statement.

Proposition 5.10. Let S be a B-scheme, and V = (Vn | n ∈ Z) a linked linear series

on ES. For every s ∈ S over 0 ∈ B, taking Wi = Vni |s for i = 1, 2 gives an EHT limit

linear series. Conversely, assume that S reduced, and let Wi ⊂ π∗(Eni)S for i = 1, 2 be

sub-bundles whose restrictions to every s ∈ S over η ∈ B agree under the isomorphism

(En1)η ∼= (En2)η, and to every s ∈ S over 0 ∈ B define a refined EHT limit linear series.

Then there exists a unique linked linear series V = (Vn | n ∈ Z) on ES such that Wi = Vni .

Furthermore, for every s ∈ S over 0, the series V |s is simple.

Proof. Proving that (W1,W2) is an EHT limit linear series is straightforward, and left to

the reader. It is a special case of [15, Theorem 4.3.4] and the equivalence of type I and

type II series in the two component case ([15, Remark 3.4.15].
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The converse also follows from the proof of [15, Theorem 4.3.4], but it is not explicitly

stated there. So we offer a proof.

First, suppose that S lies over η ∈ B. Then Vn ⊂ π∗(En)S is determined uniquely as the

image of Vni = Wni ⊂ π∗(Eni)S for either i = 1 or i = 2.

Next, suppose that S = SpecK, and it lies over 0 ∈ B. Denoting (En)S by En, we

must construct Vn ⊂ H0(C,En). By composing θni−n : En−→Eni and the restriction

Eni−→Eni |Ci , we get a map

ι : H0(C,En)−→H0(C1, En1 |C1)⊕H0(C2, En2 |C2).

The vanishing condition on the twists of E mean that ι is injective. The compatibility

condition in Definition 5.3 implies that we must choose Vn so that ι(Vn) ⊂ W1 ⊕W2.

We claim that dim ι−1(W1 ⊕W2) = k, so that there is a unique choice of Vn, namely

Vn = ι−1(W1 ⊕W2).

Suppose s ∈ ι−1(W1 ⊕W2). Then ι(s) is a linear combination of (s1
1, 0), . . . , (s1

k, 0), and

(0, s2
1), . . . , (0, s2

k). Write ι(s) = (s1, s2). Since si is obtained by applying θn−ni , and θ on

Ci at p corresponds to multiplication by the uniformizer, we see that

ordp(s1) ≥ n− n1, and likewise, ordp(s2) ≥ n2 − n. (5.8)

Let v1 ∈ {1, . . . , k} be the smallest such that a1
v1 ≥ n− n1, and v1 + c the smallest such

that a1
v1+c > n−n1. Since (W1,W2) is refined, and n2−n1 = b, we see that v2 = k+ 1− v1

is the largest such that a2
v2 ≤ n2−n, and v2− c the smallest such that a2

v2+c < n2−n. The

vanishing conditions (5.8) imply that ι(s) must be a linear combination of (s1
v1 , 0), . . . , (s1

k, 0)

and (0, s2
v2−c), . . . , (0, s

2
k). Suppose

ι(s) =

k∑
`=v1

α` · (s1
` , 0) +

k∑
`=v2−c

β` · (0, s2
` ),

where α` and β` are elements of the field K. Since s is a section on the entire nodal curve

C, its two restrictions to C1 and C2 are equal at p. In terms of the two components of

ι(s), and in light of the gluing condition (2) in Definition 5.9, this equality is equivalent to

α` = βk+1−` for v1 ≤ ` < v1 + c. That is, ι(s) is a linear combination of the k elements

(s1
v1 , s

2
v2), . . . , (s1

v1+c−1, s
2
v2−c+1), (s1

v1+c, 0), . . . , (s1
k, 0), (0, s2

v2+1), . . . , (s2
k, 0).

Conversely, it is easy to see that any such linear combination lies in W1 ⊕W2. Hence the

claim that dim ι−1(W1 ⊕W2) = k.

Set Vn = ι−1(W1 ⊕W2). To see that V is simple, we must exhibit appropriate wi and

vi ∈ Vwi for i = 1, . . . , k. Take wi = n− n1 − a1
i , and let vi ∈ Vwi ⊂ H0(C,Ewi) be such

that ι(vi) = (s1
i , s

2
k+1−i). Then the images of v1, . . . , vk form a basis of Vn for all n ∈ Z.

For more general S, consider the map

ι : π∗(En)S−→π∗(En1)S/W1 ⊕ π∗(En2)S/W2,

obtained by composing ι = π∗(θn1−n⊕θn2−n) and the projections π∗(Eni)S−→π∗(Eni)S/Wi.

We proved that, for every SpecK−→S, the kernel of ι⊗OS K is k-dimensional. Since S is
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reduced, it is easy to prove that Vn = ker ι is a sub-bundle of π∗(En) (see [15, B.3.4 with

reduced B]). It is also easy to check that V = (Vn | n ∈ Z) is a linked linear series, the

only one that satisfies Vni = Wi. The proof is now complete. �

Proposition 5.10 allows us to combine the economy of specifying an EHT limit linear

series with the convenient functorial definition of a linked linear series. We use this in the

definition of the projection-ramification map in terms of linked linear series.

5.3. Projection-ramification with non-generic vanishing sequence. We consider

the projection-ramification map for linear series with a non-generic vanishing sequence.

The analysis of such series plays a key role in defining the projection-ramification map for

linked linear series.

Let C be a smooth curve and p ∈ C a point. Let E be a vector bundle on C of rank r.

The projective spaces associated to the vector spaces E(np)|p, for n ∈ Z, are canonically

isomorphic to each other, so we identify them. The vanishing sequences considered are at

the point p. Choose a uniformizer t of C at p.

Suppose V ⊂ H0(C,E) is an (r + 1)-dimensional subspace with the vanishing sequence

(a, . . . , a︸ ︷︷ ︸
i

, a+ 1, . . . , a+ 1︸ ︷︷ ︸
r+1−i

), (5.9)

for some i with 1 ≤ i ≤ r, and a ≥ 0. Let v1, . . . , vr+1 be a basis of V adapted to the

vanishing sequence, namely a basis v1, . . . , vr+1 such that in the stalk Ep, we can write

v1 = taṽ1, . . . , vi = taṽi, vi+1 = ta+1ṽi+1, . . . , vr+1 = ta+1ṽr+1, (5.10)

for some ṽ1, . . . , ṽr+1 ∈ Ep such that the images of ṽ1, . . . , ṽi in the fiber E|p are linearly

independent, and the same holds for the images of ṽi+1, . . . , ṽr+1. Here we are slightly

abusing the notation by denoting vi and its image in Ep under the natural evaluation map

by the same letter. Let V 0 ⊂ E|p be spanned by the images of ṽ1, . . . , ṽi, and V 1 ⊂ E|p by

the images of ṽi+1, . . . , ṽr+1. It is easy to check that a different choice of basis adapted

to the vanishing sequence gives the same V 0 and V 1. By construction, dimV0 = i and

dimV 1 = r + 1 − i, and therefore, dim(V 0 ∩ V 1) ≥ 1. We say that V has transverse

vanishing at p if

dim(V 0 ∩ V 1) = 1. (5.11)

Note that if V is base-point free at p, then dimV 0 = r and dimV 1 = 1, so V automatically

has transverse vanishing.

Proposition 5.11. Suppose V ⊂ H0(C,E) is an (r + 1)-dimensional subspace with

vanishing sequence (5.9) and transverse vanishing at p. Then the ramification section rV
of V vanishes to order (r + 1)a+ (r − i) at p. Furthermore, writing rV = t(r+1)a+r−i · r̃,
the one-dimensional subspace of E|p spanned by r̃|p is V 0 ∩ V 1.

Proof. Thanks to transverse vanishing, there exists a basis {s1, . . . , sr} of E|p such that

V 0 = 〈s1, . . . , si〉 and V 1 = 〈si+1, . . . , sr, s1〉.
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Let v1, . . . , vr+1 be a basis of V adapted to the vanishing sequence such that if ṽi are

defined as in (5.10) then the images of ṽ1, . . . , ṽr in E|p are s1, . . . , sr, respectively, and

the image of ṽr+1 is s1. In particular, the r elements ṽ1, . . . , ṽr ∈ Ep give a trivialization

of E around p. Write

ṽr+1 = b1ṽ1 + · · ·+ brṽr

in Ep, where b1, . . . , br ∈ OC,p. Since the image of ṽr+1 in E|p is s1, we get that b1 ≡ 1

(mod mp), and b2, . . . , br ∈ mp. Using the basis v1, . . . , vr+1 of V and the local trivialization

ṽ1, . . . , ṽr of E, we can write rV as the determinant (see (4.10)) as follows

rV = det



ta ata−1ṽ1

. . .
...

ta ata−1ṽi
ta+1 (a+ 1)taṽi+1

. . .
...

ta+1 (a+ 1)taṽr
b1t

a+1 b2t
a+1 · · · br−1t

a+1 brt
a+1 (a+ 1)taṽ1 + ta+1(· · · )


= t(r+1)a+r−iṽ1 + t(r+1)a+r−i+1(· · · ).

Thus the order of vanishing of rV is as claimed. Furthermore, r̃ is given by

r̃ = ṽ1 + t(· · · ).

Since the image of ṽ1, namely s1, spans V 0 ∩ V 1, the proof is complete. �

We are primarily interested in generic (r + 1)-dimensional subspaces V ⊂ H0(C,E). A

generic such V has the vanishing sequence

(0, . . . , 0, 1).

For linked linear series, it is important to also study the V with complementary vanishing

sequence, namely

(0, 1, . . . , 1),

which we now do. For simplicity, we restrict to C = P1.

Let E be an ample vector bundle on P1 of rank r. Fix a point p ∈ P1; all the

vanishing sequences are at p. Consider the locally closed subset U ⊂ Gr(r + 1, H0(P1, E))

parametrizing V ⊂ H0(P1, E) with vanishing sequence

(0, 1, . . . , 1︸ ︷︷ ︸
r

).

Given such a V , let r̃V ∈ PH0(E⊗detE⊗KP1⊗O(−(r−1)p)∗ be the reduced ramification

section, namely the section obtained by dividing the usual ramification section rV by the

(r−1)-th power of a uniformizer at p (see Proposition 5.11). The assignment V 7→ r̃V gives a

variant of the projection-ramification map, which we call the reduced projection-ramification

map

ρ̃ : U−→PH0(P1, E ⊗ detE ⊗KP1 ⊗ O(−(r − 1)p))∗. (5.12)
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Note that, just as in the case of the usual projection-ramification map, the source and the

target of the reduced projection-ramification map are of the same dimension.

Having defined the reduced projection-ramification map, we now relate it back to

the usual projection-ramification map, but on a different vector bundle. Given a one-

dimensional subspace ` ⊂ E|p, define E′` by the exact sequence

0−→E′`−→E−→E|p/`−→0.

There exists a Zariski open subset of the projective space of lines in E|p such that for all `

in this set, the isomorphism class of E′` remains constant. Denote this isomorphism class

by E′gen.

Proposition 5.12. If the usual projection-ramification map

ρ : Gr(r + 1, H0(P1, E′gen)) 99K PH0(P1, E′gen ⊗ detE′gen ⊗KP1)∗

is dominant, then so is the reduced projection-ramification map

ρ̃ : U−→PH0(P1, E ⊗ detE ⊗KP1 ⊗ O(−(r − 1)p))∗.

Proof. Let D ∈ PH0(E ⊗ detE ⊗KP1 ⊗O(−(r− 1)p))∗ be a generic section. Let ` ⊂ E|p
be the one-dimensional subspace defined by D|p, and set E′ = E′`. Since D is generic, we

may assume E′ ∼= E′gen. The inclusion of sheaves E′−→E induces an inclusion of sheaves

E′ ⊗ detE′ ⊗KP1−→E ⊗ detE ⊗ O(−(r − 1)p)⊗KP1 ,

and by construction, D is the image of a section D′ ∈ PH0(E′ ⊗ detE′ ⊗KP1)∗. Since ρ

is dominant for E′, there exists a sequence of subspaces V ′n ∈ Gr(r + 1, H0(P1, E′)) such

that the limit of ρ(V ′n) is D′. Let Vn ⊂ Gr(r + 1, H0(P1, E)) be the image of V ′n. Then

the limit of ρ̃(Vn) is D. Since D was generic, we get that ρ̃ is dominant. �

Corollary 5.13. The reduced projection-ramification map is dominant for the bundles

E = O(1)⊕ O(2)r−1 and E = O(2)⊕ O(3)r−1.

Proof. Follows from Proposition 5.12 and that the projection-ramification map is dominant

for E′ = O(1)r and E′ = O(2)r. �

5.4. Projection-ramification for linked linear series. Recall the setup from § 5.2:

C = C1 ∪ C2 is a nodal union of two smooth projective curves of genus g1 and g2, and

π : X−→B be a smoothing of C. Let E be a vector bundle of rank r on X whose restriction

E to C has multi-degree (w1, w2). The integers n2 ≥ n1 are such that we have vanishing

H0(C2, En|C2) = 0 for all n ≤ n1 and H0(C1, En|C1) = 0 for n ≥ n2. For convenience, we

decrease n1 and increase n2 so that the vanishing on C2 holds for all n ≤ n1 − (w1 − 2g1)

and on C1 for all n ≥ n2 + (w2 − 2g2). Define

d1 = w1 − n1r, d2 = w2 + n2r, and b = n2 − n1,

as before.
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Set E′ = E⊗ detE⊗ ωX/B . Then E′ is a vector bundle of rank r on X whose restriction

E′ to C has multi-degree (w′1, w
′
2) where

w′1 = w1 + r(w1 − 2g1 + 1) and w′2 = w2 + r(w2 − 2g2 + 1).

We set

n′1 = n1(1 + r) and n′2 = n2(1 + r),

and observe that we have vanishings H0(C2, E
′
n|C2) = 0 for n ≤ n′1 and H0(C1, E

′
n|C1) = 0

for n ≥ n′2. We also set

b′ = n′2 − n′1 = b(1 + r).

Our next goal is to define a rational map

ρ : G(r + 1,E) 99K G(1,E′) (5.13)

that extends the projection-ramification map

ρ : Gr(r + 1, H0(Xη,Eη)) 99K Gr(1, H0(Xη,E
′
η))

on Xη. For technical reasons, we define the map in (5.13) only on the reduced scheme

underlying G(r + 1,E).

Before defining the map, we identify three conditions on linked linear series on the

central fiber that are required for the map to be defined. To do this, consider a linked

linear series (Vn | n ∈ Z) on C, and let (W1,W2) be the associated EHT limit linear series

namely W1 = Vn1 and W2 = Vn2 (see Proposition 5.10). The first condition we want to

impose is that (W1,W2) be a refined EHT limit linear series; this is an open condition (see

[15, Proposition 4.1.5]). The second condition we want to impose is that the vanishing

sequence of W1 ⊂ H0(C1, En1 |C1) at p is of the form

(a, . . . , a︸ ︷︷ ︸
i

, a+ 1, . . . , a+ 1︸ ︷︷ ︸
r+1−i

) (5.14)

as in (5.9); imposing a particular vanishing sequence is again an open condition (see [15,

Proposition 4.2.5]). Since (W1,W2) is refined, it follows that the vanishing sequence of

W2 ⊂ H0(C2, En2 |C2) at p is

(b− a− 1, . . . , b− a− 1︸ ︷︷ ︸
r+1−i

, b− a, . . . , b− a︸ ︷︷ ︸
i

).

Recall from § 5.3 that W1 yields two vector spaces V 0 and V 1 in the fiber En1 |p, which

we may identify canonically (up to scaling) with the fiber E|p. Likewise, W2 yields

two analogous vector spaces, call them Λ0 and Λ1, in E|p. The gluing condition in the

definition of EHT limit linear series (Definition 5.9) and the definition of these vector

spaces immediately shows that

V 0 = Λ1 and V 1 = Λ0. (5.15)

The third condition we want to impose is that these two vector spaces be transverse,

namely dim(V 0 ∩ V 1) = 1.

Let U ⊂ G(r + 1,E) be the complement of the union of the following closed sets:



PROJECTION AND RAMIFICATION 37

(1) the closure of the subset of Gr(r+1, H0(Xη,Eη)) corresponding to V ⊂ H0(Xη,Eη)

for which the evaluation map V ⊗ OXη−→Eη has generic rank less than r.

(2) the set of linked linear series (Vn | n ∈ Z) on C such that the associated EHT limit

linear series (W1,W2) is not refined, or does not have the vanishing sequence as in

(5.14), or does not satisfy the transversality condition dim(V 0 ∩ V 1) = 1.

Give U the reduced scheme structure.

Let S be a reduced B-scheme with a map to U given by the linked linear series

(Vn | n ∈ Z). On XS , we have a diagram analogous to (4.8), namely

detE∗n ⊗ detVn Vn ⊗ OXS En

0 ΩXS/S ⊗ En P (En) En 0.

j

d

e

e (5.16)

Here P (En) is the sheaf of principal parts of En relative to XS−→S, and the bottom row

is the natural exact sequence coming from its definition. The top row is a complex, but it

may not be exact. The maps labeled e are the evaluation maps. The map j is defined by

the maximal minors of e : Vn ⊗ OXS−→En. The map d is the unique map induced by the

other maps in the diagram. By composing d through the inclusion ΩXS/S−→ωXS/S , and

doing some rearrangement, we obtain a map

rn : detVn−→π∗(En ⊗ detEn ⊗ ω∗XS/S) = π∗(E
′
(r+1)n). (5.17)

Consider the two extremal sections, namely those corresponding to n = n1 and n = n2.

Lemma 5.14. Over every s ∈ S over 0 ∈ ∆, the restrictions rn1 |s and rn2 |s define a

one-dimensional refined EHT limit linear series for E′.

Proof. Without further comment, we identify rn1 |s ∈ H0(C,E′(r+1)n1
) with its image in

H0(C1, E
′
(r+1)n1

|C1). We have

E′(r+1)n1
|C1 = En1 ⊗ detEn1 ⊗ ωC |C1 = En1 ⊗ detEn1 ⊗ ΩC |C1 ⊗ OC1(p),

and by construction rn1 |s is the image of the ramification section of Vn1 ⊂ H0(C1, En1 |C1)

under the inclusion map

En1 ⊗ detEn1 ⊗ ΩC |C1−→En1 ⊗ detEn1 ⊗ ωC |C1 = E′(r+1)n1
|C1 .

By Proposition 5.11, the ramification section of Vn1 has order of vanishing (r+ 1)a+ (r− i)
at p, and hence rn1 |s on C1 has order of vanishing (r + 1)a+ (r − i+ 1) at p. Likewise,

rn2 |s on C2 has order of vanishing (r + 1)(b− a− 1) + i at p. Since

(r + 1)a+ (r − i+ 1) + (r + 1)(b− a− 1) + i = (r + 1)b = b′,

we see that rn1 |s and rn2 |s have complementary orders of vanishing, leading to an equality

in condition (1) of Definition 5.9.

We must next ensure that condition (2) of Definition 5.9 holds, that is, the images of

rni |s in the appropriate twists of Eni |p are equal, at least up to scaling. By Proposition 5.11,
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the image of rn1 |s in the appropriate twist of En1 |p spans the line (V 0∩V 1), and the image

of rn2 |s spans the line Λ0 ∩ Λ1. But by (5.15), we have V 1 = Λ0 and V 0 = Λ1, so the two

lines are equal. �

Thanks to Lemma 5.14, we apply Proposition 5.10, and conclude that there exists a

unique (1-dimensional) linked linear series (Rn | n ∈ Z) of E′ on XS for which Rn′1 = detVn1

and Rn′2 = detVn2 , at least if S is reduced. The transformation

(Vn | n ∈ Z) 7→ (Rn | n ∈ Z)

defines a morphism

ρ : U−→G(1,E′), (5.18)

as desired in (5.13). Note that U has the reduced scheme structure.

The fruit of our labor is the following corollary. Let U0 be the fiber over 0 of U−→B.

Corollary 5.15. Suppose v ∈ U0 is such that dimv U0 = (r + 1)(d − rg − 1) and v is

isolated in the fiber of ρ, then the projection-ramification map Gr(r + 1, H0(Xη,Eη)) 99K
PH0(Xη,Eη ⊗ detEη ⊗KXη) is generically finite.

Proof. If dimv U0 = (r + 1)(d− rg − 1), then v is in the closure of Gr(r + 1, H0(Xη,Eη))

by Theorem 5.7. The statement now follows from the upper semi-continuity of fiber

dimension. �

5.5. Maximal variation for generic scrolls of high degree. We now have all the

tools to prove Theorem D.

Theorem 5.16 (Theorem D). Let E be a generic vector bundle on P1 of rank r and

degree d = a(r − 1) + b(2r − 1) + 1, where a, b are positive integers. Then the projection-

ramification map is generically finite, and hence dominant, for E. In particular, the

projection-ramification map is dominant for generic E of degree ≥ (r − 1)(2r − 1) + 1.

Proof. We say that generic dominance holds for rank r and degree d if the projection-

ramification map is dominant (equivalently, generically finite) for the generic vector bundle

of rank r and degree d. The rank will be fixed throughout, so let us drop it from the

discussion. Let us prove that if generic dominance holds for degrees d1 and d2, then it also

holds for degree d = d1 + d2− 1. With the base cases d1 = r (Proposition 5.1) and d2 = 2r

(Proposition 5.2), this proves the theorem.

Take C1 = C2 = P1, and let C = C1 ∪ C2 be their nodal union at one point, which

we take to be the point labeled 0 on both P1s. Let X−→B be a smoothing of C. Note

that any vector bundle on C is the restriction of a vector bundle on X. Therefore, by

Corollary 5.15, it suffices to construct a vector bundle E of degree d on C and a linked

linear series (Vn | n ∈ Z) on E such that the following conditions hold for the point v of

G(r + 1, E′) represented by (Vn | n ∈ Z):

(1) dimv G(r + 1, E) = (r + 1)(d− 1),

(2) ρ is defined at v, and
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(3) v is an isolated point in the fiber of ρ.

We construct E as follows. Let E1 be a generic vector bundle of degree d1 on C1, and E′2
a generic vector bundle of degree d2− 1 on C2. Choose a generic isomorphism E1|0 ∼= E′2|0,

and construct the vector bundle E on C by gluing E1 and E′2 along this isomorphism.

Choose n1 = a and n2 = b+ a for sufficiently negative a and sufficiently positive b. The

isomorphism E1|0 ∼= E′2|0 yields isomorphisms, canonical up to scaling, of E1(m)|0 and

E′2(n)|0 for any m,n ∈ Z.

Having constructed E, we must now construct (Vn | n ∈ Z). By Proposition 5.10, it

is enough to construct Vn1 ⊂ H0(C1, E1 ⊗ O(a)) and Vn2 ⊂ H0(C2, E
′
2(b− a)), provided

they define a refined EHT limit linear series. Let V ⊂ H0(C1, E1) be a generic (r + 1)-

dimensional vector space. Then it will have the vanishing sequence (0, . . . , 0, 1). Hence,

we have V 0 = E|0 and V 1 ⊂ E|0 is 1-dimensional (see § 5.3 for the definition of these two

subspaces). Furthermore, the genericity of V implies that V 1 is a general 1-dimensional

subspace. Define E2 by the sequence

0−→E2−→E′2(1)−→E′2(1)|0/V 1−→0.

Let Λ ⊂ H0(C2, E
′
2(1)) be the image of a general (r+1) dimensional subspace of H0(C2, E2).

Then Λ ⊂ H0(C2, E
′
2(1)) has the vanishing sequence (0, 1, . . . , 1), with Λ0 = V 1 and

Λ1 = V 0. Let Vn1 ⊂ H0(C1, E1⊗O(a)) be the image of V and Vn2 ⊂ H0(C2, E
′
2(b−a)) the

image of Λ. Then Vn1 has the vanishing sequence (a, . . . , a, a+1), and Λ the complementary

vanishing sequence (b− a− 1, b− a, . . . , b− a). By the construction of Λ, there exist bases

of Vn1 and Vn2 that satisfy the gluing condition at 0. In conclusion, Vn1 and Vn2 form a

refined EHT limit linear series, and hence define a linked linear series v = (Vn | n ∈ Z).

It is easy to check that dimv G(r + 1, E) = (r + 1)(d − 1). Indeed, for every linked

linear series w = (Wn | n ∈ Z) in an open subset around v, the EHT limit linear series

associated to w determines w and has the same vanishing sequence as v. In particular,

Wn1 ⊂ H0(C1, E1(a)) is the image of an (r + 1)-dimensional subspace V (w) ⊂ H0(C1, E1)

with vanishing sequence (0, . . . , 0, 1), and Wn2 ⊂ H0(C2, E
′
2(b − a)) is the image of an

(r + 1)-dimensional subspace Λ(w) of H0(C2, E
′
2(1)) with vanishing sequence (0, 1, . . . , 1).

The gluing condition, in turn, implies that Λ(w) is the image of an (r + 1)-dimensional

subspace of the kernel of the map

E′2(1)−→E′2(1)/V (w)1.

By the genericity of V , the isomorphism type of the kernel of this map is constant around

v; that is, the kernel is isomorphic to E2. So, a dimension count for G(r + 1, E) around v
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gives

dimv G(r + 1, E) = dim Gr(r + 1, H0(C1, E1)) + dim Gr(r + 1, H0(C2, E2))

= (r + 1)(d1 − 1) + (r + 1)(d2 − 1)

= (r + 1)(d1 + d2 − 2)

= (r + 1)(d− 1).

Finally, we must check that v is an isolated point in the fiber of

ρ : G(r + 1, E) 99K G(1, E ⊗ detE ⊗ ωC).

For any w ∈ G(r+1, E) in an open set around v with w 6= v, either V (w) 6= V or Λ(w) 6= Λ,

where V,Λ, V (w),Λ(w) are as above. By construction, V ⊂ H0(r + 1, H0(C1, E1)) and

Λ ⊂ H0(r + 1, H0(C2, E
′
2(1))) are isolated in their respective projection-ramification maps.

Therefore, either ρC1(V (w)) 6= ρC1(V ) or ρC2(Λ(w)) 6= ρC2(Λ). In either case, we obtain

that ρ(v) 6= ρ(w), and hence conclude that v is an isolated point in the fiber of ρ. �

6. The Projection-Ramification enumerative problem

In this section, we calculate the degree of the projection-ramification map for as many

varieties of minimal degree as we can, leading to a proof of Theorem E. After treating the

relatively easy cases by hand, we relate the projection-ramification map for the Veronese

surface and the quartic normal scroll with classical geometry of cubic plane curves.

6.1. Rational normal curves. Let X ⊂ Pn be a rational normal curve. Plainly, X is

incompressible, and hence the projection-ramification map

ρ : Gr(2, n+ 1)−→P2n−2

is a regular map. Therefore, we get

deg ρ = c1(ρ∗O(1))2n−2

= c1(OGr(r+1,n+1)(1))2n−2

=
(2n− 2)!

n!(n− 1)!
.

6.2. Quadric hypersurfaces. A smooth quadric hypersurface X ⊂ Pn defined by a

homogeneous quadric equation F (X0, . . . , Xn) = 0. An easy calculation shows that the

projection-ramification map

ρ : Pn−→(Pn)∗

is given in coordinates by

p = [p0 : · · · : pn] 7→
[
∂F

∂X0
(p) : · · · : ∂F

∂Xn
(p)

]
.
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In other words, it is the polarity isomorphism induced by F , namely the isomorphism

between a projective space and its dual given by the non-degenerate bilinear form associated

to F . In particular, we get deg ρ = 1.

6.3. The Veronese surface. Let P2 ∼= X ⊂ P5 be the Veronese surface, the image of

P2 under the complete linear series O(2). In this case, the projection-ramification map

ρ : Gr(3, H0(P2,O(2))) ∼= Gr(3, 6) 99K PH0(P2,O(3))∗ ∼= P9

can be described as follows. Let N ⊂ H0(P2,O(2)) be a net of conics. Then ρ(N)

corresponds to the cubic curve traced out by the nodes of the singular members of N ,

called the Jacobian of N .

Proposition 6.1. Let R ⊂ P2 be a general cubic. The fiber of ρ over R is in natural

bijection with the set of non-trivial 2-torsion line bundles on R. In particular, we have

deg ρ = 3.

The rest of § 6.3 is devoted to the proof of this assertion.

For the proof, we recall some classical projective geometry of cubics and nets of conics

from [3, § 3]. To distinguish the various copies of P2 that naturally arise in this story,

write P2 = PV for a 3 dimensional vector space V . Let N ⊂ H0(PV,O(2)) = Sym2 V be

a general net of conics on PV . Given a point x ∈ PN∗, we denote the associated conic by

Qx.

Associated to the net N are three important cubic plane curves, namely the Jacobian

curve, the discriminant curve, and the Hermite curve. We have already seen the Jacobian

curve R ⊂ PV . The discriminant curve D ⊂ PN∗ is the locus of x ∈ PN∗ such that Qx
is singular. Since a pencil of conics contains three singular members, we see that D is a

cubic curve. Note that if Qx is singular, then it is the union of two distinct lines in PV . A

component line of Qx is called a Reye line. The Hermite curve E ⊂ PV ∗ is the locus of

Reye lines. We leave it to the reader to check that it is a cubic curve.

The three cubic curves introduced above are inter-related. First, we have an isomorphism

τ : D−→R defined by

τ : x 7→ The singular point of Qx. (6.1)

Second, we have a degree 2 map E−→D defined by

` 7→ The x ∈ D such that Qx contains `.

Evidently, the fiber of this map over a given x ∈ D corresponds to the two components of Qx.

The (étale) degree 2 map E−→D ∼= R gives a non-trivial 2-torsion element η ∈ Pic(R)[2].

The element η is characterized by the property that it is the unique non-trivial 2-torsion

element whose pull-back to E is trivial.

Denote by H the hyperplane divisor class on R ⊂ P2.

Lemma 6.2. For every a ∈ R, the line joining a and a+ η is a Reye line. Furthermore,

this Reye line is a component of Qd where d = τ−1(H − 2a− η). Finally, the conjugate
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Reye line, namely the other component of Qd, passes through the points b and b+ η where

b ∈ R differs from a by a non-trivial 2-torsion element other than η.

Proof. Let ` be a general Reye line, and let d ∈ D be such that ` is a component of Qd.

Let x = τ(d) ∈ R be the singular point of Qd. Note ` ∩R consists of three points, one of

which is x. It suffices to show that the other two, say y and z, differ by η.

The point y defines a line in PV ∗. This line intersects E ⊂ PV ∗ in three points, one of

which is `, and the other two are the two components of Qτ−1(y), namely the two pre-images

of y ∈ R under the double covering E−→R. Call these two points y1 and y2. Define z1

and z2 analogously. By construction, the triplets y1, y2, ` and z1, z2, ` are collinear triplets

on E ⊂ PV ∗, and therefore we have the linear equivalence

y1 + y2 ∼ z1 + z2

on E. By pushing this forward to R, we get

2y ∼ 2z.

Therefore, y − z is a (non-trivial) 2-torsion element in Pic(R). However, the pull-back of

y − z is trivial on E, and hence y − z = η.

Finally, let m be the Reye line conjugate to `. Then it contains x, and two other points

of R, say y′ and z′. By what we just proved, y′ − z′ = η. But we also have y′ + z′ ∼ y + z.

Hence y − y′ is a 2-torsion element, non-trivial, and distinct from η. The proof is now

complete. �

We now have all the tools to prove Proposition 6.1.

Proof of Proposition 6.1. Let U ⊂ PH0(P2,O(3))∗ be the locus of smooth cubic curves,

J−→U be the universal Picard scheme, J [2] ⊂ J the closed subscheme of 2-torsion classes,

and J [2]∗ ⊂ J [2] the open and closed subscheme of non-trivial 2-torsion classes. The

projection-ramification map for the Veronese surface factors as

ρ : Gr(3, H0(P2,O(2))) 99K J [2]∗ 99K PH0(P2,O(3))∗

N 7→ (R, η) 7→ R.

We construct J [2]∗−→Gr(3, H0(P2,O(2))) inverse to the first map, which shows that

deg ρ = 3, and identifies the fibers of ρ as non-trivial 2-torsion points. Given (R, η) ∈ J [2]∗,

we need to construct a net N of conics with Jacobian R. We use Lemma 6.2, which tells us

the singular elements of this net in terms of R and η. Let {η, η′, η′′} be the three non-trivial

2-torsion line bundles on R. Define the map R−→PH0(P2,O(2))∗ by

R 3 a 7→ (〈a, a+ η〉) ·
(
〈a+ η′, a+ η′′〉

)
,

where 〈p, q〉 denotes the line joining p and q. We leave it to the reader to check that the

image of R is a plane cubic curve. The span of the image of R is the desired net N . �
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6.4. Quartic surface scroll. Our next objective is to prove that deg ρX = 2 for a generic

quartic surface scroll X ⊂ P5. We begin by recasting ρX in terms of nets of conics on P2,

and bring in the projective geometry introduced in § 6.3.

The generic quartic surface scroll X ⊂ P5 is isomorphic to P1 × P1, embedded by

the complete linear system associated to O(1, 2). Say P1 × P1 = PU × PV , where U

and V are two-dimensional vector spaces. Then the projection-ramification map is a

PGL(U)× PGL(V )-equivariant map

Gr(3, U ⊗ Sym2 V ) 99K P(U ⊗ Sym4 V )∗.

We take the quotient of both sides by the PGL(U) × PGL(V )-action. We begin by

identifying the two quotients.

Let S be a 3-dimensional quadratic space, that is, a vector space with a non-degenerate

quadratic form q. Then we have Aut(S) = O(q) ∼= O(3). The projective space PS

is isomorphic to P2, and it comes with a distinguished smooth conic Q ⊂ PS. The

automorphism group of the pair (PS,Q) is Aut(Q) ∼= PGL2.

Lemma 6.3. The quotient Gr(3, U ⊗ Sym2 V )/PGL(U) × PGL(V ) is birational to the

quotient Hilb3(PS)/AutS.

Proof. Let W be a 3-dimensional vector space. We have a birational isomorphism

Gr(3,U ⊗ Sym3 V )/PGL(U)× PGL(V )

∼ (W ∗ ⊗ U ⊗ Sym2 V )/GL(W )×GL(U)×GL(V ).

Interpret the space (W ∗ ⊗ U ⊗ Sym2 V )/GL(W )×GL(U) as the space of 2× 3 matrices

with entries in Sym2 V , modulo row and column transformations. Set S = Sym2 V ; it has

a canonical (up to scaling) quadratic form given by the conic Q ∼= PV ⊂ PS embedded by

O(2). We can then interpret (W ∗ ⊗ U ⊗ Sym2 V )/GL(W )×GL(U) as the space of 2× 3

matrices with entries in S. We have a rational map

(W ∗ ⊗ U ⊗ Sym2 V )/GL(W )×GL(U) ∼ Hilb3(PS)

2× 3 matrix M 7→ Vanishing locus of 2× 2 minors of M.

It is easy to check that this map is a birational isomorphism—a general triple of points

in PS is the zero locus of 2 × 2 minors of a matrix of linear forms, which is uniquely

determined up to row and column transformations. By taking a further quotient by GL(V ),

we finish the proof. �

Lemma 6.4. The quotient P(U ⊗ Sym4 V )∗/PGL(U) × PGL(V ) is birational to the

quotient Gr(2, (Sym2 S)/q)/AutS.

Proof. We have the birational isomorphism

(U ⊗ Sym4 V )/GL(U) ∼ Gr(2,Sym4 V ).

Note that q ∈ Sym2 S spans the kernel of the natural surjection π : Sym2 S−→ Sym4 V .

So the claimed birational isomorphism is given by sending a two dimensional subspace

L ⊂ Sym4 V to the image of π−1L in Sym2 S/q. �
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Via the birational isomorphisms in Lemma 6.3 and Lemma 6.4, the projection-ramification

map µ transforms into an Aut(S)-equivariant map

µ : Hilb3 PS 99K Gr(2, Sym2 S/q).

We now describe this map µ. To ease notation, we denote a linear form and its vanishing

locus by the same letter. Let ξ ∈ Hilb3 PS be a general point corresponding to the three

vertices of the triangle formed by three lines Li for i = 1, 2, 3. Two lines Li and Lj define

a pencil of quadratic forms on Q. Let Rij be the line whose intersection with Q is the

ramification divisor of the pencil 〈Li, Lj〉. It is easy to check that the quadrics L1R23,

L2R13, and L3R12 span a 3-dimensional subspace of Sym2 S that contains the quadric q.

Lemma 6.5. In the setup above, the image of ξ under µ is the image of 〈L1R23, L2R13, L3R12〉
in Sym2 S/q.

Proof. The ideal of the point ξ ∈ Hilb3(S) is cut out by 2× 3 matrix of linear forms

M =

(
L1 0 L3

0 L2 L3

)
.

Let U0, U1 be a basis of U . Under the isomorphism in Lemma 6.3, this 2 × 3 matrix

corresponds to the point of Gr(3, U ⊗ Sym2 V ) given by the subspace of U ⊗ Sym2 V

spanned by U0M0,i + U1M1,i for i = 1, 2, 3. From (4.10), the ramification divisor of this

subspace is given by

R = det

L1 0 U0L
′
1

0 L2 U1L
′
2

L3 L3 (U0 + U1)L′3


= U0L2(L′3L1 − L1L

′
3) + U1L1(L′3L2 − L2L

′
3)

= U0L2R13 + U1L1R23.

In this calculation, L′i denotes the derivative d
dt of Li considered as an element of K[t]

by pullback under some parametrization SpecK[t]−→Q and trivialization of O(2)|SpecK[t].

Although the derivative depends on the choices, the forms LiL
′
j − LjL′i do not, and they

cut out precisely the ramification divisor of the pencil 〈Li, Lj〉. Under the isomorphism in

(6.4), the divisor R corresponds to the 2 dimensional subspace of Sym2 S/q spanned by

L2R13 and L1R23 (The roles of L1, L2, L3 can be changed by linear transformations of M ,

so we get that L3R12 also lies in this span). The proof is thus complete. �

Recall that the conic Q ⊂ PS gives an isomorphism PS ∼= PS∗, called polarity with

respect to Q. On the vector spaces, it is the isomorphism induced by the bilinear form

associated to q. Geometrically, it is characterized by the rule that the polar of a point

p ∈ Q is the tangent line to Q at p. More generally, given a point p ∈ PS, the pencil of

lines through p contains two lines tangent to Q; the polar of p is the line joining the two

points of tangency. We denote the polar of a point p (resp. a line L) by p⊥ (resp. L⊥).

Set Mi = Rjk, and let N be the net spanned by LiMi for i = 1, 2, 3. By the definition

of Rjk, we see that Mi is the polar line of the point Lj ∩ Lk. In other words, the triangles
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(L1, L2, L3) and (M1,M2,M3) are polar conjugates—lines in one are polars to the vertices

of the other.

Remark 6.6. The space Hilb3 PS/AutS and its birational involution (called the Richelot

involution) induced by

τ : Hilb3 PS 99K Hilb3 PS (6.2)

that sends a triangle formed by the lines (`1, `2, `3) to the triangle formed by the points

(`⊥1 , `
⊥
2 , `
⊥
3 ) have well-known moduli interpretations, which we learned from [2, Example 4.2].

Intersecting the lines `i with Q for i = 1, 2, 3 gives a triple of pairs of points on Q ∼= P1.

The double cover of P1 branched along these six points gives a genus 2 curve C. The

grouping of the six points in three pairs {pi, qi} for i = 1, 2, 3 gives a 2-dimensional subspace

of the 4-dimensional F2-vector space PicC[2], namely {0} ∪ {pi − qi | i = 1, 2, 3}. This

vector space is a maximal isotropic subspace for the Weil pairing on PicC[2]. Conversely,

a genus 2 curve C with a maximal isotropic subspace of PicC[2] defines six points on P1

grouped into a triple of pairs. Thus, Hilb3 PS/AutS is birational to the moduli space of

genus 2 curves along with an isotropic subspace of 2-torsion points in its Jacobian.

Since general principally polarized abelian surfaces are Jacobians of genus 2 curves,

Hilb3 PS/AutS is also birational to the moduli of (A,G), where A is a principally polarized

abelian surface and G ⊂ A[2] is a maximal isotropic subspace for the Weil pairing. In

this interpretation, the involution τ is called the Fricke involution; it sends (A,G) to

(A/G,A[2]/G) (see [12, Page 2]).

Using the Torelli theorem, the moduli space of (A,G) can be described as the quotient

H2/Γ0(2), where H2 is the Siegel upper half space of degree 2, and Γ0(2) ⊂ Sp(4,Z) is the

congruence subgroup consisting of matrices

(
A B

C D

)
where A,B,C,D are 2× 2 blocks

and C ≡ 0 (mod 2). In this interpretation, the involution τ is induced by the action of

1√
2

(
0 I2

−2I2 0

)
∈ Sp(4,R) on H2 (again, see [12, Page 2]).

Finally, suppose we pass to ordered triples of pairs, or equivalently to (PS)3/AutS.

Then the moduli interpretation changes slightly. Now the space is the moduli space

of (A,ψ), where A is a principally polarized abelian surface and ψ : F2
2−→A[2] is an

isomorphism onto a maximal isotropic subspace (note that ψ is equivalent to a maximal

isotropic G ⊂ A[2] along with a basis of G). The moduli space of (A,ψ) is the quotient

H2/Γ1(2) where Γ1(2) ⊂ Sp(4,Z) is defined by the congruence conditions A − I2 ≡ 0

(mod 2) in addition to C ≡ 0 (mod 2). The Fricke involution continues to act on H2/Γ1(2).

The Satake compactification of H2/Γ1(2) is the Igusa quartic threefold in P4 on which the

Fricke involution acts by a linear transformation of P4. The quotient of the Igusa quartic

by the Fricke involution is isomorphic to a double cover of P3 branched along the union of

4 planes [12, Theorem 2].

Recall that ξ ∈ Hilb3 PS is the point defined by the three vertices of the triangle formed

by (L1, L2, L3). Let ξ′ ∈ Hilb3 PS be the point defined by the three vertices of the triangle

formed by (M1,M2,M3).
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Proposition 6.7. In the setup above, ξ and ξ′ are the only points of Hilb3 PS that map to

N ∈ Gr(2, Sym2 S/q). In particular, the degree of µ : Hilb3 PS 99K Gr(2, Sym2 S/q) is 2.

We invite the reader to look at Figure 1 for the configuration formed by the conic Q,

the Jacobian R, the dual of the Hermite curve E⊥, and the triangles (L1, L2, L3) and

(M1,M2,M3).

Proof. By Lemma 6.5, we see immediately that µ(ξ′) = µ(ξ) = N . To show that no other

triangles map to N , consider pairs of triplets ∆ = (∆1,∆2,∆3) and ∇ = (∇1,∇2,∇3) of

lines in PS such that

(1) ∆ and ∇ are polar conjugates with respect to Q, and

(2) ∆i ∪∇i is an element of N for i = 1, 2, 3.

It suffices to show that the only ones satisfying the two conditions are (L1, L2, L3) and

(M1,M2,M3), up to permutation.

To show this, we need some observations.

First, suppose A1 ∪ B1 and A2 ∪ B2 are elements of the net N , where Ai and Bj are

lines in PS. Then, by definition, Ai and Bj are Reye lines of the net N . Let p = A1 ∩A2

and t = B1 ∩B2. We claim that the third Reye line through p, in addition to A1 and A2,

is the line 〈p, t〉. Indeed, in the pencil of conics spanned by A1 ∪B1 and A2 ∪B2, the third

singular conic is 〈p, t〉 ∪ 〈p′, t′〉, where p′ = A1 ∩B2 and t′ = A2 ∩B1.

Second, let R ⊂ PS be the Jacobian cubic and E ⊂ PS∗ be the Hermite cubic of N .

Let E⊥ ⊂ PS be the image of E under the polarity isomorphism PS∗−→PS induced by

Q. Explicitly, the points of E⊥ are the polars of the Reye lines. We claim that the six

points of intersection of R and Q also lie on E⊥. Indeed, to show that x ∈ R ∩Q also lies

on E⊥, it suffices to show that the line TxQ is a Reye line. Since x ∈ R, there exists an

element of N of the form A ∪B where A and B are lines intersecting at x. Note that in

the pencil of conics spanned by A ∪ B and Q, there is a singular conic containing TxQ.

Therefore, TxQ is a Reye line.

Third, since R∩E⊥ contains 6 points on the conic Q, the residual 3 points are collinear.

Let them correspond to x1, x2, x3 ∈ E. Denoting by H the hyperplane class of E ⊂ PS∗,

we have the equation in PicE

x1 + x2 + x3 = H.

Suppose we have two triangles ∆ and ∇ satisfying the two conditions above. Consider

the point p3 = ∆3 ∩∇3. By the second condition, it lies on R. By the polar conjugacy of

∆ and ∇, we have

p⊥3 = 〈∆⊥3 ,∇⊥3 〉
= 〈∇1 ∩∇2,∆1 ∩∆2〉.

By the first observation, we see that p⊥3 is a Reye line. Hence p3 lies on E⊥, and hence on

R ∩E⊥. Similarly, p1 = ∆1 ∩∇1 and p2 = ∆2 ∩∇2 also lie on E⊥. Since N is general, we

may assume that the pi do not lie on Q. Hence, p1, p2, p3 are the three collinear points
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in R ∩ E⊥. (The fact that p1, p2, p3 are collinear is not surprising—it is because any two

polar conjugate triangles are in linear perspective [3, Theorem 2.1.9]). By reordering if

necessary, assume that we have p⊥i = xi as elements of E.

Now, observe that the three Reye lines through the vertex ∆1 ∩∆2 are ∆1, ∆2, and p⊥3 ,

and likewise for the other two vertices. The concurrence of the three lines, along with the

equality p⊥3 = x1, yields the system of equations on PicE

∆1 + ∆2 + x3 = H,

∆2 + ∆3 + x1 = H,

∆3 + ∆1 + x2 = H.

Of course, the same three equations hold if we replace ∆ by ∇.

Note that the points x1, x2, x3 ∈ E are determined by N . Using x1 + x2 + x3 = H, a

simple calculation gives 2∆1 = 2x1. This equation has 4 solutions for ∆1, namely x1 + ε

for ε ∈ PicE[2]. Also, ∆1 determines ∆2 and ∆3 by the equations above, which in turn

determine the ∇i using polarity or the property that ∇i and ∆i form a fiber of the map

E−→R. Thus, it suffices to show that at most two of the four solutions for ∆1 can be

valid.

Suppose ∆1 = x1. Then we get ∆2 = x2, and ∆3 = x3. However, the lines represented

by the xi are concurrent, whereas the lines ∆i are not. Therefore, we get that ∆1 6= x1.

The same argument shows that ∇1 6= x1. Let the involution of E induced by E−→R be

given by the addition of ε0 ∈ PicE[2]∗. Since ∆1 and ∇1 form a fiber of E−→R, we have

∇1 = ∆1 + ε0. So, ∇1 6= x1 translates into ∆1 6= x1 + ε0. In summary, the only two possible

solutions for ∆1 are x1 + ε for ε ∈ PicE[2] \ {0, ε0}. The proof is now complete. �
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Figure 1. The figure shows the unique pair of polar conjugate triangles

of Reye lines associated to a net of conics as proved in Proposition 6.7. The

net includes the distinguished conic Q, seen here as a hyperbola (dotted

black). The Jacobian cubic R (green) and the dual of the Hermite cubic

E⊥ (orange) intersect in 6 points on Q (4 of which are real and visible),

and 3 other collinear points, two of which, say p1 and p2, are marked (red),

and the third, say p3, is at infinity. The Reye lines forming the two polar

conjugate triangles (dashed pink and dashed blue) come in conjugate pairs.

The lines in each pair intersect at p1, p2, and p3. (The figure was produced

using Sage [18].)
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