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A CHARACTERISTICS-BASED APPROXIMATION FOR WAVE SCATTERING
FROM AN ARBITRARY OBSTACLE IN ONE DIMENSION *

JITHIN D. GEORGE!, DAVID 1. KETCHESON?, AND RANDALL J. LEVEQUE$

Abstract. The method of characteristics is extended to solve the Cauchy problem for linear hyperbolic PDEs in
one space dimension with arbitrary variation of coefficients. In the presence of continuous variation of coefficients, the
number of characteristics that must be dealt with is uncountable. This difficulty is overcome by writing the solution as
an infinite series in terms of the number of reflections involved in each characteristic path. We illustrate an interesting
combinatorial connection between the traditional reflection and transmission coefficients for a sharp interface to Green’s
coefficient for transmission through a smoothly-varying region. We prove that the series converges and provide bounds
for the truncation error. The effectiveness of the approximation is illustrated with examples.
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1. Introduction and physical setting. We consider the Cauchy problem for the linear one-
dimensional wave equation

1
(1.1) Upy = (@) (K(z)u(z,1))

x?

which can also be written in first-order form as

pe(z,t) + K(x)ug(z,t) =0
(1.2) 1
ug(x,t) + p(x)pw(x,t) =0.
Here we have used the notation of acoustics: p is pressure, u is velocity, K is the bulk modulus, and p
is the density. Linear wave equations with the same mathematical structure arise in many other appli-
cations, with different interpretations of the material parameters, such as elasticity, electromagnetics,
and linearized fluid dynamics or water waves. If the coefficients (p(x), K(z)) are constant or piecewise-
constant, the problem may be solved exactly by the method of characteristics. On the other hand, for
more general functions p(z) and/or K () it is not clear how to apply the method of characteristics since
the number of characteristic paths reaching a given point at any time is infinite.

Much is known about scattering of a periodic incident wavefield, particularly for piecewise constant
media. We focus instead on scattering of a localized variation in an arbitrary medium including regions
of continuous variation. We pay special attention to the scattering of a step function.

In this work we propose and demonstrate a method for approximately solving the general Cauchy
problem for (1.2) in the presence of arbitrary variation in p and K, by grouping characteristic paths
according to the number of reflections. Our interest originated in a study of the shoaling of water waves
over a continental shelf and our complementary paper [4] contains more discussion of this application
and several illustrative examples. Code to reproduce the numerical experiments in this paper is available
online. !
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In the remainder of this section we briefly review the mathematics of characteristics and reflection
in one dimension.

1.1. The method of characteristics: homogeneous media. Defining ¢ = [p,u]”, the system
(1.2) can be written as ¢; + A(z)q, = 0, where A has the eigenvalue decomposition A = V (z)AV ~1(x)
with

(1.3) Viz) = { R ] Aw) = [‘CO(C”) 0 }

Z(x) Z(z) c(x)

Here Z(z) = «/K(z)p(z) is known as the impedance and ¢(x) = /K (x)/p(z) is the sound speed. If
K(z) and p(z) are constant (or more generally, if Z(x) is constant) then V(z) is also constant and,
setting w(z,t) = V~1q(z,t), (1.2) can be rewritten as

(1.4) w + A(z)wy = 0.

System (1.4) consists of two decoupled advection equations, indicating that one component of the
solution (wy) travels to the left (with velocity —c) while the other (wsy) travels to the right (with
velocity +c). Lines of constant x + ¢t and x — ct are referred to as characteristics. The solution is
simply the sum of the components transmitted along the two characteristic families:

(1.5) p(z,t) = wi(x + ct,0) + wa(z — ct,0).

1.2. Piecewise-constant media: reflection and transmission. The method of characteristics
can also be used to find the exact solution of (1.2) if K(x) and p(z) are piecewise-constant functions.
Within each constant-coefficient domain the characteristic velocities are +c¢(x). Con81der a single in-
terface where the impedance jumps from Z_ on the left to Z; on the right. Let vl ,112 denote the
respective columns of V(0%). For an incident right-going wave, the incident (po), transmitted (pr), and
reflected (pr) wave pressures are related by

(1.6) povy = prvy + proy -

Solving system (1.6) reveals that the transmitted and reflected waves are related to the incident wave
by the transmission and reflection coefficients:

pr 272,
1.7 Cr(Z.. 2 —
(1.7) ( +) = P S

PR Z+ —7Z_
1.8 Cr(Z_, 7)) =PR _ 2+~ 2=
(18) W2, 20) = 20 = 2

1.3. Smoothly-varying media. Wherever the impedance Z(z) is not constant, the system (1.2)
cannot be decoupled as in (1.4) because the matrix V(x) that relates ¢ and w varies in space. If Z(x) is
differentiable, we have w, = (V(z)"q), = V" (z)g. + (V~!(x))'q and we obtain instead of (1.4) the
system

(1.9) vt M@ = (V'a

Here

(1.10) V@) V(@) = = [ B ] .
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(x.t) (x.t) |

x—ct x+ct x—ct x+ct x—ct X +ct
(a) Homogeneous medium (b) Piecewise-constant medium (¢) Continuously-varying medium

Fic. 1. Characteristics in three different types of media. In the homogeneous medium, the solution at each point is
determined by just two characteristics. In the piecewise-constant medium (with material interfaces indicated by dashed
lines), the solution at each point is determined by a finite number of characteristics. In the continuously-varying medium
(with Z(x) varying throughout the grey-shaded region), the solution at the indicated point depends on all characteristics
within the blue-shaded region.

We see that information is still transmitted along characteristics, but the amplitude of each component is
modified by the source terms that couple the characteristic variables through reflection. The coefficient

_ Z'()

(1.11) r(z) 27(2)

gives the amplitude of these reflections and we refer to it as the infinitesimal reflection coefficient.

The infinitesimal reflection ceofficient r(x) is related to the traditional reflection coefficient R(Z_, Z, )i}
if we take Z(z) to be a continuous function with value Z_ at x and value Z; at x4+ Az, the ratio R/Ax
approaches r(z) as Az tends to zero:

R 1 Z(x+Azx)—Z(x)  12Z'(x)

(1.12) Ar S Az Z(w+ M)+ Z() 2 Z(z)

2

Characteristics for each of the three classes of media just discussed are illustrated in Figure 1. We
see that in the presence of constant or piecewise-constant impedance, the number of characteristics
that must be accounted for to compute the solution at a given point is finite. On the other hand, if
Z(z) varies continuously then there are in general infinitely many characteristic paths passing through
a given point. The technique developed in the rest of this work is based on the hypothesis that the
dominant contributions to the solution come from accounting for characteristic paths with relatively
few reflections. This hypothesis is clearly reasonable when |r(z)| < 1, since then each reflection must
diminish the significance of the corresponding characteristic path. The motivation for this hypothesis
more generally is given in Section 4.2.

2. Characteristics in continuously-varying media. In this section we develop an approximate
solution to (1.2) in the form of an infinite series. We focus on the case of a finite region of variation in
the spatial coefficients, as illustrated in Figure 2:

(K_,p-) x <0
(2.1) (K(x),p(x)) =  (K(z),p(x)) 0<z<ay
(K4, p+) T > Ty

Here x4 is the width of the region of varying coeflicients, and need not be small. For simplicity we
consider the case of a right-going disturbance that is initially confined to x < 0, and investigate the
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(K—sp_) (K(x),p(x)) (Kssp )

Po(x)

X=0 X+

F1G. 2. The setting for most of the paper.

resulting reflected and transmitted disturbances. Thus

1
p(z,0)] po(x)

z <0

We assume for simplicity that Z(z) is continuous. Our method and results can be generalized in a
natural way to arbitrary initial data and piecewise continuous media.

Outside of the region [0, x|, characteristics are straight lines in the z—t plane. Let X (¢) denote the
characteristic path starting from x = 0 at time zero; i.e., the solution of the initial value ODE

(2.3) X'(t) =c(X(t)) X(0)=0 t €[0,t4].
Here t is the crossing time so that X (¢t4) = x4. It is convenient in what follows to extend X (¢) by
defining X (¢t) =0 for ¢t <0 and X (¢) = x4 for t > t.

2.1. Amplification or attenuation along characteristics: Greens Law. In general the pres-
sure is given by p = w; + we; for the case of a pure right-going pulse (2.2), for which w; is zero, we
have p(z,0) = wa(x,0) = py. According to (1.9), along the path X (¢) the value of wy (and hence the
value of p) satisfies the ODE

(2.4) P(X(t) = 7)29()( ()

with solution

(25) o0 = (

In particular, at * = 4 we have

1/2
P+ Zy
2. P+ _ (Z:\" _ o
(26) Po (Z) Ce

Thus the amplitude of the unreflected part of the wave (for x > xy) is Cgpo for any smoothly varying
Z(z), and depends only on the values Z_ and Z; it is independent of how Z varies over [0, 24]. As we
will see, (2.6) represents the first term in an infinite series that sums to the transmission coefficient Crp.

Remark 2.1. We use Cg for the quantity defined in (2.6) since this is the amplification factor given
by Green’s law in the context of shoaling, as we discuss in more detail in [4]. The linearized shallow
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F1a. 3. Transmission and reflection of an initial right-going step. The leading edge of the transmitted part has am-
plitude Cq (the amplitude in the absence of reflections), then tends to C at later times as multiply reflected components
contribute.

water equations used there can be put in the form (1.2) by introducing p(z, t) as the depth perturbation
of a small amplitude long wave on a background water depth h(x), and u(x,t) as the momentum
perturbation. Then the linearized shallow water equations can be written in the nonconservative form

o) plet) sl =
pe(@,t) + gh(z)pa (x,1) =
where g is the gravitational constant. This differs from the conservative form used in [4], and has the
same form as (1.2) if we set K(z) =1 and p(z) = 1/(gh(x)). Then the wave speed is ¢(z) = \/gh(x),
the impedance is Z(z) = 1/1/gh(z), and Cg = (h_/h;)*/*. This is the standard form of Green’s law
used to estimate the amplification of a shoaling wave as it passes into shallower water, in which case
h_ > hy. Note that this particular application is a special case in that there is only a single variable
coefficient h(z), so it is not possible to vary the wave speed and impedance separately.

Both the amplification factor C¢ and the transmission coefficent Cr defined in (1.7) are related to
the amplitude of transmitted waves. Their differing roles are illustrated in Figure 3, where we consider
the propagation of a step function (taking po(z) = 1, and with an impedance that grows linearly from
Z_ =1%o Zy = 3 in the region [0, 1]). Since C¢ governs the amplification of unreflected characteristics,
the leading part of the transmitted wave (which is unaffected by characteristics that undergo reflection,
since they will emerge at later times) has amplitude Cg. Meanwhile, Cr accounts for the cumulative
effect of all characteristics (including those that have been reflected one or more times), and so the
amplitude of the transmitted wave at long times approaches Cr.

In Figure 4 we consider what happens as x4 tends to zero, for fixed values of Z_, Z,. We again take
a step function as the initial condition (plotted as a dashed line). In this case the solution is invariant
if x4 and ¢ are scaled by the same factor, but in Figure 4 we have plotted solutions for different values
of x4 all at the same time t. We see that as the region [0,z ] shrinks, the width of the transmitted
peak becomes increasingly narrow until in the limit 4 = 0 (for which the impedance is discontinuous)
the peak is gone and we have a single intermediate state dictated by the transmission coefficient. One
way to think about this is that since the discontinuity thought has infinitesimally small width, all
the characteristics must arrive in infinitesimally short time. The combinatoric relation between the
transmission/reflection coefficients and Cg is further explored in Section 4.1.
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150

F1G. 4. A sequence of solutions with differing values of x4 (the width of the variable region). In all cases the initial
data is a step function with unit amplitude (dashed line) and the impedance increases linearly from Z_ =1 to Zy = 3.
The width of the region of varying impedance is taken to be [1,1/2,1/10,0].

2.2. Approximating the reflected wave. Let us now turn our attention to the reflected wave
in Figure 3. The main contribution to this wave comes from characteristics that are reflected exactly
once, as illustrated in Figure 5. The figure on the left shows two characteristics that emerge at x = 0
at the same time but started from different initial points and were reflected at different points. It is
evident that at any time ¢ there will be such a characteristic reaching x = 0 that was reflected from
point x for each = € (0, X(¢/2)), since the characteristic reflected from the rightmost point (the red
characteristic in the figure) must have traveled from & = 0 to the point of reflection in time ¢/2. For
the initial condition pg(z) = 1, the solution along each of these characteristics has the same initial
amplitude. In this case the combined amplitude of these reflected waves is

X (t/2)
(2.8) /o r(zy)dx; = %log (Z(XZ(t/Q))> ,

where r(x) is defined in (1.11). Figure 5 shows this diagrammatically. Initially, the reflected wave only
contains the contribution of characteristics reflected near x = 0. After some time 2¢,, reflections from
the whole interval [0,z ] contribute, resulting in a constant asymptotic reflected amplitude.

Although (2.8) does not account for characteristics that have been reflected more than once, it gives
a surprisingly good approximation to the reflected wave for this simple example, as seen in Figure 6.
This approximation is less accurate at later times because the contributions from the multiply-reflected
characteristics begin to make a noticeable difference to the solution. The following section details a
method that incorporates as many sets of characteristics as needed for an accurate approximation to
both the reflected and transmitted wave.

3. The general solution by characteristics with reflections. In this section we construct a
series for the solution at the boundaries of the variable region:

(3.1a) p(0,£) = p(=c_£,0) = Y Rom1(t)
m=0

(31b) p(x"rﬂt) = Z TQm(t)'
m=0

Here R, and T, denote contributions from characteristics involving n reflections. We have effectively
computed Tp(t) and R;(t) already in the previous sections; from our derivations of (2.6) and (2.8) it is
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Fic. 5. The reflected wave exists because of the cumulative effect of characteristics that get reflected within [0, 4]
and come out to the left side with some infinitesimal amplitude. This figure only shows characteristics that have been
reflected only once which is why the blue curve is an approximation to the reflected wave.
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Fic. 6. Equation (2.8) provides a good approzimation to the reflected wave by considering only the characteristics
that have been reflected once. This overestimates the solution because the next significant set of characteristics are the
thrice-reflected ones which have negative amplitudes (in this case).

straightforward to obtain the more general expressions
To(t) = Capo(—c—(t —t4))

X(t/2)
Ri(t) = /0 po(—c—(t = 271))r(z1)dxy

which give the part of the transmitted solution due to unreflected characteristics and the part of the
reflected solution due to characteristics with a single reflection, respectively. Here and below, 7; denotes
the time for a characteristic to reach x; from z = 0.

The function X () defined in (2.3) gives the path of a characteristic that is not reflected. More gen-
erally, consider a characteristic path involving reflection at the sequence of points x = {x1, z2,...,2,} €
[0, 2], which we refer to as the reflection point sequence for this path. This path is a union of curves
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X,;(t) (j=0,1,2,...), each of which is the solution of an initial value problem:
Xj(t) = (=1)7e(X;(1) X;(t;) = x; t € [tj,tj]-

Here zo = 0 and 41 is either zero (for reflected characteristics) or x4 (for transmitted characteristics).
The value of ¢; is the time at which the path reaches x;. For a given medium, a path is determined
completely by the reflection points x and the initial time ¢y. Some examples of such paths are given
in Figures 7b and 7a. Notice that the shape of the curves X, depends on the variation of ¢(x), but all
can be obtained by applying a temporal offset to X (¢) and (for left-going segments) reflecting the curve
X (t) vertically in the x—t plane.

In keeping with the method of characteristics, we would like to add up the contributions of all
characteristic paths arriving at a given place and time (x,t). One way to do this is to sum over all valid
reflection point sequences. Notice that the reflection point sequence cannot be an arbitrary sequence
of points in [0,24]. We need to sum over all characteristics with an alternating sequence of reflection
points, as defined by:

DEFINITION 3.1. A sequence x = {x1,%2, - x,} is an alternating sequence if

xzj <xj_1 for j even, and
Tj> T for 7 odd.
For characteristics with n reflection points, the terms in (3.1) are given by the following iterated integrals.

Note that 7 in the outermost integral can be anywhere in [0, z+]; then 25 must be chosen in [0, 2],
and z3 in [z2, z+], ete.

(3.2a)
Romy1(t) = (fl)m/O +'r(:cl)dxl/o r(xQ)dxg/ +7"(x3)dgn3~~~/ +po(ﬁR(x,t))r(meH)demH
(3.2b)

T4

Ty (1) 1= (—1)"Ca / 7 )y / " r(w2)des | ez / T (€ ) ().

2

Here €r(x,t) is the starting point for the characteristic with reflection points x arriving eventually
at (z = 0,t), while {7(x,t) is the starting point for the characteristic with reflection points x arriving
eventually at (x = x4, t). The factor (—1)™ appears because the reflection coefficient for a characteristic
initially going left is —r(x), so every even-numbered reflection involves a factor of —1. Thus pg(§)
gives the initial solution value corresponding to that characteristic path, and the product of reflection
characteristics gives the part of that value that eventually contributes to p(x,t). The limits of integration
take into account that the reflection points must be an alternating sequence.

The factor Cg appearing in (3.2b) is due to variation along a characteristic as described by the
solution of (2.4). It is absent in (3.2a) because the value of the solution along a characteristic traveling
left changes by exactly the reciprocal factor and so there is no net change in amplitude for a characteristic
that returns to x = 0.

We can compute the full solution (to any desired accuracy) by considering the contributions from
all characteristics involving n = 1,2,..., N reflections. To complete this approach we only need to
determine how & depends on x and ¢, which we do in the next two subsections.

3.1. Reflection. Let us work out the initial location £(x,t) for a characteristic that is eventually
reflected. Consider a characteristic passing through = = 0 (going to the right) that is subsequently
reflected at the points 1, x9,..., 2, € (0,24) and eventually emerges (going to the left) back at = 0,



WAVE PROPAGATION IN NON-HOMOGENEOUS MEDIA 9

t=T(X) +ty + 2 t=1(x)+ &
t=0 t=0 T
x=£ X= x=£& x=0 x; X1 X3 X4
(a) Characteristics contributing to T% (%) (b) Characteristics contributing to R3(t)

Fic. 7. Characteristic paths starting from different points but arriving simultaneously to contribute to the indicated
transmission and reflection terms. For clarity, only the reflection points of the blue trajectories are marked.

at time ¢ (see Figure 7b). The total time taken for the characteristic to traverse this path is

n

(3.3) T(x) =2 Z(_w‘“q,

Jj=1

where again 7; is the travel time from = = 0 to z;, and we have used the fact that the travel time from
Z; 10 @41 i given by |7;41 — 7;|. Thus this characteristic must have first passed through x = 0 at time
t — 7(x). Hence it must have originated at time zero from

(3.4) Er(x,t) = —c_(t — 7(x)).

This holds for all t > 7(x).
We can compute the contribution of all characteristics that are eventually reflected, for any initial
condition py, using (3.2a) with g given by (3.4).

3.2. Transmission. Consider a characteristic starting at © = 0 (going to the right) that is reflected
at the points z1,22,...,2, € (0,z4) and eventually emerges (going to the right) at z = x4 (see
Figure 7a). The total time taken for the characteristic to traverse this path is 7(x) + 4. Hence it must
have originated at time zero from

(3.5) Er(x,t) = —c_(t — 7(x) — t4).

Because the characteristic path starts at z < 0 (with impedance Z_) and ends at © = x4 (with
impedance Z,), the net change in the value of the solution along this characteristic due to Green’s
law is given by the factor Cg defined in (2.6). Hence the contribution to the solution is given by
Cer(xzy)r(xg) - r(zy), leading to the integral (3.2b) for the total contribution of all characteristics
with n reflections.

We can compute the contribution of all characteristics that are eventually transmitted, for any
initial condition pg, using (3.2b) with £ given by (3.5).
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4. Transmission and reflection of a step. In this section we apply the approach just outlined
to the propagation of an initial condition consisting of a step:

(4.1) polx) = {1 v=0

0 x>0.

Since the step function is the integral of a d-function, the resulting solution gives the integral of the
Green’s function for the problem, and can be used as a basis to obtain solutions for arbitrary initial
data.

Straightforward calculation shows that the required values of £ in this case are simply

0 t<7(x)
1 t>7(x)

(4.2) po(€r) = {

for reflected components and

0 t<7(x)+1ts
1 tET(X)‘Ft_i_

(4.3) po(ér) = {
for transmitted components, where 7 is defined in (3.3).

The integrals (3.2b) for the transmitted components can thus be written

(4.4)

“+ Z'(11) 7 (x2) 7' (x3) 02l 71 (2,)
T: = (=)™ .. Z \2m)
om (t) = (—1) CG/O 2Z(:c1)dx1/0 2Z(x2)dx2 /m2 QZ(xg)dx?’ /0 2Z(x2m)dx2m’

where the upper limit as,,(x,t) imposes the condition that the path must reach x = z by time ¢.

4.1. Relation between Green’s coefficient and the transmission/reflection coefficients.
Let us consider what happens for long times; let 75 = lim; oo Tom(t). Then ao,, = x4 and it is
straightforward but tedious to evaluate the multiple integral (3.2b); the result depends only on C¢ and
m. For each value of m, TsS, = (—1)™ag,,Cc(log(Cq))?™, where the constants ag, for m =1,2,3,...
are

(4.5) 1, 1/2, 5/24, 61/720, 277/8064, 50521/3628800, 540553,/95800320, .. .

We now explain where this sequence comes from.
Let a sequence of reflection points x and a time ¢ be given. We call the sequence admissible if it is
an alternating sequence and 7(x) < t; we denote the set of admissible paths by P, (t):

(4.6) Pn(t) = {x € [0,24]" : x is an alternating sequence and 7(x) < t}.

The above is valid for reflected characteristics (n odd); for transmitted characteristics (n even) the
admissible paths are given by P, (t 4+ t4). Then we can summarize the bounds of the integral (4.4) by
saying that the integral is over Pa,, (t + ty).

For t > (n 4 1)t4, all possible (alternating) sequences of reflection points are admissible and
a = z4. The integral for T5,, can be simplified using the substitution y(z) = log(Z(x))/2. Also let
yy =log(Z4)/2,y— =log(Z_)/2. For simplicity we assume that Z(x) is monotone increasing. Then

T2oo Y+ Y1 Y+ Yam—1
(47) I / dyn / dys / dys - / Q.
G Y- Y- Y2 y—
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Let n = 2m; then (ignoring the sign for the moment) this integral is the volume of some subset of the n-
dimensional hypercube [y_,y,]™. It is does not include the full hypercube because the reflection points
are required to be an alternating sequence (this requirement is enforced by the limits of integration).
Notice that since Z(z) is monotone increasing, this is equivalent to the condition that the sequence
Y1,Y2,---,Yn be alternating. The integral in (4.7) gives the volume of the subset of the hypercube
that satisfies this alternating condition. The volume of the whole hypercube is of course (y4 —y_)" =
(log(Cc))™.

To determine the value of the integral (4.7), let us partition the hypercube into n! equal parts,
where each part is defined by a particular ordering of the y;. For instance, with n = 4 we would write

Vijkt = {1, y2,¥3,94) 1 vi <y5 < yr < Ui}

where (4, j, k, 1) ranges over all permutations of (1,2,3,4). Each of the sets Vj;;; must have the same
volume since there is nothing to distinguish a particular coordinate direction. Thus each has volume
(log(Cg))™/nl. The value of the integral (4.7) is determined by how many of the Vj;j; satisfy the
alternating condition. With n = 4 there are 5 alternating sequences:

(4’2737 ]')7 (43 ]‘?3?2)7 (3?2’4’ 1)7 (3? 1’472)7 (27 1’4?3)7

so the integral yields (5/24)(log(Cg))*. In general, the number of alternating sequences of length n
is known as the nth Euler zigzag number (or just zigzag number; for even n these are also known as
secant numbers or simply zig numbers [1, 6]. We have proved formula (4.9a) of the following theorem.
Formula (4.9b) can be proved by a similar argument.

THEOREM 4.1. Let Z(z) be monotone and define

A

n!

n . _n

(4.8) bn(z) =

where A, is the nth zigzag number; i.e., the number of alternating permutations of a sequence of length
n. Then the asymptotic contributions for the step satisfy

A
(4.9a) T = Cgby(ilog(Cg)) = Cg—rll(i log(Cg))™ for n even
n!
An .
(4.9b) Ry° =ib,(ilog(Cg)) = ZF(Z log(Ce))™ for n odd,

where i denotes the imaginary unit.

The name zigzag seems eminently appropriate for numbers that appear in the context of Figure 7.
Nevertheless, it is worth noting that the original meaning of the name was a reference to zigzags in the
discrete setting and had nothing to do with space or characteristics. There are many recursive formulas
for the zigzag numbers; in the course of this work we rediscovered the following formula by evaluating
the multiple integrals (4.4). Let a, = A, /n!; then the a, are generated by setting ag = a3 = 1 and
computing

(-
a2m = Z WGZ(mfj)

j=1
m i
(-
a2m+1 = Z WGQ(m—j+1)~
j=1

These formulas recover the values (4.5) and the corresponding sequence for the reflection terms. The
following well-known result is known as André’s Theorem (1881).
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THEOREM 4.2 (André’s Theorem). Let by, (z) be defined by (4.8). Then

Z bn(z) = sec(z) + tan(z).

m=0

Comparison of this result with our series (4.9a)-(4.9b) leads immediately to
o0 o0

(4.10) Z T>° + Z Ry° = Cgsec(ilog(Cg)) + itan(ilog(Cgq)).
n=1 n=1

Further comparing with the expressions for the transmission and reflection coefficients yields

COROLLARY 4.3. Let e ™ < Zy/Z_ < e™. Then

(4.11a) > Tgs, =Cr(Zy,Z) = Cgsech(log(Cq)),
m=0
(4.11b) > RS, =Cr(Zy,Z) = tanh(log(Cq)).
m=0

Proof. We prove the transmission coefficient part; the proof for the reflection coefficient is similar.
From (4.9a) we have

= > A m -
ST =Ca ) (2;), (ilog(C))*™ = Cg sech(log(Cg)).
m=0 m=0 :

This is the Maclaurin series for sech(z) with z = log(Cg); the sequence is convergent for |z| < 7/2,
which is equivalent to the condition e™™ < Z, /Z_ < e™. Meanwhile, we can express the transmission
coefficient in terms of the Green’s coefficient as follows:

o 2Zy 203

Zi+Z- CE+1

Cr(Zy,Z_)

Substituting z = —ilog(Cg) (so Ca = €%*) we find

21z

Cr(Zy,Z-) = eiiﬁ = e sec(z) = Cg sec(—ilog(Cq)) = Cg sech(log(Cg)). o
Corollary 4.3 gives simple expressions for the transmission and reflection coefficients in terms of the
Green’s coefficient. It also says that if we add up all the long-time asymptotic contributions from paths
with any even number of reflections, we obtain the same value given by the transmission coefficient.
Similarly, if we add up all contributions from paths with any odd number of reflections, we obtain the
same value as the reflection coefficient. Thus the asymptotic state near x = 0 for the reflection of the
step is just the middle state resulting from the Riemann problem. In fact, Corollary 4.3 could instead
be proven directly, using PDE-based arguments to show that the net effect of all terms asymptotically

depends only on Z, Z_ and so must sum to the traditional transmission and reflection coefficients.
It may seem unnatural to involve the imaginary unit in (4.11) since T>° and R2° are real numbers.

4.2. Convergence. It is evident that if our series approximation converges, it converges to the
solution of the PDE. The crucial question is whether the series converges at all. We have already seen
that in the long-time limit, the series may diverge for large impedance ratios. Nevertheless, in most
situations the series seems to give good accuracy with only a small number of terms. In this section we
give two convergence results.

The first result shows that the series always converges for any finite time. However, in the worst
case the error may grow exponentially in time.
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THEOREM 4.4. Consider problem (1.2) with coefficients (2.1) and initial data (2.2). Let Royp41(t)
and Ty, (t) be defined as in (3.2). Then for any time 0 <t < oo,

N
(4.12) Jim > Roma(t) = p(0,t) — p(—c_t,0)
m:ON
(4.13) Jim > Tom(t) = play, t).

Furthermore, we have

N 2N 42
§R2m+1(t) — (p(0,t) — p(—c_t, 0))‘ < M% sinh(¢C't.)
N 2N+2
;)Tgm(t) —p(z4,t)]| < M% cosh(¢Ct.)

for some t. € [0,t], where
C = max |c(x)

_ |12 ()]
¢ = max

M = max |po()].

Proof. In the limit n — oo, the series above represent the contribution of all characteristics. Hence,
if the series converge then they must converge to the true solution. We now prove that the reflection
series converges; the proof for the transmission series is similar.

First, for simplicity take c¢(x) = 1 so that the travel time between two points is just the distance
between them, step function initial data (4.1), and Z(x) = €?* so that r(z) = Z'(x)/(2Z(x)) = 1. Then
for odd n

Ratt)] = [+ ] = Vol(P0)

Because ¢(z) = 1, in this case the set P, (t) (defined in (4.6)) is just

Xo(t) ;=< x €]0,24]" : x is an alternating sequence and 22(—1)j+1$j <tp,
J

the set of alternating sequences with path length at most ¢. In other words, |R, ()| is given by the
volume of the set X, (t). The idea of the proof is that this volume is smaller than " /n!. Since ) t"/n!
converges, our series converges also.

Define the mapping f : R™ — R" by

Ty 1=1
fix)=qx;_1 —x; forieven
r; —x;—1 fori>1 odd.
This mapping can be represented by a lower-triangular matrix whose diagonal entries are 41, so it

preserves volume. Note also that

1F )l = 7(x) = 2,
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and for any alternating sequence x > 0 we have f(x) > 0. Let B}, (t) denote the intersection of the
n-dimensional L, ball of radius ¢ with the positive orthant:

By (t) = {z €[0,00)" : [l < t}.
For any x € X,,(t), we have f(x) € BL_(t), so

tn

[ Rn(t)] = Vol(X (1)) = Vol(f(Xn(t))) < Vol(B,,,(¢) = —-

The value of the last integral is a classical result due to Dirichlet [3, p. 168]. So
0 t2m+1

, GmE1) = sinh(t).

Z |R2m+1(t)| S
m=0

m=

To extend the proof to arbitrary c(z), let C' = max, |¢(x)|. Then the length of a characteristic path
emerging at time ¢ is no greater than Ct, so P, (t) C X, (Ct). Thus

(%

|R,(t)| = Vol(Py(t)) < Vol(X,(Ct)) < Vol(B}, (Ct)) = p

To extend the proof to arbitrary Z(x) and initial data po(z), let { = max,, |r(x)| and M = max, |po(z)].
Then

[Ral®)] = ‘ [, mienten TTrax
<[] et [T ldx
SM/.../N)l;[gdx

= M¢" Vol(P, (1))
Ct n
< M¢"Vol(B), (Ct)) = M(C ') :
n!
Thus
(oo}
> [Ram41(t)] < M sinh(¢Ct).
n=0
The error bounds in the theorem then follow from Taylor’s theorem. a

The error estimate given in the theorem above is typically too large to be useful. As we will see in
the examples of Section 4.3, the series often converges much faster. The next theorem gives an example
of conditions under which more rapid convergence can be guaranteed.

THEOREM 4.5. Consider problem (1.2) with coefficients (2.1) and unit step function initial data

(4.1). Let Ry (t) and T, (t) be defined as in (3.2). Let Z(x) be monotone with e 2V2 < Z, /Z_ < e2V2,
Then for any time 0 <t < co we have

N—o0

N
(4'14) lim Z R2m+1(t) = p(o, t) - p(—C_t, O)
m=1

N—oc0

N
(4.15) lim Y T (t) = play,t).
m=1
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Furthermore, the terms |Rom+1(t)| and |Ton, (t)| decrease monotonically with m and the approzimation
error can be bounded as follows:

N-1 2\ N
(4.16) S o (t) — (0(0,2) — pl—c1,0))| < |Row s (8)] < (;) IRy (1)
m=0
N-1 2\ N
(@.17) > Tant) = plos | < 1101 < () a0
m=0

Proof. Since in the limit n — oo we are accounting for all characteristics, then if the limit exists it
must be equal to the solution value. From (3.2) we see that if Z(z) is monotone then the series Rop41
and Ty, are alternating series (i.e., successive terms in each series have opposite sign). It is sufficient
to prove that the terms |Rapm+1(t)| and |To,(¢)] decrease monotonically with m; then the rest of the
theorem follows from standard results for alternating series. We prove convergence of the transmission
series To,, (t). The proof for the reflection series is similar. For simplicity, we consider the case in which
Z(x) is increasing.

Let m and t be fixed and let Z(z) be as stated in the Theorem. As discussed already Tb,,(t) is
given by integrating over Pa,, (t + t4). For clarity, in the remainder of the proof we write Pa,, with no
argument; it is implicitly ¢ 4+ ¢.

o] = |Ca [ [ - / epmifn[lmj)dxj

2m
el [ [ ] Tl
XE'PQM,jzl

The second equality holds because, since Z(z) is monotone, the integrand has the same sign for all
paths. This also means that if P, is replaced by a larger set of paths, the resulting integral provides
an upper bound on [T, (t)|.

Notice that every path in Pa,,42 can be obtained in exactly one way by taking a particular path
in P, and appending two (admissible) reflection points xo,,11,Zom+2. Admissibility of the resulting
path involves a restriction in the total path length (travel time 7(x) < ¢) and the condition that
ZTom+1 > max(Tom,Tamt2). Let us consider the larger set ﬁ2m+2 obtained by omitting the path
length restriction and requiring only that xo,,+1 > Z2m+2. In other words, ﬁ2m+2 is obtained by
appending, for each path in Pa,,, all pairs (T2m+1, Tam+2) such that 0 < zo,,41 < Tomye < x4 Clearly
Pam42 C 732m+2, so we have

2m—+2
Tosal®] = |Co [ [ [ ] rlayis,
XEP2am+2 j=1

2m—+2

cof [[, T vty

2m—+2

cal [ [ ] R | QCIT

j=1

IA

$+ $+
= |Tom ()] / / T(Z2m+2)7 (T2m+1)dT2m+1dT2m 42
0 Tm+2

1
= [Tan(t)] - 5C%.
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Since |log(Z/Z_)| < 2v/2, we have 3CZ < 1, 50 [Tom+2(t)| < |Tom(t)], so the alternating series is
convergent. a

4.3. Examples. In this section we illustrate, through numerical examples, the method just pro-
posed. We take 24 =1 in all examples. In the first three examples we take the functions ¢(z), Z(x) to
be linear in the interval (0,1):

(c—,Z-) x <0
(4.18) (c(x), Z(x)) =< (1 —2)e— +wcy,(1—x)Z_+2Zy) 0<z<uz,
(C+,Z+) T > Ty

Let s = (¢4 — c—)/z4+. Then a right-going characteristic starting from « = 0 at ¢ = 0 satisfies the ODE

ry —x)c_ +xcC
(x4 — ) +

(4.19) X'(t) = ez) = X(0) =0,
Tt

with solution

(4.20) X(t) = %—(est —1).

The total time for an unreflected characteristic to cross from x = 0 to x = x4 is thus

1
ty = —log (Saz+ + 1) .
s c_

For each example, we show the solution corresponding to an initial step function (po(xz) = 1 for
all x < 0) and a square wave (po(z) = 1 for —1 < = < 0). A first example, with very mild variation
in Z, is shown in Figure 8. The solution involving only terms up to 75 is already highly accurate. In
the second example, shown in Figure 9, Z varies by a factor of 8. In this case it can be seen that the
approximation using terms up to 7T gives a significant improvement.

Both of the previous examples satisfy the conditions given in Theorem 4.4. The next two examples
do not. In the third example, we take Z_ = 1 and Z; = 20. It can be seen that in this case
the convergence for large times is much slower and the series including terms up to 7, is a good
approximation only for short times.

In the final example, Z(x) is non-monotone:

Z(x) = 0.25 + 0.75z + sin(107z) /10.

The solution given by including terms up to T4 captures the oscillating solution well. This example also
illustrates that when Z(x) is a non-monotone function, the transmitted wave amplitude can exceed Cg
at some points.

5. Conclusions. We have shown how the method of characteristics can be used to solve the initial
value problem for the wave equation in one space dimension in the presence of a region of continuously-
varying coefficients. This can be extended in a straightforward way to other linear hyperbolic systems
in one dimension.

It is natural to ask whether the method developed in this work is a practical computational tool.
It seems that in most situations, it is less computationally expensive to obtain an accurate solution
through numerical discretization of the wave equation than through the approach outlined here, since
the evaluation of R, (t) or T, (t) requires an n-dimensional quadrature. The method developed here has
the advantage that the solution at any desired time can be computed directly, without requiring the
computation of solutions at earlier times; this might make it advantageous in some circumstances. We
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12
1.071
0.8
0.6

0.4

— exact
== Up to 2 reflections
00— Up to 4 reflections

0.2

(a) Step function initial condition.

| — exact

—== Up to 2 reflections
—— Up to 4 reflections
———— CG

-5 -4 -3 -2 -1 ) 1

(b) Square wave initial condition.
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F1G. 8. Solution att =3t4. Herexy =1, c_ =2, cy =1, Z_ =1/2, and Z4 = 1. The solution is captured well

by considering only two reflections.

0.51 — exact
== Up to 2 reflections
0.0 — Up to 4 reflections
-6 -5 -4 -3 -2 -1 0 1

(a) Step function initial condition.

| — exact
—== Up to 2 reflections
—— Up to 4 reflections
[R— CG

-5 -4 -3 -2 -1 0 1

(b) Square wave initial condition.

F1G. 9. Solution att = 3t4. Herexy =1,c— =2, ¢y =1, Z_ =1/8, and Zy = 1. Using more reflections improves
the accuracy of both the transmitted and reflected approximations.

— exact /

01 == Up to 2 reflections /7
—— Up to 4 reflections e
-6 -5 -4 -3 -2 -1 0 1

(a) Step function initial condition.

[ — exact
== Up to 2 reflections
—— Up to 4 reflections
—— Cg

(b) Square wave initial condition.

Fic. 10. Solution att =3ty. Herexy =1,c—- =2, cy =1, Z_ =1, and Z4 = 20.
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20— exact f
== Up to 2 reflections
—— Up to 4 reflections
—— Cs

Y 7
— exact 0.0 1
== Up to 2 reflections
0.0 — Up to 4 reflections
6 5 _a _3 b 1 0 1 2 3 " s Za T3 i 1 [ 1 2 3
(a) Step function initial condition. (b) Square wave initial condition.

Fic. 11. Solution at t = 3ty. Here x4 =1, c— =2, ¢y =1, Z_ =1, and Zy = 1/4. In the shaded region,
Z(z) = 0.25 4+ 0.75z + sin(107x) /10.

have not investigated techniques for reducing the computational cost or made any careful comparisons.
Moreover, these results elucidate the relation between transmission and reflection coefficients expected
in the limiting case of a sharp interface, with the Greens law behavior expected for sufficiently smooth
transitions in material properties.

It is natural to expect that the series (3.1) may converge because characteristics that undergo
many reflections contribute in successively smaller amounts to the solution. Examining (3.2), this
viewpoint makes sense only if |r(x)| < 1. However, our examples and analysis show that (3.1) converges
quite independently of any such condition. Theorem 4.4 indicates that in general (3.1) converges for
a completely different reason: the number of contributing characteristics (more precisely, the volume
they occupy in an appropriate space) becomes vanishingly small as n — oo.
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