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GENERALIZED METALLIC MEANS

JUAN B. GIL AND AARON WORLEY

Abstract. The metallic means (also known as metallic ratios) may be defined as the
limiting ratio of consecutive terms of sequences connected to the Fibonacci sequence via
the invert transform. For example, the Pell sequence (invert transform of the Fi-
bonacci sequence) gives the so-called silver mean, and the invert transform of the Pell
sequence leads to the bronze mean. The limiting ratio of the Fibonacci sequence itself
is known as the golden mean or ratio. We introduce a new family of kth-degree metallic
means obtained through invert transforms of the generalized kth-order Fibonacci se-
quence. As it is the case for k = 2, each generalized metallic mean is shown to be the
unique positive root of a kth-degree polynomial determined by the sequence.

1. Introduction

We start by reviewing some basic information about the sequence of Fibonacci numbers,
defined through the recurrence relation

F0 = 0, F1 = 1,

Fn = Fn−1 + Fn−2 for n ≥ 2.

Their generating function F (x) =
∑∞

n=1 Fnx
n may be written as F (x) =

x

1− x− x2
, and

it can be easily shown that

lim
n→∞

Fn+1

Fn

= ϕ,

where ϕ is the unique positive root of x2 − x− 1 = 0. The number ϕ = 1+
√
5

2
≈ 1.618 is

referred to as the Golden Mean or Golden Ratio.
More generally, for m ∈ N, one can consider the sequence

(
F

(m)
n

)

n∈N0
defined by

F
(m)
0 = 0, F

(m)
1 = 1,

F (m)
n = mF

(m)
n−1 + F

(m)
n−2 for n ≥ 2,

with generating function

Fm(x) =
x

1−mx− x2
.

Observe that
(
F

(2)
n

)
is the sequence of Pell numbers (see [6, A000129]), and for m = 3

and m = 4, we get sequences A006190 and A001076 in [6].

http://arxiv.org/abs/1901.02619v1
https://oeis.org/A000129
https://oeis.org/A006190
https://oeis.org/A001076
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It can be shown that

lim
n→∞

F
(m)
n+1

F
(m)
n

= ϕm,

where ϕm is the unique positive root of x2 −mx− 1 = 0. Thus

ϕm =
m+

√
m2 + 4

2
.

Note that ϕm lies in the interval (m,m + 1). These numbers are collectively referred to
as the (quadratic) metallic means. For instance, ϕ2 = 1 +

√
2 ≈ 2.414 is known as the

Silver Mean, and ϕ3 =
3+

√
13

2
≈ 3.303 is called the Bronze Mean.

The above family of sequences may also be generated via the invert transform1. In
fact, for every m ∈ N, we have

1 + Fm+1(x) =
1

1− Fm(x)
.

In other words, the sequence
(
F

(m+1)
n

)
is the invert transform of the sequence

(
F

(m)
n

)
,

hence it is the mth invert transform of the Fibonacci sequence.
In this paper, we adopt this point of view to introduce a family of generalized metallic

means obtained through invert transforms of the generalized kth-order Fibonacci se-
quence. In Section 2, we illustrate our approach for the cubic case (k = 3) that involves
the tribonacci sequence. In Section 3, we then generalize our results to arbitrary values
of k. In all cases, each generalized metallic mean is shown to be the unique positive root
of a polynomial determined by the sequence. In the last section, we offer some remarks
regarding combinatorial interpretations and a possible direction for future research.

2. Cubic metallic means

We start by considering the sequence (Tn)n∈N0
defined by the recurrence

T0 = 0, T1 = 1, T2 = 1,

Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3.

The corresponding generating function T (x) takes the form

T (x) =
x

1− x− x2 − x3
,

and its (m− 1)-th invert transform is the sequence
(
T

(m)
n

)

n∈N0
with generating function

Tm(x) =
x

1−mx− x2 − x3
.

1Introduced by P. J. Cameron in [1, Section 3] as operator A.
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In particular,
(
T

(m)
n

)

n∈N0
satisfies the recurrence relation

T
(m)
0 = 0, T

(m)
1 = 1, T

(m)
2 = m,

T (m)
n = mT

(m)
n−1 + T

(m)
n−2 + T

(m)
n−3 for n ≥ 3.

Observe that the corresponding characteristic polynomial p(x) = x3 − mx2 − x − 1
satisfies p(m) < 0 < p(m+ 1), so p(x) has a real root τm ∈ (m,m+ 1). Moreover,

p(x) = (x− τm)
(

x2 + τm+1
τ2m

x+ 1
τm

)

,

hence the other two roots of p(x) are the complex numbers

γ±
m = − 1

2τ 2m

(

τm + 1± i
√

4τ 3m − (τm + 1)2
)

.

Since |γ±
m| = 1/

√
τm < τm, and since

T (m)
n = c1τ

n
m + c2(γ

−
m)

n + c3(γ
+
m)

n for some constants c1, c2, c3,

one can easily deduce that

lim
n→∞

T
(m)
n+1

T
(m)
n

= τm.

This motivates the following definition.

Definition 1. Let m ∈ N. The unique real root τm of the polynomial x3 −mx2 − x− 1
will be referred to as the mth cubic metallic mean. We have m < τm < m+ 1.

For example, for m = 1, 2, 3, we get

τ1 =
1

3

(

1 +
3

√

19 + 3
√
33 +

3

√

19− 3
√
33

)

≈ 1.839,

τ2 =
1

3

(

2 +
3

√

61+9
√
29

2
+

3

√

61−9
√
29

2

)

≈ 2.547,

τ3 =
1

3

(

3 +
3

√

54 + 6
√
33 +

3

√

54− 6
√
33

)

≈ 3.383.

We call τ1, τ2, and τ3 the cubic golden, silver, and bronze means, respectively. The
number τ1 is also known as the tribonacci constant, see e.g. [5]. For more information,
including geometric interpretations of τ1, we refer to [6, A058265] and the links therein.
For example, one interpretation of τ1 is the following. If a line segment is divided into
three parts of lengths a, b, and c such that a+b+c

a
= a

b
= b

c
, then the common ratio is

precisely τ1 (see Fig. 1).

It is worth noting that τ1 also appears as the order of convergence of a certain iterative
algorithm for solving nonlinear least squares problems, cf. [4].

https://oeis.org/A058265
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a b c

Figure 1. (a+ b+ c) : a is equal to a : b and equal to b : c.

3. Generalized metallic means

Motivated by the quadratic and cubic metallic means defined via the invert transform
of the Fibonacci and tribonacci sequences, respectively, we now consider the generalized
kth-order Fibonacci sequence (k ≥ 2) with generating function

G(x) =
x

1− x− x2 − · · · − xk
.

If we write G(x) =
∑∞

n=1 gnx
n, then (gn)n∈N0

satisfies the recurrence relation

gn = gn−1 + gn−2 + · · ·+ gn−k for n ≥ k,

with initial values g0 = 0, g1 = 1, and if k ≥ 3,

gj = 2j−2 for j ∈ {2, . . . , k − 1}.
We apply the invert transform m− 1 times and arrive at the sequence

(
g
(m)
n

)

n∈N0
with

generating function

Gm(x) =
x

1−mx− x2 − · · · − xk
, (1)

thus we have the recurrence relation

g(m)
n = mg

(m)
n−1 + g

(m)
n−2 + · · ·+ g

(m)
n−k for n ≥ k.

As a consequence, if γ1, . . . , γk are the distinct2 roots of the polynomial

pm(x) = xk −mxk−1 − xk−2 − · · · − x− 1, (2)

then we have
g(m)
n = c1γ

n
1 + · · ·+ ckγ

n
k ,

for some constants c1, . . . , ck.

Theorem 2. For every m ∈ N, the polynomial pm(x) has a unique positive root ̺m with

m < ̺m < m+ 1. Moreover, every other root γj of pm(x) satisfies |γj| < ̺m.

Proof. Since (x− 1)pm(x) = xk+1 − (m+ 1)xk + (m− 1)xk−1 + 1, we have

pm(x) =
xk+1 − (m+ 1)xk + (m− 1)xk−1 + 1

x− 1
for x 6= 1. (3)

Hence

pm(m) =

{

1− k if m = 1,
1−mk−1

m−1
if m > 1,

and pm(m+ 1) =
(m− 1)(m+ 1)k−1 + 1

m
.

2This fact will be discussed in the proof of Theorem 4.
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Clearly, pm(m) < 0 < pm(m+ 1) for every m, which implies that pm(x) must have a real
root between m and m + 1. We call this root ̺m. By Descartes’ rule of signs, ̺m is the
only positive real root of pm(x).

As a consequence, pm(x) < 0 for every x ∈ (0, ̺m) and pm(x) > 0 for every x > ̺m.
Let γ 6= ̺m be such that pm(γ) = 0. Then γk = mγk−1 + γk−2 + · · ·+ γ + 1 and so

|γ|k ≤ m|γ|k−1 + |γ|k−2 + · · ·+ |γ|+ 1.

This implies pm(|γ|) ≤ 0, hence |γ| ≤ ̺m. We will show that this inequality is strict.
Note that, by (3), p(x) = 0 if and only if (m+ 1)xk = xk+1 + (m− 1)xk−1 + 1.
Assume that γ 6= ̺m is a root with |γ| = ̺m. Thus pm(γ) = 0 = pm(|γ|), hence

(m+ 1)γk = γk+1 + (m− 1)γk−1 + 1, (4)

(m+ 1)|γ|k = |γ|k+1 + (m− 1)|γ|k−1 + 1. (5)

Equation (4) together with Lemma 3 gives

|(m+ 1)γk|+
(

3−
∣
∣
∣
γk+1

|γk+1| +
γk−1

|γk−1| + 1
∣
∣
∣

)

︸ ︷︷ ︸

≥0

≤ |γk+1|+ |(m− 1)γk−1|+ 1,

which by (5) implies
∣
∣
∣
γk+1

|γk+1| +
γk−1

|γk−1| + 1
∣
∣
∣ = 3. If γ = ̺me

iθ, this can be written as

∣
∣eiθ(k+1) + eiθ(k−1) + 1

∣
∣ = 3,

which is only possible if θ = 0 or if θ = π (for odd k). However, θ = 0 would contradict
the fact that γ 6= ̺m, and if θ = π and k is odd, the left-hand side of (4) would be negative
while the right-hand side would be positive, a contradiction.

In conclusion, if γ 6= ̺m and pm(γ) = 0, then |γ| < ̺m. �

The following lemma was motivated by a theorem of Maligranda [3].

Lemma 3. Let z1, z2, z3 ∈ C be such that 0 < |z1| ≤ |z2| ≤ |z3|. Then

|z1 + z2 + z3|+
(

3−
∣
∣
∣
∣

z1
|z1|

+
z2
|z2|

+
z3
|z3|

∣
∣
∣
∣

)

|z1| ≤ |z1|+ |z2|+ |z3|.

Proof. By the triangle inequality, and since |z1| ≤ |z2| ≤ |z3|, we have

|z1 + z2 + z3| =
∣
∣
∣
∣

|z1|
|z1|

z1 +
|z1|
|z2|

z2 +
|z1|
|z3|

z3 +

(

1− |z1|
|z2|

)

z2 +

(

1− |z1|
|z3|

)

z3

∣
∣
∣
∣

≤
∣
∣
∣
∣

z1
|z1|

+
z2
|z2|

+
z3
|z3|

∣
∣
∣
∣
|z1|+

(

1− |z1|
|z2|

)

|z2|+
(

1− |z1|
|z3|

)

|z3|

=

∣
∣
∣
∣

z1
|z1|

+
z2
|z2|

+
z3
|z3|

∣
∣
∣
∣
|z1|+ |z2| − |z1|+ |z3| − |z1|.
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Adding and subtracting |z1|, we arrive at

|z1 + z2 + z3| ≤ |z1|+ |z2|+ |z3|+
∣
∣
∣
∣

z1
|z1|

+
z2
|z2|

+
z3
|z3|

∣
∣
∣
∣
|z1| − 3|z1|,

which is equivalent to the claimed inequality. �

Theorem 4. Fix k,m ∈ N, k ≥ 2, and let
(
g
(m)
n

)

n∈N be the sequence defined by the

generating function Gm(x) from (1). Then

lim
n→∞

g
(m)
n+1

g
(m)
n

= ̺m,

where ̺m is the unique positive root of the polynomial (2). Consistent with the quadratic

and cubic cases, we call ̺m the mth metallic mean of degree k.

Proof. We already showed that pm(x) has a unique positive real root ̺m ∈ (m,m + 1),
and we claim that every root of pm(x) is simple. To see this, consider the polynomial

q(x) = (x− 1)pm(x) = xk+1 − (m+ 1)xk + (m− 1)xk−1 + 1.

Clearly, pm(x) and q(x) share all of their roots (including multiplicity) except for x = 1.
Now, since

q′(x) = xk−2
(
(k + 1)x2 − k(m+ 1)x+ (k − 1)(m− 1)

)
,

and since the quadratic polynomial (k+1)x2−k(m+1)x+(k−1)(m−1) has two distinct
positive real roots (the discriminant is k2(m− 1)2 +4(k2 +m− 1)), we conclude that the
roots of q(x), and therefore the roots of pm(x), are all simple.

Let γ1, . . . , γk−1, ̺m be the k distinct roots of the polynomial pm(x) associated with the

sequence
(
g
(m)
n

)

n∈N. Then, there are constants c1, . . . , ck such that

g(m)
n = c1γ

n
1 + · · ·+ ck−1γ

n
k−1 + ck̺

n
m.

Therefore,

lim
n→∞

g
(m)
n+1

g
(m)
n

= lim
n→∞

c1γ
n+1
1 + · · ·+ ck−1γ

n+1
k−1 + ck̺

n+1
m

c1γn
1 + · · ·+ ck−1γn

k−1 + ck̺nm

= lim
n→∞

c1γ1(
γ1
̺m

)n + · · ·+ ck−1γk−1(
γk−1

̺m
)n + ck̺m

c1(
γ1
̺m

)n + · · ·+ ck−1(
γk−1

̺m
)n + ck

= ̺m.

The last step follows from the fact that, for j ∈ {1, . . . , k − 1}, we have |γj| < ̺m which
implies lim

n→∞

( γj
̺m

)n
= 0. �



GENERALIZED METALLIC MEANS 7

4. Concluding remarks

Motivated by the (quadratic) metallic means, which may be defined through sequences
that are related to the Fibonacci sequence via the invert transform, in this paper we
have introduced a family of generalized metallic means of arbitrary degree k > 2.

Observe that our definition is consistent with the quadratic case (k = 2), and the

generalized metallic means of degree k as well as the corresponding sequences (g
(m)
n )n∈N0

,
all satisfy similar properties as their quadratic counterparts.

Combinatorially, it is known and easy to prove that, for n ≥ 2, the sequence Fn gives
the number of tilings of an (n− 1)× 1 rectangular board by 1× 1 and 2× 1 tiles. In that

context, F
(m)
n gives the number of such tilings, where the 1× 1 tiles come in m colors. In

general, for k, n ≥ 2, g
(m)
n gives the number of tilings of an (n− 1)× 1 rectangular board

by tiles of sizes 1× 1, 2× 1, . . . , k × 1, where the 1× 1 tiles come in m colors.

For example, if k = 3 and m = 2, we get the sequence (T
(2)
n )n∈N with terms

1, 2, 5, 13, 33, 84, 214, 545, 1388, 3535, 9003, 22929, 58396, . . .

The 13 such tilings of a 3× 1 rectangular board are:

Other combinatorial interpretations are certainly possible.

We finish our exposition by mentioning that, for the generalized golden mean (m = 1)
of arbitrary degree, Hare, Prodinger, and Shallit [2] gave series representations for ̺1,
1/̺1, and 1/(2− ̺1). It would be interesting to find corresponding series representations
for the mth generalized metallic mean ̺m.
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