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RAMSEY-LIKE THEOREMS AND MODULI OF COMPUTATION

LUDOVIC PATEY

Abstract. Ramsey’s theorem asserts that every k-coloring of [ω]n admits an infinite monochromatic set.
Whenever n ≥ 3, there exists a computable k-coloring of [ω]n whose solutions compute the halting set. On
the other hand, for every computable k-coloring of [ω]2 and every non-computable set C, there is an infinite
monochromatic set H such that C 6≤T H. The latter property is known as cone avoidance.

In this article, we design a natural class of Ramsey-like theorems encompassing many statements studied
in reverse mathematics. We prove that this class admits a maximal statement satisfying cone avoidance and
use it as a criterion to re-obtain many existing proofs of cone avoidance. This maximal statement asserts
the existence, for every k-coloring of [ω]n, of an infinite subdomain H ⊆ ω over which the coloring depends
only on the sparsity of its elements. This confirms the intuition that Ramsey-like theorems compute Turing
degrees only through the sparsity of its solutions.

Ramsey’s theorem asserts that every k-coloring of [ω]n admits an infinite monochromatic set, where
[X ]n denotes the set of the unordered n-tuples over X . This theorem plays an central role in reverse
mathematics, as Ramsey’s theorem for pairs is historically the first example of a theorem escaping the
structural phenomenon known as the “Big Five” phenomenon. See Simpson [25] for a reference on the
early reverse mathematics. In his celebrated theorem, Seetapun [24] proved that Ramsey’s theorem for pairs
admits cone avoidance, that is, for any fixed non-computable set C, every computable k-coloring of [ω]2

admits an infinite monochromatic set H which does not compute C. Since then, many consequences of
Ramsey’s theorem have been studied from a computability-theoretic viewpoint, including the Erdős-Moser
theorem [1], the Ascending Descending sequence principle [12], the free set and thin set theorems [3] and the
rainbow Ramsey theorem [6]. Seeing these statements as problems, in terms of instances and solutions, the
community studied basis theorems for various computability-theoretic properties, including cone avoidance
for computable instances, but also for arbitrary instances. This latter property is known as strong cone
avoidance.

In this article, we generalize the above analysis by designing a general class of Ramsey-like statements
encompassing the above examples, and providing general criteria to decide whether any such statement
admits (strong) cone avoidance. We start with a short survey on cone avoidance for Ramsey’s theorem in
Section 1. Then, we define in Section 2 the class of Ramsey-like statements to be those of the form “For
every coloring f : [ω]n → k, there is an infinite set H ⊆ ω avoiding some set of forbidden patterns relative
to f .” This class contains Ramsey’s theorem, but also the Erdős-Moser theorem. We prove that this class
contains a maximal statement admitting strong cone avoidance (SCA-RTn

k) and cone avoidance (CA-RTn

k) and
characterize the statements admitting strong cone avoidance and cone avoidance as those identically reducible
to SCA-RTn

k and CA-RTn

k, respectively. In Section 3, we define the class of promise Ramsey-like statements
which generalizes the class of Ramsey-like statements by restricting the instances to those satisfying some
property. These statements as then of the form “For every coloring f : [ω]n → k such that ω avoids some
set of forbidden patterns relative to f , there is an infinite set H ⊆ ω avoiding some other set of forbidden
patterns relative to f .” This enables us to express statements about other structures, such as linear orders
and partial orders, including the Ascending Descending sequence and the Chain Antichain principle, but also
statements about ω-colorings over [ω]n, such as the free set or the rainbow Ramsey theorem. In Section 4,
we apply the previous analysis to reprove many existing theorems, including cone avoidance of Ramsey’s
theorem for pairs [24], strong cone avoidance of Ramsey’s theorem for singletons [8], strong cone avoidance
of the Erdős-Moser theorem [20], strong cone avoidance of the thin set and free set theorems [27], among
others. Last, in Section 5, we state some remaining open questions and suggest further developments.

Put aside the practical application of this general framework to obtain forcing-free proofs of cone and
strong cone avoidance, the actual statements of SCA-RTn

k and CA-RTn

k and the resulting decidability criteria
provide some further insights on the nature of computation of Ramsey-like statements. One can see a function
µ : ω → ω as a measure of largeness of the intervals over ω, by saying that [x, y] is µ-large if µ(x) ≤ y. The
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2 LUDOVIC PATEY

statements SCA-RTn

k and CA-RTn

k are both of the form “For every coloring f : [ω]n → k, there is a function
µ : ω → ω and an infinite set H ⊆ ω such that for every D ∈ [H ]n, f(D) depends only on the µ-largeness
analysis over D.” This gives further evidence that Ramsey-like theorems get their computational power out
of the sparsity of the solutions, and more generally that Ramsey-like theorems compute through moduli.

1. A short survey on encodability by Ramsey’s theorem

For the sake of clarity, we will adopt a thematic presentation, independently of the historical aspects
of these discoveries. Ramsey’s theorem is a combinatorial theorem at the foundation of Ramsey’s theory.
This theory studies the conditions under which given a sufficiently large amount of data, one can see the
emergence of some structure. A k-coloring of [ω]n is a function f : [ω]n → k. A set H ⊆ ω is f -homogeneous
if f is constant on [H ]n.

Statement 1.1 (Ramsey’s theorem). RT
n
k : Every coloring f : [ω]n → k admits an infinite f -homogeneous

set.

Ramsey’s theorem plays a central role in reverse mathematics. It is historically the first theorem which
does not belong to the empirical structural observation of mathematics. This motivated the computability-
theoretic analysis of Ramsey’s theorem and its consequences.

One can see Ramsey’s theorem as a mathematical problem, expressed in terms of instances and solutions.
Here, an instance of RTn

k is a coloring f : [ω]n → k. A solution to an RT
n
k -instance f is an infinite f -

homogeneous set. The computable analysis of Ramsey’s theorem consists of, given an instance of RT
n
k ,

studying the complexity of its solutions from a computable and a proof-theoretic viewpoint. This study
started with Jockusch [13], who proved that every computable instance of RT

n
k admits an arithmetical

solution.
In this article, we are interested in the ability of Ramsey’s theorem to compute Turing degrees, that is, the

existence of (computable or not) instances of RTn
k such that every solution computes a fixed Turing degree.

1.1. Encodability by Ramsey’s theorem. Given a problem P with instances and solutions, we say that
a set A is encodable by P, or P-encodable, if there is an (arbitrary) instance of P such that every solution
computes A.

The study of RTn
k -encodable sets is closely bound to the ability of Ramsey’s theorem to compute fast-

growing functions. Suppose a set A admits a modulus, that is, a function µ : ω → ω such that every function
dominating µ computes A. Then, define the RT

2
2-instance f : [ω]2 → 2 for each x < y by f(x, y) = 1 if

and only if y ≥ µ(x), that is, if the interval [x, y] is sufficiently large. Every infinite f -homogeneous set H
must be of color 1, and its principal function pH : ω → ω, which on n associates the nth element of H ,
dominates µ and therefore computes A.

Such an argument shows that if a set A admits a modulus, then it is RT
n
k -encodable, for n ≥ 2 and

k ≥ 2. Moreover, this encodability is witnessed by constructing an instance of RTn
k whose solutions are

sparse enough so that their principal functions are fast-growing. The sets admitting a modulus have been
studied by Groszek and Slaman [10], who proved that these are precisely the hyperarithmetical sets.

On the other hand, Solovay [26] proved that no other degree can be encoded by Ramsey’s theorem, using
the notion of computable encodability. Given a set X ⊆ ω, we let [X ]ω be the collection of all the infinite
subsets of X .

Definition 1.2. A set A is computably encodable if for every set X ∈ [ω]ω, there is a set Y ∈ [X ]ω such that
Y ≥T A.

Suppose that a set A is computed by an instance f : [ω]n → k of RTn
k , in other words, every infinite f -

homogeneous set computes A. In particular, since for every set X ∈ [ω]ω, there is an infinite f -homogeneous
set H ⊆ X , then the set A is computably encodable. The following equivalence proves that the only Turing
degrees which can be computed by an instance of Ramsey’s theorem are the ones which admit a modulus,
hence those who can be computed using fast-growing functions.

Theorem 1.3 (Solovay [26], Groszek and Slaman [10]). Given a set A, the following are equivalent

(a) A is computably encodable
(b) A is hyperarithmetic
(c) A admits a modulus
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One case however remains, namely, Ramsey’s theorem for singletons. Intuitively, one cannot build an
instance of RT

1
2 whose solutions are sparse everywhere, so that their principal functions are sufficiently

fast-growing. Indeed, given a RT
1
2-instance f : ω → 2, in order to ensure that the f -homogeneous sets for

color 0 are all sparse, one has to set f(x) = 1 for many x ∈ ω. But then, one can construct non-sparse
f -homogeneous sets for color 1. Actually, Ramsey’s theorem for singletons has no encodability power, as
formalized by the notion of strong cone avoidance.

Definition 1.4. A problem P admits strong cone avoidance if for every set Z, every C 6≤T Z and every
P-instance X , there is a P-solution Y to X such that C 6≤T Z ⊕ Y .

Building on the work of Seetapun and Slaman [24] and of Cholak, Jockusch and Slaman [4], Dzhafarov

and Jocksuch [8] proved that Ramsey’s theorem for singletons (RT1
k) admits strong cone avoidance, thereby

completing the picture of which sets are encodable by Ramsey’s theorem. To summarize, a set is encodable
by RT

n
k with n ≥ 2 if and only if it is hyperarithmetic, and is encodable by RT

1
k if and only if it is computable.

1.2. Encodability by computable instances. One may naturally want to refine the previous analysis, and
study the RT

n
k -encodable sets with respect to the computational complexity of its instances. Jockusch [13]

proved that every computable instance of RTn
k admits an arithmetical solution. On the lower bound side, he

proved that for every n ≥ 3, there is computable instance of RTn
2 such that every solution computes ∅(n−2).

The proof is a simple effectivization of the previous section.
On the other direction, Seetapun and Slaman [24] proved that Ramsey’s theorem for pairs (RT2

k) has no
encodability power when restricted to computable instances, in the following sense.

Definition 1.5. A problem P admits cone avoidance if for every set Z, everyC 6≤T Z and every Z-computable
P-instance X , there is a P-solution Y to X such that C 6≤T Z ⊕ Y .

While strong cone avoidance expresses the combinatorial failure of P to encode any non-computable set,
cone avoidance only expresses the computational weakness of P. There is a deep link between the combi-
natorial features of RTn

k and the computational features of RTn+1
k , as expressed by Cholak and Patey [2,

Theorem 1.5]. One can deduce cone avoidance of RT2
k from strong cone avoidance of RT1

k, although his-
torically, Seetapun and Slaman [4] first proved cone avoidance of RT2

k. Cholak, Jockusch and Slaman [4,

Theorem 12.2] (proof fixed in [11, Appendix A]), relativized cone avoidance of RT2
k to prove that for every

n ≥ 2, if a set A is not ∆0
n−1, then every computable instance of RTn

k admits a solution H such that A 6≤T H .
This completes the study of the sets encodable by computable instances of RTn

k . Indeed, for every n ≥ 2, a
set A is encodable by a computable instance of RTn

k if and only if A is ∆0
n−1.

1.3. Encodability by the thin set theorems. The previous sections give a complete picture of which
sets are encodable by Ramsey’s theorem, with or without restricting the complexity of the instances. This
could be the end of the story. However, Wang [27] surprisingly showed that by weakening the notion of
homogeneity to allow sufficiently many colors in the solutions, one obtains strong cone avoidance.

Statement 1.6 (Thin set theorem). RT
n
<∞,ℓ: For every coloring f : [ω]n → k, there is an infinite set H ⊆ ω

such that |f [H ]n| ≤ ℓ.

Wang [27] proved that for every n ≥ 1 and every sufficiently large ℓ ∈ ω, RTn
<∞,ℓ admits strong cone

avoidance. On the other hand, Cholak and Patey [2, Theorem 3.2], adapting Dorais et al. [7, Proposition
5.5], proved that if ℓ < 2n−1, RTn

<∞,ℓ can still compute arbitrarily fast-growing functions, and therefore
computes all the hyperarithmetic sets. More precisely.

Theorem 1.7 (Cholak and Patey). Fix n ≥ 1.

(a) For every function µ : ω → ω, there is an instance of RTn
<∞,2n−1−1 such that every solution computes

a function dominating µ.
(b) If A is not arithmetical, then every instance of RTn

<∞,2n−1 has a solution which does not compute A.

Using the previous sections, whenever a set A is not hyperarithmetical, it is not RTn
2 -encodable, hence not

RT
n
<∞,ℓ-encodable for any ℓ ≥ 1. Whenever A is hyperarithmetical, but not arithmetical, then it is RTn

<∞,ℓ-

encodable if and only if ℓ < 2n−1. The case of the the arithmetical sets must be treated independently.
Consider the halting set ∅′. The standard modulus of ∅′ is defined by letting µ(n) be the smallest time

t at which for every e < n, if Φe(e) ↓, then Φe(e) halts before stage t. One can in particular computably
approximate the function µ from below. This is the notion of left-c.e. function.
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Definition 1.8. A function µ : ω → ω is left-c.e. if there is a uniformly computable sequence of functions
µ0, µ1, . . . with µs : ω → ω such that for every s ∈ ω, µs ≤ µs+1, and for every x ∈ ω, lims µs(x) = µ(x).

The notion relativizes, and we say that a function is left-X-c.e. if the sequence of functions is uniformly
X-computable. When mentioning a left-c.e. function, we will always assume that the sequence of its approx-
imations is specified. This is why we will sometime talk about relative left-c.e. function simply to say that
a sequence of lower approximations of the function is fixed, no matter the effectiveness of the sequence.

Cholak and Patey [2] studied the threshold of ℓ under which, given a left-c.e. function µ, there is an
instance of RTn

<∞,ℓ such that every solution computes a function dominating µ. This happens to be exactly
the Catalan sequence, inductively defined by C0 = 1 and

Cn+1 =

n∑

i=0

Cicn−i

In particular, C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, C6 = 132, C7 = 429, . . . Note that this
sequence corresponds to the OEIS sequence A000108.

Theorem 1.9 (Cholak and Patey [2]). Fix n ≥ 1.

(a) For every left-c.e. function µ : ω → ω, there is an instance of RTn
<∞,Cn−1 such that every solution

computes a function dominating µ.
(b) If A is not computable, then every instance of RTn

<∞,Cn
has a solution which does not compute A.

By iterating the notion of left-c.e. function, one can RT
n
<∞,Cn−1-encode all the arithmetical sets for every

n ≥ 2. This completes the picture of the RT
n
<∞,ℓ-encodable sets, depending on the value of n and ℓ. There

are actually three classes of RTn
<∞,ℓ-encodable sets: the computable, arithmetical, and hyperarithmetical

sets. One can also deduce which sets are encodable by computable instances of RTn
<∞,ℓ, using the bridge

between the combinatorics of RTn
<∞,ℓ and the computations of RTn+1

<∞,ℓ. See Cholak and Patey [2] for this
analysis.

2. Ramsey-like theorems

As explained, RTn
2 does not admit strong cone avoidance for every n ≥ 2. However, there exist some

weakenings of Ramsey’s theorem which admit strong cone avoidance. The thin set theorem is an example,
but also the Erdos-Moser theorem. Given a coloring f : [ω]2 → 2, the Erdos-Moser theorem (EM) asserts
the existence of an infinite set H ⊆ ω over which f is transitive, that is, for every x < y < z and i < 2, if
f(x, y) = i and f(y, z) = i then f(x, z) = i. The author [20] proved that EM admits strong cone avoidance.
Ramsey’s theorem, the thin set theorem and the Erdős-Moser theorem are all of the form “For every coloring
f : [ω]n → k, there exists an infinite set H ⊆ ω avoiding some set of forbidden patterns relative to f .” In
this section, we design a general class of Ramsey-like theorems, and provide a criterion to decide which
statements admit strong cone avoidance.

Definition 2.1. Fix a countable collection of variables x0, x1, . . . An RT
n
k -pattern P is a finite conjunction

of formulas of the form f({xi : i ∈ D}) = v for some D ∈ [ω]n and v < k, where f is a function symbol
of type [ω]n → k. Given an actual coloring f : [ω]n → k, a set of integers E = {n0 < n1 < · · · < nr−1}
f -satisfies an RT

n
k -pattern P ≡ f({xi : i ∈ D0}) = v0 ∧ · · · ∧ f({xi : i ∈ Dℓ−1}) = vℓ−1 if for every s < ℓ,

letting Es = {ni : i ∈ Ds}, f(Es) = vs. A set H ⊆ ω f -meets P if H contains an finite subset f -satisfying
P . Otherwise, H f -avoids P .

For example, f(x5, x6) = 0 ∧ f(x6, x7) = 1 ∧ f(x5, x7) = 0 is an RT
2
2-pattern.

Definition 2.2. Given a collection W of RTn
k -patterns, the RT

n
k -like problem RT

n
k (W ) is the problem whose

instances are colorings f : [ω]n → k. An RT
n
k (W )-solution to an instance f is an infinite setH ⊆ ω f -avoiding

every pattern in W .

In particular, RT
2
2 is the RT

2
2-like problem RT

2
2(WRT2

2
) with WRT2

2
= {f(x0, x1) = 0 ∧ f(x2, x3) =

1, f(x0, x1) = 1 ∧ f(x2, x3) = 0, f(x0, x2) = 0 ∧ f(x1, x3) = 1, f(x0, x2) = 1 ∧ f(x1, x3) = 0}. Similarly, EM
is the RT

2
2-like problem RT

2
2(WEM) with WEM = {f(x0, x1) = 0 ∧ f(x1, x2) = 0 ∧ f(x0, x2) = 1, f(x0, x1) =

1 ∧ f(x1, x2) = 1 ∧ f(x0, x2) = 0}.
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2.1. True Ramsey-like problems. We say that a problem is true if every instance has a solution. Intu-
itively, Ramsey’s theorem is the strongest structural property we can get out of a k-coloring of [X ]n, where
X is an abstract set. We formalize this intuition by proving that Ramsey’s theorem is the maximal true
Ramsey-like theorem.

Definition 2.3. Let P and Q be two problems with dom(P) ⊆ dom(Q). We say that P is identically reducible
to Q (written P ≤id Q) if for every I ∈ dom(P), every Q-solution to I is a P-solution to I.

Theorem 2.4. Fix n, k ≥ 1 and a collection W of RT
n
k -patterns. Then RT

n
k (W ) is true if and only if

RT
n
k (W ) ≤id RT

n
k .

Proof. ⇒: Suppose RT
n
k (W ) 6≤id RT

n
k . Let f : [ω]n → k be an instance of RT

n
k (W ) and let H be an

infinite f -homogeneous set for some color i < 2 which f -meets some P ∈ W . Then P is of the form
f({xj : j ∈ D0}) = i ∧ · · · ∧ f({xj : j ∈ Dℓ−1}) = i. Then, letting g : [ω]n → k be defined for every D ∈ [ω]n

by g(D) = i, g has no RT
n
k (W )-solution, therefore RT

n
k (W ) is not true.

⇐: Suppose RT
n
k (W ) ≤id RT

n
k . Given an instance f : [ω]n → k of RTn

k (W ), by the classical Ramsey
theorem, there is an infinite f -homogeneous set H . In particular, H is an RT

n
k (W )-solution to f , so f admits

an RT
n
k (W )-solution and RT

n
k (W ) is true. �

Before starting the analysis of cone avoidance for Ramsey-like theorems, let us introduce an important
concept which will be implicitly used all over the article.

Definition 2.5. A problem P is zoomable if for every P-instance I and every infinite set X = {x0 < x1 <
. . . }, there is a P-instance IX such that for every P-solution Y to IX , {xn : n ∈ Y } is a P-solution to I.

One can see zoomable problems as saying that given an instance I and an infinite set X , we can zoom in
on the set X and consider it as the new set ω by renaming the elements of X . Then, after having built a
solution within X seen as ω, we can zoom out and see it as a subset of X . For example, Ramsey’s theorem
is a zoomable problem, while Hindman’s theorem is not, since the zoom operation changes the semantics of
the addition.

The following lemma which is implicitly used everywhere asserts that whenever a zoomable problem P

admits strong cone avoidance, then one can apply this strong cone avoidance within the scope of a cone
avoiding reservoir.

Lemma 2.6. Let P be a zoomable problem which admits strong cone avoidance. For every set Z, every set
C 6≤T Z, every infinite Z-computable set X and every P-instance I, there is a P-solution Y ⊆ X such that
C 6≤T Z ⊕ Y .

Proof. Fix Z, C and X . Since P is zoomable, there is a P-instance IX such that for every P-solution Y to
IX , {xn : n ∈ Y } is a P-solution to I. By strong cone avoidance of P applied to IX , there is a P-solution
Y to IX such that C 6≤T Z ⊕ Y . The set YX = {xn : n ∈ Y } is a Z ⊕ Y -computable P-solution to I. In
particular, YX ⊆ X and C 6≤T Z ⊕ YX . �

Similar lemmas can be proven for cone avoidance and strong cone avoidance for non-arithmetical cones.
We will use these lemmas without any further mention.

2.2. Strongly avoiding non-arithmetical cones. Recall that given a modulus µ : ω → ω of a set A, one
can define a coloring f : [ω]2 → 2 by f(x, y) = 1 if and only if µ(x) ≤ y. Any infinite f -homogeneous set
computes a function dominating µ. Cholak and Patey [2] generalized this coding in the following sense.

Definition 2.7. A graph G = ({0, . . . , n− 1}, E) of size n is a vector graph if E ⊆ {{i, i+ 1} : i < n− 1}.

A vector graph of size n is just a representation of a {0, 1}-value vector of size n − 1. The choice of a
graph representation is for uniformity with the later sections. Given n ≥ 1, we let Vn be the set of all vector
graphs of size n. In particular, |Vn| = 2n−1. We shall actually consider functions µ : ω → ω+, where ω+ is
the successor ordinal of ω.

Definition 2.8. Let µ : ω → ω+ be a function. For every n ≥ 1 and D = {x0 < · · · < xn−1} ∈ [ω]n, let
Vn(µ,D) be the graph G = ({0, . . . , n − 1}, E) such that for each i < n − 1, {i, i + 1} ∈ E if and only if
µ(xi) ≤ xi+1.
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An interval [x, y] is µ-large if µ(x) ≤ y. Otherwise, it is µ-small. Given a finite set D = {x0 < · · · < xn−1},
Vn(µ,D) is supposed to code the whole µ-largeness information over D. Actually, Vn(µ,D) contains only the
information about the adjacent intervals, namely, intervals of the form [xi, xi+1]. What about the largeness
information about non-adjacent ones? For example, if [x, y] and [y, z] are both µ-small, is [x, z] µ-small or
µ-large? We shall see through the notion of µ-transitivity that we can always restrict ourselves to sets over
which the whole information of µ-largeness is already fully specified by the µ-largeness information on the
adjacent intervals. A set H ⊆ ω is µ-transitive if for every x < y < z ∈ H , µ(x) > y and µ(y) > z if and
only if µ(x) > z.

Lemma 2.9. Fix µ : ω → ω+ and ρ : ω → ω+. Given n ≥ 1, let E = {x0 < · · · < xn−1} be a µ-transitive set,
and F = {y0 < · · · < yn−1} be a ρ-transitive set such that Vn(µ,E) = Vn(ρ, F ). Then for every i < j < n,
[xi, xj ] is µ-large if and only if [yi, yj] is ρ-large.

Proof. We prove by induction over m ≥ 1 that for every i, [xi, xi+m] is µ-large if and only if [yi, yi+m] is ρ-
large. The base case m = 1 is the lemma hypothesis. Suppose it holds up to m. Since E is µ-transitive, then
[xi, xi+m+1] is µ-large if and only if either [xi, xi+m] or [xi+m, xi+m+1] is µ-large. By induction hypothesis,
this holds if and only if either [yi, yi+m] or [yi+m, yi+m+1] is ρ-large. Since F is ρ-transitive, this holds if and
only if [yi, yi+m+1] is ρ-large. �

Cholak and Patey [2, Theorem 3.2] proved the following theorem. Note that µ ranges over ω and not ω+.

Theorem 2.10 (Cholak and Patey [2]). Let µ : ω → ω be a function. For every n ≥ 1, define fn : D 7→
Vn(µ,D). For every infinite set H ⊆ ω such that Vn 6⊆ fn[H ]n, H computes a function dominating µ.

In particular, this proves that for every hyperarithmetical set A, there is an RT
n
<∞,2n−1−1-instance such

that every solution computes A. Moreover, this coding technique optimal for non-arithmetical sets from the
viewpoint of the number of colors, in the sense that if A is non-arithmetical, then every RT

n
<∞,2n−1-instance

admits a solution which does not compute A.
We now prove that this optimality is not only about the number of colors, but also on the nature of the

coding, by proving that for every coloring f : [ω]n → k and every non-arithmetical set A, then there exists
an infinite subdomain H ⊆ ω such that A 6≤T H , and over which f↾[H ]n behaves exactly like our function
D 7→ Vn(µ,D), up to a renaming of the colors.

Statement 2.11. ARITH-SCA-RTn

k: For every function f : [ω]n → k, there is a function µ : ω → ω+, an
infinite µ-transitive set H ⊆ ω, and a coloring χ : Vn → k such that for everyD ∈ [H ]n, f(D) = χ(Vn(µ,D)).

For n = 1, there is only one vector graph of size 1, namely G = ({0}, ∅}. Therefore |V1| = 1, and

ARITH-SCA-RT1

k states the existence, for every function f : ω → k, of a unique color i < k such that for

every x ∈ H , f(x) = i. Thus ARITH-SCA-RT1

k is RT1
k. The case n = 2 yields a new principle.

Statement 2.12. LARGEk: For every coloring f : [ω]2 → k, there are some colors is, iℓ < k and an infinite
set H ⊆ ω such that f [H ]2 ⊆ {is, iℓ} and for every x < y < z ∈ H , f(x, y) = f(y, z) = is if and only if
f(x, z) = is.

Intuitively, is and iℓ are the colors of small and large intervals, respectively.

Lemma 2.13. ARITH-SCA-RT2

k is the statement LARGEk.

Proof. We first prove that LARGEk ≤id ARITH-SCA-RT2

k. Let f : [ω]2 → k be a coloring, and let H be an

infinite ARITH-SCA-RT2

k-solution. By definition of ARITH-SCA-RT2

k, there is some function µ : ω → ω+ and
a coloring χ : V2 → k such that H is µ-transitive, and for every x < y ∈ H , f(x, y) = χ(V2(µ, {x, y})). Let
G0 = ({0, 1}, ∅} and G1 = ({0, 1}, {{0, 1}}). In particular, V2 = {G0,G1}. Let is = χ(G0) and iℓ = χ(G1).
Since for every x < y ∈ H , f(x, y) = χ(V2(µ, {x, y})), f [H ]2 ⊆ {is, iℓ}. We claim that for every x < y <
z ∈ H , f(x, y) = f(y, z) = is if and only if f(x, z) = is. If is = iℓ, then H is f -homogeneous for color is,
and satisfies the property, so suppose is 6= iℓ. In other words, χ is one-to-one. Fix x < y < z ∈ H . Then
f(x, y) = f(y, z) = is if and only if V2(µ, {x, y}) = V2(µ, {y, z}) = G0, if and only if µ(x) > y and µ(y) > z.
By µ-transitivity of H , this holds if and only if µ(x) > z, hence V2(µ, {x, z}) = G0. Since χ is one-to-one,
this holds if and only if f(x, z) = χ(V2(µ, {x, z})) = χ(G0) = is.

We now prove that ARITH-SCA-RT2

k ≤id LARGEk. Let f : [ω]2 → k be a coloring, and let H ⊆ ω and
is, iℓ < 2 be such that f [H ]2 ⊆ {is, iℓ} and for every x < y < z ∈ H , f(x, y) = f(y, z) = is if and only
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if f(x, z) = is. Let χ(G0) = is and χ(G1) = iℓ. For every x ∈ ω, let µ(x) be either min{y > x : y ∈
H ∧f(x, y) = iℓ} if it exists, and µ(x) = ω otherwise. We first claim that H is µ-transitive. Indeed, for every
x < y < z ∈ H , µ(x) > y and µ(y) > z if and only if f(x, y) = f(y, z) = is. Since H is a P-solution to f , this

holds if and only if f(x, z) = is, hence if and only if µ(x) > z. Last, we claim that H is an ARITH-SCA-RT2

k-
solution to f with witness χ and µ. Fix x < y ∈ H . Then f(x, y) = is if and only if µ(x) > y, if and only if
V2(µ, {x, y}) = G0, if and only if χ(V2(µ, {x, y})) = χ(G0) = is. Thus f(x, y) = χ(V2(µ, {x, y})). �

By compactness, if we don’t consider µ and χ as part of the solution , then ARITH-SCA-RTn

k can be seen
as an RT

n
k -like problem.

Lemma 2.14. There is a c.e. set of RTn
k -like patterns W such that ARITH-SCA-RTn

k is the problem RT
n
k (W ).

Proof. Fix a coloring f : [ω]n → k. By compactness, a set H ⊆ ω is an ARITH-SCA-RTn

k-solution if and
only if for every finite set F ⊆ H , there is a function µ : F → ω+ and a coloring χ : Vn → k such that F is
µ-transitive and for every D ∈ [F ]n, f(D) = χ(Vn(µ,D)). Let W be the set of all RTn

k -patterns such that
the above property does not hold. Then ARITH-SCA-RTn

k is the statement RTn
k (W ). �

We say that a problem P admits strong cone avoidance for non-arithmetical cones if for every set Z, every
non-Z-arithmetical set C, and every P-instance X , there is a P-solution Y such that C 6≤T Z ⊕ Y .

Theorem 2.15. ARITH-SCA-RTn

k admits strong cone avoidance for non-arithmetical cones.

Proof. Fix a set Z, a non-Z-arithmetical set C and a coloring f : [ω]n → k.
Suppose first that C is not Z-hyperarithmetical. By Solovay [26], C is not computably encodable relative

to Z. Since for every infinite set X ⊆ ω, there is an infinite ARITH-SCA-RTn

k-solution Y ⊆ X to f , there is
an ARITH-SCA-RTn

k-solution H to f such that C 6≤T Z ⊕H .
Suppose now that C is Z-hyperarithmetical. By Groszek and Slaman [10], there is a modulus µ : ω → ω

relative to Z, that is, for every function g dominating µ, C ≤T Z⊕ g. Let f1 be defined for each D ∈ [ω]n by
f1(D) = 〈f(D),Vn(µ,D)〉. By strong cone avoidance of RTn

<∞,2n−1 for non-arithmetical cones (see Cholak

and Patey [2, Theorem 4.15]), there is an infinite set H ⊆ X such that C 6≤T Z⊕H and |f1[H ]n| ≤ 2n−1. In
particular, H ⊕ Z does not compute a function dominating µ, so by Theorem 2.10, for every G ∈ Vn, there
is some i < k and some D ∈ [H ]n such that f1(D) = 〈i,G〉. Since |Vn| = 2n−1, this i is unique. For each
G ∈ Vn, let χ(G) be this unique i.

We claim that for every D ∈ [H ]n, f(D) = χ(Vn(µ,D)). By definition of χ, f1(D) = 〈f(D),Vn(µ,D)〉 =
〈χ(Vn(µ,D)),Vn(µ,D)〉. It follows that f(D) = χ(Vn(µ,D)). By Cholak and Patey [2, Corollary 5.5], there is
an infinite µ-transitive subset H1 ⊆ H such that C 6≤T Z⊕H1. Therefore, H1 is an ARITH-SCA-RTn

k-solution
to f . �

The following technical lemma will be useful for Theorem 2.17, Lemma 3.3 and Lemma 3.4. Note that µ0

ranges over ω+ while µ1 ranges over ω.

Lemma 2.16. Fix χ : Vn → k, and let f0 : [ω]n → k and f1 : [ω]n → k be two colorings. Let H0 be
an infinite ARITH-SCA-RTn

k-solution to f0 with witnesses χ and µ0 : ω → ω+, and let H1 be an infinite
ARITH-SCA-RTn

k-solution to f1 with witnesses χ and µ1 : ω → ω. If H0 f0-meets some RT
n
k -pattern P but

H1 f1-avoids P , then H1 computes a function dominating µ1.

Proof. Since H0 f0-meets some RT
n
k -pattern P , there is a finite set E0 = {x0 < · · · < xr−1} ⊆ H0 which

f0-meets P . Suppose for the sake of contradiction that H1 does not compute a function dominating µ1. By
Theorem 2.10, there is a finite set E1 = {y0 < · · · < yr−1} ⊆ H1 of size r such that Vr(µ0, E0) = Vr(µ1, E1).
By Lemma 2.9, since H0 is µ0-transitive and H1 is µ1-transitive, for every I ∈ [r]n, letting D0 = {xi : i ∈ I}
andD1 = {yi : i ∈ I}, Vn(µ0, D0) = Vn(µ1, D1). Since f0(D0) = χ(Vn(µ0, D0)) and f1(D1) = χ(Vn(µ1, D1)),
then f0(D0) = f1(D1). Thus f0↾[E0]

n and f1↾[E1]
n have the same function graph. It follows that E1 f1-meets

P , so H1 f1-meets P . Contradiction. �

Theorem 2.17. Let W be a collection of RT
n
k -patterns such that RT

n
k (W ) 6≤id ARITH-SCA-RTn

k. Then
for every function µ : ω → ω, there is an RT

n
k (W )-instance such that every solution computes a function

dominating µ.
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Proof. Since RT
n
k (W ) 6≤id ARITH-SCA-RTn

k, there is a coloring ffail : [ω]
n → k and an ARITH-SCA-RTn

k-
solution Hfail to ffail witnessed by a function µfail : ω → ω+ and a coloring χ : Vn → k, and such that
Hfail meets some RT

n
k -pattern P ∈ W . Let µ : ω → ω be a function. Let f : [ω]n → k be an instance

of RTn
k (W ) defined by f(D) = χ(Vn(µ,D)). We claim that every RT

n
k (W )-solution H ⊆ ω to f computes

a function dominating µ. Let H be an RT
n
k (W )-solution to f . In particular, H f -avoids P . If H does

not compute a function dominating µ, then by Cholak and Patey [2, Theorem 5.11], there is an infinite
µ-transitive subset H1 ⊆ H such that H1 does not compute a function dominating µ. In particular, H1

is an infinite ARITH-SCA-RTn

k-solution to f with witnesses χ and µ, and such that H1 f -avoids P . By
Lemma 2.16, H computes a function dominating µ, contradiction. �

Actually, ARITH-SCA-RTn

k is the strongest RTn
k -like problem which admits this avoidance property. The

following theorem therefore provides a simple criterion to decide whether an RT
n
k -like problem admits strong

cone avoidance for non-arithmetical cones.

Theorem 2.18. A problem RT
n
k (W ) admits strong cone avoidance for non-arithmetical cones if and only if

RT
n
k (W ) ≤id ARITH-SCA-RTn

k.

Proof. ⇐: Suppose RT
n
k (W ) ≤id ARITH-SCA-RTn

k. Fix a set Z, a non-Z-arithmetical set C and a coloring
f : [ω]n → k. By Theorem 2.15, there is an ARITH-SCA-RTn

k-solution H to f such that C 6≤T Z ⊕ H . In
particular, H is an RT

n
k (W )-solution to f .

⇒: Suppose RT
n
k (W ) 6≤id ARITH-SCA-RTn

k. Let µ : ω → ω be a modulus of some non-arithmetical set C.
By Theorem 2.17, there is a RT

n
k (W )-instance such that every solution computes a function dominating µ,

hence computes C. Therefore RTn
k (W ) does not admit strong cone avoidance for non-arithmetical cones. �

2.3. Strongly avoiding non-computable cones. Whenever the modulus µ : ω → ω is left-c.e., that
is, there is a uniformly computable sequence of functions µ0 ≤ µ1 ≤ . . . pointwise limiting to µ, one can
exploit more information to compute functions dominating µ. For example, let f : [ω]3 → 2 be defined by
f(x, y, z) = 〈b0, b1, b2〉, where b0 = 1 if and only if µ(x) ≤ y, b1 = 1 if and only if µ(y) ≤ z, and b2 = 1 if
and only if µz(x) ≤ y. Cholak and Patey [2, Theorem 3.17] proved that every infinite set H ⊆ ω such that
|f [H ]3| ≤ 4 computes a function dominating µ. We refine again their analysis to obtain a maximal RTn

k -like
principle admitting strong cone avoidance.

Definition 2.19 (Cholak and Patey [2]). A largeness graph of size n is a graph ({0, . . . , n−1}, E) such that

(a) If {i, i+ 1} ∈ E, then for every j > i+ 1, {i, j} 6∈ E
(b) If i < j < n, {i, i+ 1} 6∈ E and {j, j + 1} ∈ E, then {i, j + 1} ∈ E
(c) If i+ 1 < j < n− 1 and {i, j} ∈ E, then {i, j + 1} ∈ E
(d) If i+ 1 < j < k < n and {i, j} 6∈ E but {i, k} ∈ E, then {j − 1, k} ∈ E

Let us explain the intuition behind the definition of a largeness graph. Given a left-c.e. function µ : ω → ω
and a finite µ-transitive set D = {x0 < x1 < · · · < xn−1}, one can define a graph G = ({0, . . . , n − 1}, E)
which will represent the whole information about the largeness of the intervals [xi, xj ] for each i < j < n.
Since D is µ-transitive, the information about µ-largeness of the intervals [xi, xj ] for every i < j is already
fully specified by the information about µ-largeness of [xi, xi+1]. Therefore, this information is coded only
into the adjacent edges. We then set {i, i+ 1} ∈ E if and only if [xi, xi+1] is µ-large.

Whenever [xi, xi+1] is µ-small, this is witnessed after a finite approximation stage µs, that is, [xi, xi+1] is
µs-small for all but finitely many s ∈ ω. We can therefore code in G the information whether some xj (with
j > i + 1) is large enough to witness this fact, in the sense that µxj

(xi) > xi+1. This information is coded
into the edges {i, j} with i + 1 < j. We then set {i, j} ∈ E if [xi, xi+1] is µxj

-small. Although this coding
does not seem consistent with the adjacent edges since the existence of an adjacent edge gives a largeness
information, one should really see µxj

-smallness of [xi, xi+1] as an information of how big the number xj is
and not on how small the interval [xi, xi+1] is.

Let us now look at the properties (a) to (d), successively. Property (a) says that if the interval [xi, xi+1]
is µ-large, then it is never µxj

-small. This property is ensured by construction. Property (b) says that if
[xi, xi+1] is µ-small and [xj , xj+1] is µ-large, then the approximation time xj+1 is large enough to witness the
smallness of [xi, xi+1]. In other words, [xi, xi+1] is gxj+1

-small. This property is not structurally ensured, and
must be obtained by some extra assumptions on the function µ. Property (c) simply says that if [xi, xi+1] is
µxj

-small, then it is µxj+1
-small. This property is structurally ensured by the fact that µxj

≤ µxj+1
, which is
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true of all left-c.e. approximations. Property (d) says that if xk is large enough to witness the µ-smallness of
[xi, xi+1], but that xj was not large enough to witness it, then not only by property (b), [xj−1, xj ] cannot be
µ-large, but furthermore xk is large enough to witness the smallness of [xj−1, xj ]. In some sense, Property
(d) is a refinement of property (b). This property must be also ensured by some extra assumptions on µ.

Let Ln be the set of all largeness graphs of size n. Recall that Cn is the nth Catalan number. Cholak
and Patey [2, Lemma 3.16] proved that for every n ≥ 1, |Ln| = Cn.

Definition 2.20. Given a relative left-c.e. function µ : ω → ω+ with approximations µ0, µ1, . . . and a set
D = {x0, . . . , xn−1} ⊆ ω, let Ln(µ,D) be the graph ({0, . . . , n − 1}, E) where E = {{p, q} : µxq

(xp) >
xp+1 ∧ p+ 1 < q < n} ∪ {{p, p+ 1} : µ(xp) ≤ xp+1}.

Note that Ln(µ,D) is not a largeness graph in general, because the properties (b) and (d) are not
structurally satisfied. We give a sufficient property to ensure Ln(µ,D) ∈ Ln.

Definition 2.21. A relative left-c.e. function µ : ω → ω is strongly increasing if for every s ∈ ω and
x < y ∈ ω, µs(x) ≤ µs(y), and if µs+1(x) > µs(x) then µs+1(y) > s.

Lemma 2.22. Fix a strongly increasing relative left-c.e. function µ : ω → ω+. For every n ≥ 1 and
D ∈ [ω]n, Ln(µ,D) ∈ Ln.

Proof. Claim 1: For every w < x < y < z, if µy(w) ≤ x and µz(w) > x then µz(x) > y. Let s ∈ [y, z) be
such that µs(w) ≤ x and µs+1 > x. Then since µ is strongly increasing, µs+1(x) > s ≥ y. In particular,
µz(x) ≥ y. This proves Claim 1.

Claim 2: For every w < x < y, if µ(w) > x and µ(x) ≤ y, then µy(w) > x. Suppose that Claim 2 does
not hold. Then there is some w < x < y such that µ(w) > x, µ(x) ≤ y and µy(w) ≤ x. Then there is a stage
z > y such that µz(w) > x and µz(x) ≤ y. Since µy(w) ≤ x and µz(w) > x, but µz(x) ≤ y, we contradict
Claim 1. This proves Claim 2.

Fix n ≥ 1 and D = {x0 < · · · < xn−1} ∈ [ω]n. We check properties (a − d) of Definition 2.19 for
Ln(µ,D) = ({0, . . . , n− 1}, E). (a): If {i, i+ 1} ∈ E, then µ(xi) ≤ xi+1. In particular, for every j > i + 1,
since µxj

≤ µ, µxj
(xi) ≤ xi+1, so {i, j} 6∈ E. (b): If i < j < n and {i, i+ 1} 6∈ E and {j, j + 1} ∈ E. Then

µ(xi) > xi+1 and µ(xj) ≤ xj+1. Since µ is increasing, µ(xi+1) ≤ xj+1. Then by Claim 2, µxj+1
(xi) > xi+1.

Thus {i, j + 1} ∈ E. (c): If i + 1 < j < n − 1 and {i, j} ∈ E, then µxj
(xi) > xi+1. Since µxj

≤ µxj+1
,

then µxj+1
(xi) > xi+1, so {i, j + 1} ∈ E. (d): If i + 1 < j < k < n and {i, j} 6∈ E but {i, k} ∈ E. Then

µxj
(xi) ≤ xi+1 but µxk

(xi) > xi+1. By Claim 1, µxk
(xi+1) > xj . Since µxk

is increasing, µxk
(xj−1) > xj .

Thus {j − 1, k} ∈ E. �

We now prove that whenever we choose a left-c.e. modulus for a set, we can always assume that it is
strongly increasing, without loss of generality.

Lemma 2.23. Every left-c.e. function µ : ω → ω is dominated by a strongly increasing left-c.e. function
g : ω → ω.

Proof. Fix µ : ω → ω with approximations µ0, µ1, . . . . We define a uniformly computable sequence of
functions g0 ≤ g1 ≤ · · · : ω → ω pointwisely, that is, at stage x, we define gs(x) for every s ∈ ω. During the
construction, for each approximation time s and value x, we associate a moving threshold ts,x ∈ ω which
can only increase, starting with ts,x = 0. We will ensure that gs(x) ≥ ts,x.

At stage x, suppose we have defined gs(y) for every y < x and s ∈ ω. We define gs(x) for every s ∈ ω. At
approximation time s, having defined gu(x) for every u < s, we define gs(x) to be the maximum value among
{gs(y) : y < x}, {gu(x) : u < s}, ts,x and µs(x). If s > 0 and gs(x) > gs−1(x), then set ts,y = max(ts,y, s)
for every y > x. Then go to the next approximation time s+ 1. Once all the approximations 〈gs(x) : s ∈ ω〉
are defined, then go to the next stage x+ 1.

Claim 1: g is a strongly increasing left-c.e. function. By making gs(x) larger than {gs(y) : y < x}, we have
ensured that the function gs is non-decreasing, that is, for every x < y, gs(x) ≤ gs(y). By making gs(x) larger
than {gu(y) : u < s}, we have ensured that gs ≤ gs+1, hence that g0, g1, . . . are left-c.e. approximations. By
making gs(x) larger than ts,x, we have ensured that if there is some y < x such that gs−1(y) < gs(y), then
gs(x) > s− 1. This proves Claim 1.

By making gs(x) larger than µs(x), we have ensured that g(x) = lims gs(x) ≥ lims µs(x) = µ(x). So g
dominates µ.
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Claim 2: For every x, g(x) < ω. We prove it by induction over x. Indeed, by induction hypothesis, there
is a time v ∈ ω such that for every y < x and s > v, gs(y) = gv(y). For every s > v, the maximum value
among {gs(y) : y < x} is bounded by maximum value among {g(y) : y < x}, which is a finite number by
induction hypothesis. Moreover, ts,x = 0 since only stages y < x at time s can change the threshold ts,x.
Moreover, µs(x) is bounded by µ(x) which is again a finite number. Let m be the maximum value among
{g(y) : y < x}, {gu(x) : u < v} and µ(x). Then gs(x) ≤ m for every s > v. It follows that lims gs(x) ≤ m.
This completes the proof of Lemma 2.23. �

By Lemma 2.22, taking a strongly increasing relative left-c.e. modulus ensures that Ln(µ,D) is a largeness
graph (Definition 2.19). As seen in Lemma 2.9, µ-transitivity ensures that µ-largeness of the intervals over
a set D is fully specified by the µ-largeness of its adjacent intervals. However, some information still seems
to be missing in Ln(µ,D). Indeed, suppose that [xi, xi+1] and [xi+1, xi+2] are both µxj

-small, that is, {i, j}
and {i+1, j} are both edges on Ln(µ,D). By µ-transitivity, we know that [xi, xi+2] is µ-small. However, is
it µxj

-small? Thanks to a stronger notion of µ-transitivity, we can ensure that it will always be the case. A
set H ⊆ ω is strongly µ-transitive if it is µ-transitive, and for every w < x < y < z ∈ H such that µz(w) > x
and µz(x) > y, then µz(w) > y. In other words, if z witnesses µ-smallness of both [w, x] and [x, y], then it
witnesses µ-smallness of [w, y].

Lemma 2.24. Fix two relative left-c.e. functions µ : ω → ω+ and ρ : ω → ω+. Given n ≥ 1, let
E = {x0 < · · · < xn−1} be a strongly µ-transitive set, and F = {y0 < · · · < yn−1} be a strongly ρ-transitive
set such that Ln(µ,E) = Ln(ρ, F ). Then for every i < j < k < n, [xi, xj ] is µk-large if and only if [yi, yj ] is
ρk-large.

Proof. We prove by induction over m ≥ 1 that for every i, k such that i+m < k, [xi, xi+m] is µk-large if and
only if [yi, yi+m] is ρk-large. The base case m = 1 is the lemma hypothesis. Suppose it holds up to m. Since
E is strongly µ-transitive, then [xi, xi+m+1] is µk-large if and only if either [xi, xi+m] or [xi+m, xi+m+1] is
µk-large. By induction hypothesis, this holds if and only if either [yi, yi+m] or [yi+m, yi+m+1] is ρk-large.
Since F is strongly ρ-transitive, this holds if and only if [yi, yi+m+1] is ρk-large. �

We now prove that we can computably thin out an infinite µ-transitive set to obtain a strongly µ-transitive
infinite subset.

Lemma 2.25. Let µ : ω → ω+ be a strongly increasing left-c.e. function. Every infinite µ-transitive set
X ⊆ ω has an infinite X-computable strongly µ-transitive subset Y ⊆ X.

Proof. Fix µ and X . We build an infinite subsequence y0 < y1 < · · · ∈ X as follows. At stage 0, let
y0 = minX . At stage s > 0, suppose we have defined a strongly µ-transitive finite sequence y0 < · · · < ys−1.
Let ys > ys−1 be the least element of X such that for every i < j < k < s, if [yi, yj ] and [yj , yk] are µys

-small,
then [yi, yk] is µys

-small. Such ys must be found, since given a fixed tuple i < j < k < s if [yi, yj] and [yj, yk]
are µ-small, then [yi, yk] is µ-small, and therefore for all but finitely many y, [yi, yk] is µk-small. Taking a
value in X bigger than the max of the thresholds for each tuple i < j < k < s, we obtain a ys with the
desired property. �

In the following theorem, note again that µ ranges over ω and not ω+.

Theorem 2.26. Let µ : ω → ω be a strongly increasing left-c.e. function. For every n ≥ 1, define fn : D 7→
Ln(µ,D). For every infinite set H ⊆ ω such that Ln 6⊆ fn[H ]n, H computes a function dominating µ.

Proof. Fix µ, n ≥ 1 and H . By Lemma 2.22, fn[H ]n ⊆ Ln. By Cholak and Patey [2, Lemma 3.16],
|Ln| = Cn. If Ln 6⊆ fn[H ]n, then |fn[H ]n| < Cn. Then by Cholak and Patey [2, Theorem 3.17], H computes
a function dominating µ. �

In the following statement, note that we state the existence of a relative left-c.e. function, which is another
way of stating the existence of a sequence of functions µ0, µ1, . . . which satisfy the properties of a left-c.e.
function independently of its effectiveness.

Statement 2.27. SCA-RTn

k: For every function f : [ω]n → k, there is a strongly increasing relative left-c.e.
function µ : ω → ω+, an infinite strongly µ-transitive set H ⊆ ω and a coloring χ : Ln → k such that for
every D ∈ [H ]n, f(D) = χ(Ln(µ,D)).
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Again, for n = 1, |Ln| = 1 and SCA-RT1

k is the statement RT
1
k. Similarly, for n = 2, L2 = V2, and

SCA-RT2

k is the same statement as ARITH-SCA-RT2

k, or equivalently LARGEk, that is, the statement “For
every coloring f : [ω]2 → k, there is an infinite set H ⊆ ω and two colors is, iℓ < k such that f [H ]2 ⊆ {is, iℓ}
and for every x < y < z ∈ H , f(x, y) = f(y, z) = is if and only if f(x, z) = is.”

Theorem 2.28. SCA-RTn

k admits strong cone avoidance.

Proof. Fix two sets Z and C with C 6≤T Z and let f : [ω]n → k be an instance of SCA-RTn

k.
By Lerman [14, 4.18], there is a set Z1 ≥T Z such that C is ∆0

2(Z1) but C 6≤T Z1. Since C is ∆0
2(Z1),

there is a left Z1-c.e. modulus µ : ω → ω for C. By Lemma 2.23, we can assume that µ is strongly increasing.
Let f1 : [ω]n → k × Ln be defined for each D ∈ [ω]n by f1(D) = 〈f(D),Ln(µ,D)〉. By strong cone

avoidance of RT
n
<∞,Cn

(Cholak and Patey [2, Theorem 4.18]), there is an infinite set H ⊆ ω such that
C 6≤T Z1 ⊕H and |f1[H ]n| ≤ Cn. In particular, Z1 ⊕H does not compute a function dominating µ, so by
Theorem 2.26, for every G ∈ Ln, there is some i < k and some D ∈ [H ]n such that f1(D) = 〈i,G〉. Since
|Ln| = Cn (Cholak and Patey [2, Lemma 3.16]), this i is unique. For each G, let χ(G) be such an i.

We claim that for every D ∈ [H ]n, f(D) = χ(Ln(µ,D)). By definition of χ, f1(D) = 〈f(D),Ln(µ,D)〉 =
〈χ(Ln(µ,D)),Ln(µ,D)〉. It follows that f(D) = χ(Ln(µ,D)). By Cholak and Patey [2, Corollary 5.5],
there is an infinite µ-transitive subset H1 ⊆ H such that C 6≤T Z ⊕H1. By Lemma 2.25, there is an infinite
strongly µ-transitive subset H2 ⊆ H1 such that C 6≤T Z⊕H2. Therefore, H2 is a SCA-RTn

k-solution to f . �

The following technical lemma will be useful for Theorem 2.30, Lemma 3.8 and Lemma 3.9.

Lemma 2.29. Fix χ : Ln → k, and let f0 : [ω]n → k and f1 : [ω]n → k be two colorings. Let H0 be an
infinite SCA-RTn

k-solution to f0 with witnesses χ and µ0 : ω → ω+, and let H1 be an infinite SCA-RTn

k-
solution to f1 with witnesses χ and µ1 : ω → ω. If H0 f0-meets some RT

n
k -pattern P but H1 f1-avoids P

and µ1 is left-c.e. then H1 computes a function dominating µ1.

Proof. Since H0 f0-meets some RT
n
k -pattern P , there is a finite set E0 = {x0 < · · · < xr−1} ⊆ H0 which

f0-meets P . Suppose for the sake of contradiction that H1 does not compute a function dominating µ1. By
Theorem 2.26, there is a finite set E1 = {y0 < · · · < yr−1} ⊆ H1 of size r such that Lr(µ0, E0) = Lr(µ1, E1).
By Lemma 2.9 and Lemma 2.24, since H0 is strongly µ0-transitive and H1 is strongly µ1-transitive, for
every I ∈ [r]n, letting D0 = {xi : i ∈ I} and D1 = {yi : i ∈ I}, Ln(µ0, D0) = Ln(µ1, D1). Since
f0(D0) = χ(Ln(µ0, D0)) and f1(D1) = χ(Ln(µ1, D1)), then f0(D0) = f1(D1). Thus f0↾[E0]

n and f1↾[E1]
n

have the same function graph. It follows that E1 f1-meets P , so H1 f1-meets P . Contradiction. �

Theorem 2.30. Let W be a collection of RTn
k patterns such that RTn

k (W ) 6≤id SCA-RTn

k. Then for every
left-c.e. function µ : ω → ω, there is an RT

n
k (W )-instance such that every solution computes a function

dominating µ.

Proof. Since RT
n
k (W ) 6≤id SCA-RTn

k, there is a coloring ffail : [ω]
n → k and a SCA-RTn

k-solution Hfail to
ffail witnessed by a strongly increasing relative left-c.e. function µfail and a coloring χ : Ln → k, such that
Hfail is strongly µfail-transitive, and such that Hfail meets some RT

n
k -pattern P ∈ W .

Let µ : ω → ω be a left-c.e. function. By Lemma 2.23, there is a strongly increasing left-c.e. function
g : ω → ω dominating µ. Let f : [X ]n → k be an instance of RTn

k (W ) defined by f(D) = χ(Ln(g,D)). We
claim that every RT

n
k (W )-solution H ⊆ X to f computes a function dominating g, hence dominating µ. Fix

H and suppose for the contradiction that H does not compute a function dominating g. By Cholak and
Patey [2, Theorem 5.11] and Lemma 2.25, there is an infinite strongly g-transitive subset H1 ⊆ H such that
H1 does not compute a function dominating g. In particular, H1 is an infinite SCA-RTn

k-solution to f with
witnesses χ and g, and such that H1 f -avoids P . By Lemma 2.29, H computes a function dominating g,
contradiction. �

Theorem 2.31. A problem RT
n
k (W ) admits strong cone avoidance if and only if RTn

k (W ) ≤id SCA-RTn

k.

Proof. ⇐: Suppose RTn
k (W ) ≤id SCA-RTn

k. Fix a set Z, a non-Z-computable set C and a coloring f : [ω]n →
k. By Theorem 2.28, there is an SCA-RTn

k-solution H to f such that C 6≤T Z ⊕H . In particular, H is an
RT

n
k (W )-solution to f .
⇒: Suppose RT

n
k (W ) 6≤id SCA-RTn

k. Let µ : ω → ω be a left-c.e. modulus of ∅′. By Theorem 2.30,
there is a RT

n
k (W )-instance such that every solution computes a function dominating µ, hence computes ∅′.

Therefore RT
n
k (W ) does not admit strong cone avoidance. �
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Interestingly, Theorem 2.31 admits multiple abstract consequences of which one might expect to have
a more direct proof. However, there does not seem to be any simpler proof of these facts than proving
Theorem 2.31.

The following corollary states that the question of strong cone avoidance of a collection of patterns can
be reduced to strong cone avoidance of each pattern individually.

Corollary 2.32. If RTn
k ({P}) admits strong cone avoidance for every P ∈ W , then RT

n
k (W ) admits strong

cone avoidance.

Proof. If RTn
k ({P}) admits strong cone avoidance for every P ∈ W , then by Theorem 2.31, RTn

k ({P}) ≤id

SCA-RTn

k for every P ∈ W . It follows that RT
n
k (W ) ≤id SCA-RTn

k, so again by Theorem 2.31, RTn
k (W )

admits strong cone avoidance. �

The following corollary gives an external definition of the maximal problem which admits strong cone
avoidance.

Corollary 2.33. Let Wn,k =
⋃
{W : RTn

k (W ) admits strong cone avoidance}. Then RT
n
k (Wn,k) admits

strong cone avoidance.

Proof. By Corollary 2.32, it suffices to prove that RTn
k ({P}) admits strong cone avoidance for every P ∈ Wn,k.

Fix some P ∈ Wn,k. By definition, P ∈ W for some collection W such that RT
n
k (W ) admits strong cone

avoidance. In particular, RTn
k ({P}) admits strong cone avoidance. �

2.4. Avoiding non-computable cones. As explained in Section 1.2, there is a deep relation between the
combinatorial features of the colorings over [ω]n and the computational features the colorings over [ω]n+1.
This link is formalized in the case of cone avoidance by Cholak and Patey in [2, Theorem 1.5]. We prove
the existence of a maximal Ramsey-like principle which admits cone avoidance. For this, we must restrict
ourselves to a particular type of largeness graphs, namely, packed graphs.

Definition 2.34 (Cholak and Patey [2]). A largeness graph G = ({0, . . . , n − 1}, E) is packed if for every
i < n− 2, {i, i+ 1} 6∈ E.

Let Pn be the set of all packed largeness graphs of size n. The definition of Ln(µ,D), and more precisely the
adjacent edges, codes some µ-largeness information. However, in a computable setting, we only have access
to the left-c.e. approximations of µ. This is why we must restrict ourselves to µ-largeness approximations
Pn(µ,D), which can be computably coded.

Definition 2.35. Given a relative left-c.e. function µ : ω → ω+ with approximations µ0, µ1, . . . and a set
D = {x0, . . . , xn−1} ⊆ ω, let Pn(µ,D) be the graph ({0, . . . , n − 1}, E) where E = {{p, q} : µxq

(xp) >
xp+1 ∧ p+ 1 < q < n}.

The following two lemmas are obtained by the exact same proof as Lemma 2.22 and Lemma 2.24, respec-
tively.

Lemma 2.36. Fix a strongly increasing relative left-c.e. function µ : ω → ω+. For every n ≥ 1 and
D ∈ [ω]n, Pn(µ,D) ∈ Pn.

Lemma 2.37. Fix µ : ω → ω+ and ρ : ω → ω+. Given n ≥ 1, let E = {x0 < · · · < xn−1} be a strongly
µ-transitive set, and F = {y0 < · · · < yn−1} be a strongly ρ-transitive set such that Pn(µ,E) = Pn(ρ, F ).
Then for every i < j < k < n, [xi, xj ] is µk-large if and only if [yi, yj] is ρk-large.

A coloring f : [ω]n+1 → k is stable if for every D ∈ [ω]n, limy f(D ∪ {y}) exists. Given a set D =
{x0 < · · · < xn−1}, if we take some y ∈ ω sufficiently large, then µy and µ will coincide over [D]2. Then,
looking at the packed largeness graph Pn+1(µ,D ∪ {y}), this graph codes exactly the information of the
packed largeness graph Pn(µ,D) and the µy-largeness information over [D]2, which is by assumption the
µ-largeness information over [D]2. These two kind of informations are exactly the ones coded by Ln(µ,D).
Then, Pn+1(µ,D ∪ {y}) and Ln(µ,D) are in one-to-one correspondance.

Let us define explicitly the one-to-one mapping. Given a packed largeness graph G = ({0, . . . , n}, E) of
size n + 1, let Ln(G) be the largeness graph of size n ({0, . . . , n − 1}, E1) where E1 = {{i, j} ∈ E : j <
n} ∪ {{i, i + 1} : {i, n} 6∈ E}. The following lemma uses this one-to-one correspondance to relate stable
colorings over [ω]n+1 to colorings over [ω]n.
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Lemma 2.38. Let µ : ω → ω+ be a strongly increasing relative left-c.e. function. Fix n ≥ 1 and define
fn+1 : D 7→ Pn+1(µ,D). Let H be an infinite strongly µ-transitive set over which fn+1 is stable. For every
D ∈ [H ]n, letting G = limy∈H Pn+1(µ,D ∪ {y}), Ln(µ,D) = Ln(G).

Proof. Fix D = {x0 < · · · < xn−1} ∈ [H ]n, and let xn ∈ H be sufficiently large so that Pn+1(µ,D∪{xn}) =
limy∈H Pn+1(µ,D ∪ {y}). Let G = ({0, . . . , n}, E) be the packed largeness graph Pn+1(µ,D ∪ {xn}) and
({0, . . . , n− 1}, E1) = Ln(G). We first prove that the adjacent edges in Ln(G) are exactly the adjacent edges
in Ln(µ,D). For every i < n − 1, by definition of Ln(G), {i, i + 1} ∈ E1 if and only if {i, n} 6∈ E. By
definition of Pn+1(µ,D ∪ {xn}), {i, n} 6∈ E if and only if [xi, xi+1] is µy-large, hence if and only if [xi, xi+1]
is µ-large. We now prove that the non-adjacent adjacent edges in Ln(G) are exactly the non-adjacent edges
in Ln(µ,D). For every i + 1 < j < n, {i, j} ∈ E1 if and only if {i, j} ∈ E, hence if and only if [xi, xi+1] is
µxj

-large. Therefore Ln(G) = Ln(µ,D). �

Theorem 2.39. Let µ : ω → ω be a strongly increasing left-c.e. function. For every n ≥ 1, define fn : D 7→
Pn(µ,D). For every infinite set H ⊆ ω such that Pn 6⊆ fn[H ]n, H computes a function dominating µ.

Proof. Fix µ, n ≥ 1 and H . For n = 1, then |P1| = 1. For every infinite set H ⊆ ω, |f1[H ]1| = 1, so
P1 ⊆ f1[H ]1, and the property vacuously holds. For n > 1. Suppose for the contradiction that H does
not compute a function dominating µ. By Patey [23, Theorem 12], there is an infinite subset H1 ⊆ H over

which fn is stable and such that H1 does not compute a function dominating µ. Let f̃ : [ω]n−1 → Pn be

defined by f̃(D) = limy∈H1
fn(D ∪ {y}) = limy∈H1

Pn(µ,∪{y}). By Lemma 2.38, for every D ∈ [H1]
n−1,

Ln−1(µ,D) = Ln(f̃(D)).
By Lemma 2.36, fn[H1]

n ⊆ Pn. By Cholak and Patey [2, Lemma 3.15,Lemma 3.16], |Pn| = Cn−1.
Since Pn 6⊆ fn[H ]n, then |fn[H ]n| < Cn−1. It follows that, letting gn−1 : D 7→ Ln−1(µ,D), |gn−1[H ]n−1| =
|fn[H ]n| < Cn−1. By Cholak and Patey [2, Lemma 3.16], |L−n− 1| = Cn−1, therefore, Ln−1 6⊆ gn−1[H ]n−1,
so by Theorem 2.26, H1 computes a function dominating µ. Contradiction. �

Statement 2.40. CA-RTn

k: For every function f : [ω]n → k, there is a strongly increasing relative left-c.e.
function µ : ω → ω+, an infinite strongly µ-transitive set H ⊆ ω and a coloring χ : Pn → k such that for
every D ∈ [H ]n, f(D) = χ(Pn(µ,D)).

In the cases n = 1 and n = 2, there is exactly one packed largeness graph of size n, namely, the graph
with no edges. Therefore |Pn| = 1, and CA-RT1

k and CA-RT2

k are exactly RT
1
k and RT

2
k, respectively. The

case n = 3 yields a new principle.

Statement 2.41. PACKEDk: “For every coloring f : [ω]3 → k, there are two colors is, iℓ < k and an infinite
set H ⊆ ω such that f [H ]3 ⊆ {is, iℓ} and for every w < x < y < z ∈ H ,

(a) f(w, x, z) = f(x, y, z) = is if and only if f(w, y, z) = is
(b) if f(w, x, y) = is then f(w, x, z) = is
(c) if f(w, x, y) = iℓ and f(w, x, z) = is then f(x, y, z) = is.”

Informally, f(x, y, z) = is if [x, y] is µz-small, and f(x, y, z) = iℓ otherwise. We now prove that CA-RT3

k

and PACKEDk are the same statement by bi-reduction.

Lemma 2.42. PACKEDk ≤id CA-RT
3

k.

Proof. Let f : [ω]3 → k be a coloring, and let H be an infinite CA-RT3

k-solution to f . By definition of

CA-RT3

k, there is a strongly increasing relative left-c.e. modulus µ : ω → ω+ and a function χ : P3 → k
such that H is strongly µ-transitive, and for every D ∈ [H ]3, f(D) = χ(P3(µ,D)). Let G0 = ({0, 1, 2}, ∅)
and G1 = ({0, 1, 2}, {{0, 2}}). In particular, P3 = {G0,G1}. Let is = χ(G1) and iℓ = χ(G0). We have
f [H ]3 ⊆ {is, iℓ}. If is = iℓ, then H is f -homogeneous, andH is an PACKEDk-solution to f , so suppose is 6= iℓ.
In particular, χ is one-to-one. We now prove properties (a-c) of Statement 2.41. Fix w < x < y < z ∈ H .

(a): f(w, x, z) = f(x, y, z) = is if and only if χ(P3(µ, {w, x, z})) = χ(P3(µ, {x, y, z})) = is if and only
if P3(µ, {w, x, z}) = P3(µ, {x, y, z}) = G1 if and only if [w, x] and [x, y] are µz-small. Since H is strongly
µ-transitive, this holds if and only if [w, y] is µz-small, if and only if P3(µ, {w, y, z}) = G1 if and only if
f(w, y, z) = χ(P3(µ, {w, y, z})) = χ(G1) = is.

(b): If f(w, x, y) = is, then χ(P3(µ, {w, x, y})) = is, so P3(µ, {w, x, y}) = G1. In particular, [w, x] is µy-
small, hence is µz-small. Therefore, P3(µ, {w, x, z}) = G1, so f(w, x, z) = χ(P3(µ, {w, x, z})) = χ(G1) = is.
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(c): If f(w, x, y) = iℓ and f(w, x, z) = is, then χ(P3(µ, {w, x, y})) = iℓ and χ(P3(µ, {w, x, z})) = is.
Therefore, P3(µ, {w, x, y}) = G0 and P3(µ, {w, x, z}) = G1. It follows that [w, x] is µy-large but µz-small. By
Claim 1 in the proof of Lemma 2.22, since µ is strongly increasing, [x, y] is µz-small. Thus P3(µ, {x, y, z}) =
G1, so f(x, y, z) = χ(P3(µ, {x, y, z})) = χ(G1) = is. �

Lemma 2.43. CA-RT3

k ≤id PACKEDk.

Proof. Let f : [ω]3 → k be a coloring, and let H be an infinite PACKEDk-solution, that is, there are some
colors is, iℓ < k such that f [H ]3 ⊆ {is, iℓ} and properties (a-c) of Statement 2.41 hold. For every x, z ∈ ω,
let x0 and z0 be the least elements of H ∩ [x,∞) and H ∩ [z,∞), respectively. Let µz(x) be the least element
y0 of H ∩ (x0, z0) such that f(x0, y0, z0) = iℓ if it exists. Otherwise µz(x) = z.

Claim 1: For every x, z ∈ ω, µz(x) ≤ z. Indeed, let x0 and z0 be the least elements of H ∩ [x,∞) and
H ∩ [z,∞), respectively. If there is a least element y0 of H ∩ (x0, z0) such that f(x0, y0, z0) = iℓ, then y0 < z0
and by definition of z0, y0 < z. It follows that µz(x) = y0 < z. If there is no such y0, then µz(x) = z ≤ z.
This proves Claim 1.

Claim 2: For every x ∈ ω and u ≤ v ∈ ω, µu(x) ≤ µv(x). Let x0, u0 and v0 be the least elements of
H∩[x,∞), H∩[u,∞) andH∩[v,∞), respectively. In particular, u0 ≤ v0. Case 1: there is no yu ∈ H∩(x0, u0)
such that f(x0, yu, u0) = iℓ. Then µu(x) = u. If there is no yv ∈ H ∩ (x0, v0) such that f(x0, yv, v0) = iℓ,
then µv(x) = v ≥ u = µu(x), and we are done. So suppose there is such a yv ∈ H ∩ (x0, v0). If yv ≥ u0, then
µv(x) = yv ≥ u0 ≥ u = µu(u) and we are done. If yv < u0, then f(x0, yv, v0) = iℓ and since yu does not
exist, f(x0, yv, u0) = is. This contradicts property (b) of Statement 2.41. Case 2: yu exists. Then yu < u0,
so yu < u and for every y ∈ H ∩ (x0, yu), f(x0, y, u0) = is. By property (b) of Statement 2.41, for every
y ∈ H ∩ (x0, yu), f(x0, y, v0) = is. Therefore if yv exists, then yv ≥ yu and µu(x) ≤ µv(x). If yv does not
exist, then µv(x) = v ≥ u > yu = µu(x). This proves Claim 2.

Claim 3: For every z ∈ ω and u ≤ v, µz(u) ≤ µz(v). Let u0, v0 and z0 be the least elements of H ∩ [u,∞),
H ∩ [v,∞) and H ∩ [z,∞), respectively. In particular, u0 ≤ v0. Case 1: there is no yv ∈ H ∩ (v0, z0) such
that f(v0, yv, z0) = iℓ. Then µv(x) = v. Since by Claim 1, µu(x) ≤ u ≤ v = µv(x), we are done. Case 2:
there is such a yv. In particular, f(v0, yv, z0) = iℓ. By property (a) of Statement 2.41, f(u0, yv, z0) = iℓ, so
there is a least yu ∈ H ∩ (u0, z0) such that f(u0, yu, z0) = iℓ and yu ≤ yv. Then µz(u) = yu ≤ yv = µz(v).
This proves Claim 3.

Claim 4: For every z ∈ ω and u < v ∈ ω, if µz+1(u) > µz(u), then µz+1(v) > z. Let z0, z1, u0, v0 be the
least elements ofH∩[z,∞), H∩[z+1,∞), H∩[u,∞) and H∩[v,∞), respectively. If z0 = z1, we are done, so
suppose z0 < z1. In particular, z1 is the immediate successor of z0 in H . If there is no least yv ∈ H ∩ (v0, z1)
such that f(v0, yv, z1) = iℓ, then µz+1(v) = z + 1 and we are done as well. So suppose there is such a
yv. By property (a) of Statement 2.41, f(u0, yv, z1) = iℓ, so there is a least yu ∈ H ∩ (u0, z1) such that
f(u0, yu, z1) = iℓ. Since z1 is the immediate successor of z0 in H , either yu = z0, or yu < z0. Case 1: yu = z0.
By Claim 3, µz+1(v) ≥ µz+1(u) = yu = z0. If z0 > z, we are done, so suppose yu = z0 = z. If µz(u) = z,
then Claim 4 is vacuously satisfied, so suppose µz(u) < z. It follows that there is a least y ∈ H ∩ (u0, z0)
such that f(u0, y, z0) = iℓ. By minimality of y0, f(u0, y, z1) = is. Then by property (c) of Statement 2.41,
f(y, z0, z1) = is. Since f(u0, yu, z1) = iℓ, and yu = z0 = z, then f(y, z, z1) = is and f(u0, z, z1) = iℓ.
So by property (a) of Statement 2.41, f(u0, y, z1) = iℓ, contradiction. Case 2: yu < z0. Then there is
some some y ∈ H ∩ (u0, z0) such that f(u0, y, z0) = iℓ, with y < yu. By definition of yu being a least
element, f(u0, y, z1) = is. Then by property (c) of Statement 2.41, f(y, z0, z1) = is, and since y < yu < z0,
and f(u0, yu, z1) = iℓ, then by property (a) of Statement 2.41, f(u0, y, z1) = iℓ or f(y, yu, z1) = iℓ. The
former case does not hold, so f(y, yu, z1) = iℓ. Again by property (a) of Statement 2.41, f(y, z0, z1) = iℓ.
Contradiction.

Claim 5: For w < x < y < z ∈ H such that µz(w) > x and µz(x) > y, then µz(w) > y. By definition
of µ, f(w, x, z) = f(x, y, z) = is. By property (a) of Statement 2.41, f(w, y, z) = is. Therefore, µz(w) > y.
This proves Claim 5.

By Claim 2, 3 and 4, µ is a strongly increasing left-c.e. function. Moreover, for every x < y < z ∈ H ,
f(x, y, z) = iℓ if and only if µz(x) ≤ y, so f(x, y, z) = χ(P3(µ, {x, y, z})). By Claim 5, H is strongly

µ-transitive. Therefore H is a CA-RT3

k-solution to f with witnesses χ and µ. �

Theorem 2.44. CA-RTn

k admits cone avoidance.

Proof. Fix two sets Z and C with C 6≤T Z and let f : [ω]n → k be a Z-computable instance of CA-RTn

k.
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By Lerman [14, 4.18], there is a set Z1 ≥T Z such that C is ∆0
2(Z1) but C 6≤T Z1. Since C is ∆0

2(Z1),
there is a left Z1-c.e. modulus µ : ω → ω for C. By Lemma 2.23, we can assume that µ is strongly increasing.

Let f1 : [ω]n → k × Pn be defined for each D ∈ [ω]n by f1(D) = 〈f(D),Pn(µ,D)〉. By cone avoidance of
RT

n
<∞,Cn−1

(Cholak and Patey [2, Corollary 4.19]), there is an infinite set H ⊆ ω such that C 6≤T Z1 ⊕H

and |f1[H ]n| ≤ Cn−1. In particular, Z1⊕H does not compute a function dominating µ, so by Theorem 2.26,
for every G ∈ Pn, there is some i < k and some D ∈ [H ]n such that f1(D) = 〈i,G〉. Since |Pn| = Cn−1

(Cholak and Patey [2, Lemma 3.15,Lemma 3.16]), this i is unique. For each G, let χ(G) be such an i.
We claim that for every D ∈ [H ]n, f(D) = χ(Pn(µ,D)). By definition of χ, f1(D) = 〈f(D),Pn(µ,D)〉 =

〈χ(Pn(µ,D)),Pn(µ,D)〉. It follows that f(D) = χ(Pn(µ,D)). By Cholak and Patey [2, Corollary 5.5], there
is an infinite µ-transitive subset H1 ⊆ H such that C 6≤T Z ⊕ H1. By Lemma 2.25, there is an infinite
strongly µ-transitive subset H2 ⊆ H1 such that C 6≤T Z ⊕H2. Therefore, H2 is a CA-RTn

k-solution to f . �

The following technical lemma will be useful for Theorem 2.46, Lemma 3.13 and Lemma 3.14.

Lemma 2.45. Fix χ : Pn → k, and let f0 : [ω]n → k and f1 : [ω]n → k be two colorings such that f1 is
computable. Let H0 be an infinite CA-RTn

k-solution to f0 with witnesses χ and µ0 : ω → ω, and let H1 be an
infinite CA-RTn

k-solution to f1 with witnesses χ and µ1 : ω → ω. If H0 f0-meets some RT
n
k -pattern P but

H1 f1-avoids P and µ1 is left-c.e., then H1 computes a function dominating µ1.

Proof. Since H0 f0-meets some RT
n
k -pattern P , there is a finite set E0 = {x0 < · · · < xr−1} ⊆ H0 which

f0-meets P . Suppose for the sake of contradiction that H1 does not compute a function dominating µ1. By
Theorem 2.39, there is a finite set E1 = {y0 < · · · < yr−1} ⊆ H1 of size r such that Pr(µ0, E0) = Pr(µ1, E1).
By Lemma 2.37, since H0 is strongly µ0-transitive and H1 is strongly µ1-transitive, for every I ∈ [r]n, letting
D0 = {xi : i ∈ I} and D1 = {yi : i ∈ I}, Pn(µ0, D0) = Pn(µ1, D1). Since f0(D0) = χ(Pn(µ0, D0)) and
f1(D1) = χ(Pn(µ1, D1)), then f0(D0) = f1(D1). Thus f0↾[E0]

n and f1↾[E1]
n have the same function graph.

It follows that E1 f1-meets P , so H1 f1-meets P . Contradiction. �

Theorem 2.46. Let W be a collection of RTn
k -patterns such that RT

n
k (W ) 6≤id CA-RTn

k. Then for every
left-c.e. function µ : ω → ω, there is a computable RT

n
k (W )-instance such that every solution computes a

function dominating µ.

Proof. Since RT
n
k (W ) 6≤id CA-RTn

k, there is a coloring ffail : [ω]
n → k and a CA-RTn

k-solution Hfail to ffail
witnessed by strongly increasing left-c.e. function µfail : ω → ω+ and a coloring χ : Pn → k, such that Hfail

is strongly µfail-transitive, and Hfail meets some RT
n
k -pattern P ∈ W .

Let µ : ω → ω be a left-c.e. function. By Lemma 2.23, there is a strongly increasing left-c.e. function g :
ω → ω dominating µ. Let f : [X ]n → k be a computable instance of RTn

k (W ) defined by f(D) = χ(Pn(g,D)).
We claim that every RT

n
k (W )-solution H to f computes a function dominating g, hence dominating µ. Fix

H and suppose for the contradiction that H does not compute a function dominating g. By Cholak and
Patey [2, Theorem 5.11] and Lemma 2.25, there is an infinite strongly g-transitive subset H1 ⊆ H such that
H1 does not compute a function dominating g. In particular, H1 is an infinite CA-RTn

k-solution to f with
witnesses χ and g, and such that H1 f -avoids P . By Lemma 2.45, H computes a function dominating g,
contradiction. �

Theorem 2.47. A problem RT
n
k (W ) admits cone avoidance if and only if RTn

k (W ) ≤id CA-RTn

k.

Proof. ⇐: Suppose RT
n
k (W ) ≤id CA-RTn

k. Fix a set Z, a non-Z-computable set C and a Z-computable
coloring f : [ω]n → k. By Theorem 2.44, there is a CA-RTn

k-solution H to f such that C 6≤T Z ⊕ H . In
particular, H is an RT

n
k (W )-solution to f .

⇒: Suppose RT
n
k (W ) 6≤id CA-RTn

k. Let µ : ω → ω be a left-c.e. modulus of ∅′. By Theorem 2.46,
there is a computable RT

n
k (W )-instance such that every solution computes a function dominating µ, hence

computes ∅′. Therefore RT
n
k (W ) does not admit cone avoidance. �

3. Promise Ramsey-like theorems

The class of Ramsey-like problems encompasses Ramsey’s theorem and the Erdős-Moser theorem [1] since
both statements are of the form “For every coloring f : [ω]n → k, there is an infinite set H which avoids
some set of patterns.” There are however two kind of consequences of Ramsey’s theorem which do not fit
within this framework.
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First, some statements have a restricted class of instances. For example, the Ascending Descending Se-
quence [12] (ADS) principle asserts that every infinite linear order admits an infinite ascending or descending
sequence. A linear order L = (ω,≺L) can be formalized as a coloring f : [ω]2 → 2 such that for every x < y,
f(x, y) = 1 if and only if x ≺L y. Such a coloring is called transitive, since for every x < y < z and i < 2, if
f(x, y) = i and f(y, z) = i then f(x, z) = i. ADS can therefore be formulated as the statement “For every
transitive coloring f : [ω]2 → 2, there exists an infinite f -homogeneous set.”

Second, some consequences of Ramsey’s theorem such as the Free Set theorem [3] involve ω-colorings of
[ω]n. The free set theorem for n-tuples is the statement “For every coloring f : [ω]n → ω, there is an infinite
set H such that for every x ∈ H , x 6∈ f [H r {x}]n.” Suppose that for every D ∈ [ω]n, f(D) ≤ minD.
We can define a coloring g : [ω]n+1 → 2 by g(x0, x1, . . . , xn) = 1 if and only if f(x1, . . . , xn) = x0. Every
g-homogeneous set must be of color 0, and therefore be a free set solution to f . Then one can formulate
this restricted version of the free set theorem as the statement “For every coloring g : [ω]n+1 → ω such that
for every x ∈ ω, there is at most one D ∈ [ω]n such that g({x} ∪D) = 1, there is an infinite g-homogeneous
set.” The full free set theorem can also fit within this framework with additional technicalities.

In both examples, the problems can be formulated as statements “For every coloring f : [ω]n → k which
avoids some set of patterns, there is an infinite set H which avoids another set of patterns.” In computational
complexity, problems whose class of instances is restricted by some properties are known as promise problems.
This motivates the following definition.

Definition 3.1. Given two collections V and W of RTn
k -patterns, the promise RT

n
k -like problem RT

n
k (V,W )

is the problem whose instances are colorings f : [ω]n → k such that ω f -avoids every pattern in V . An
RT

n
k (V,W )-solution to an instance f is an infinite set H ⊆ ω f -avoiding every pattern in W .

For example, ADS is the promise RT
2
2-like problem RT

2
2(WADS,WRT2

2
) with WADS = {f(x0, x1) = 1 ∧

f(x1, x2) = 1 ∧ f(x0, x2) = 0, f(x0, x1) = 0 ∧ f(x1, x2) = 0 ∧ f(x0, x2) = 1}. We interpret a function
f : [ω]2 → 2 such that ω f -avoids the pattern WADS as a linear order ≺ defined by x ≺ y if and only if
x <N y and f(x, y) = 1 or x >N y and f(x, y) = 0.

Similarly, CAC is the promise RT
2
3-like problem RT

2
3(WCAC,WRT2

2
) with WCAC = WADS. We interpret a

function f : [ω]2 → 3 such that ω f -avoids the pattern WADS as a partial order ≺ defined by x ≺ y if and
only if x <N y and f(x, y) = 1 or x >N y and f(x, y) = 0.

3.1. Strongly avoiding non-arithmetical cones. We now extend our analysis of strong cone avoidance
for non-arithmetical cones to the class of promise Ramsey-like problems. For this, we need to define a
restricted version of ARITH-SCA-RTn

k, in which the coloring χ : Vn → k must belong to a predefined set of
colorings.

Statement 3.2. Let R be a set of functions of type χ : Vn → k. R-ARITH-SCA-RTn

k: For every function
f : [ω]n → k, there is a function µ : ω → ω+, an infinite µ-transitive set H ⊆ ω, and a coloring χ ∈ R such
that for every D ∈ [H ]n, f(D) = χ(Vn(µ,D)).

One particular case of interest is whenever R is a singleton {χ}. The following notion will be very useful
in our case analysis. Given some n, k ∈ ω and a collection W of RTn

k -patterns, let

Rn
k (W ) = {χ : Vn → k | RT

n
k (W ) ≤id {χ}-ARITH-SCA-RTn

k}

In particular, if RTn
k (W ) is a true statement, then every constant function χ : Vn → k belongs to Rn

k (W ).

Lemma 3.3. Let V and W be collections of RTn
k -patterns such that RTn

k (W ) ≤id Rn
k (V )-ARITH-SCA-RTn

k.
Then RT

n
k (V,W ) admits strong cone avoidance for non-arithmetical cones.

Proof. Fix a set Z, a non-Z-arithmetical set C and a coloring f : [ω]n → k.
Suppose first that C is not Z-hyperarithmetical. By Solovay [26], C is not computably encodable relative

to Z. Since for every infinite set X ⊆ ω, there is an infinite ARITH-SCA-RTn

k-solution Y ⊆ X to f , there is
an ARITH-SCA-RTn

k-solution H to f such that C 6≤T Z ⊕H .
Suppose now that C is Z-hyperarithmetical. By Groszek and Slaman [10], there is a modulus µ : ω → ω

relative to Z, that is, for every function g dominating µ, C ≤T Z⊕ g. Let f1 be defined for each D ∈ [ω]n by
f1(D) = 〈f(D),Vn(µ,D)〉. By strong cone avoidance of RTn

<∞,2n−1 for non-arithmetical cones (see Cholak

and Patey [2, Theorem 4.15]), there is an infinite set H such that C 6≤T Z ⊕ H and |f1[H ]n| ≤ 2n−1. In
particular, Z ⊕H does not compute a function dominating µ, so by Theorem 2.10, for every G ∈ Vn, there
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is some i < k and some D ∈ [H ]n such that f1(D) = 〈i,G〉. Since |Vn| = 2n−1, this i is unique. For each
G ∈ Vn, let χ(G) be such an i. In particular, for every D ∈ [H ]n, f(D) = χ(Vn(µ,D)). By Cholak and
Patey [2, Corollary 5.5], there is an infinite µ-transitive subset H1 ⊆ H such that C 6≤T Z ⊕H1. Therefore,
H1 is a ARITH-SCA-RTn

k-solution to f .
If χ ∈ Rn

k (V ), then since RT
n
k (W ) ≤id Rn

k (V )-ARITH-SCA-RTn

k, H2 is an RT
n
k (V,W )-solution to f , and

we are done. So suppose χ 6∈ Rn
k (V ). Unfolding the definition, RTn

k (V ) 6≤id {χ}-ARITH-SCA-RTn

k, so there
is a coloring fχ : [ω]n → k and some infinite ARITH-SCA-RTn

k-solution Hχ to fχ with witnesses µχ : ω → ω+

and χ : Vn → k, that meets some RT
n
k -pattern Pχ ∈ V .

However, H2 f -avoids Pχ since f is an instance of RTn
k (V,W ). By Lemma 2.16, H2 ⊕ Z computes a

function dominating µ, hence C ≤T Z ⊕H2, contradiction. This completes the proof of Lemma 3.3. �

Lemma 3.4. Let V and W be collections of RTn
k -patterns such that RTn

k (W ) 6≤id Rn
k (V )-ARITH-SCA-RTn

k.
For every function µ : ω → ω, there is an RT

n
k (V,W )-instance such that every solution computes a function

dominating µ.

Proof. Since RT
n
k (W ) 6≤id Rn

k (V )-ARITH-SCA-RTn

k, there is some coloring ffail : [ω]
n → k and some infinite

ARITH-SCA-RTn

k-solution H to f with some witness µfail : ω → ω and χ ∈ Rn
k (V ) that meets some RT

n
k -

pattern P ∈ W . Define f : [ω]n → k by f(D) = χ(Vn(µ,D)). Suppose µ is not dominated by any computable
function, otherwise we are done. By Cholak and Patey [2, Theorem 5.11], there is an infinite µ-transitive
set H which does not compute a function dominating µ. Therefore, H is an ARITH-SCA-RTn

k-solution to f
with witnesses µ and χ ∈ Rn

k (V ). By definition of Rn
k (V ), RTn

k (V ) ≤id {χ}-ARITH-SCA-RTn

k and H is an
RT

n
k (V )-solution to f , so f : [H ]n → k is an instance of RTn

k (V,W ).
We claim that for every RT

n
k (V,W )-solution G ⊆ H to f , G computes a function dominating µ. In

particular, G f -avoids P , so by Lemma 2.16, G computes a function dominating µ. This completes the proof
of Lemma 3.4. �

Theorem 3.5. Let V and W be two collections of RTn
k -patterns. RT

n
k (V,W ) admits strong cone avoidance

for non-arithmetical cones if and only if RTn
k (W ) ≤id Rn

k (V )-ARITH-SCA-RTn

k.

Proof. ⇐: This is Lemma 3.3. ⇒: We prove the contrapositive. Suppose RTn
k (W ) 6≤id Rn

k (V )-ARITH-SCA-RTn

k

Let C be a non-arithmetical set with modulus µ. By Lemma 3.4, there is a RT
n
k (V,W )-instance such that

every solution computes a function dominating µ, hence computes C. �

In the case V = ∅, then Rn
k (V ) is the set of all functions χ : Vn → k and therefore Rn

k (V )-ARITH-SCA-RTn

k

is ARITH-SCA-RTn

k. We obtain Theorem 2.18, that is, RTn
k (∅,W ) admits strong cone avoidance for non-

arithmetical cones if and only if RTn
k (W ) ≤id ARITH-SCA-RTn

k. More interestingly, we consider the case
where W is the set WRTn

k
of patterns forbidding non-homogeneous sets.

Corollary 3.6. Let V be a collection of RT
n
k -patterns. RT

n
k (V,WRTn

k
) admits strong cone avoidance for

non-arithmetical cones if and only if Rn
k (V ) contains only constant functions.

Proof. By Theorem 3.5, RTn
k (V,WRTn

k
) admits strong cone avoidance for non-arithmetical cones if and only if

RT
n
k ≤id Rn

k (V )-ARITH-SCA-RTn

k. Case 1: R
n
k (V ) contains only constant functions. Then for any f : [ω]n →

k, any Rn
k (V )-ARITH-SCA-RTn

k-solution to f is f -homogeneous, hence RT
n
k ≤id Rn

k (V )-ARITH-SCA-RTn

k,
so RT

n
k (V,WRTn

k
) admits strong cone avoidance for non-arithmetical cones. Case 2: Rn

k (V ) contains a
non-constant function χ : Vn → k. Let µ : ω → ω be a modulus of a non-arithmetical set C. Let
f(D) = χ(Vn(µ,D)). By Cholak and Patey [2, Corollary 5.5], there is an infinite µ-transitive set H which
does not compute a function dominating µ. Therefore, H is an Rn

k (V )-ARITH-SCA-RTn

k-solution to f with
witnesses µ and χ. We claim that H is not f -homogeneous. Indeed, by Theorem 2.10, for every G ∈ Vn,
there is some D ∈ [H ]n such that G = Vn(µ,D). Since χ is not constant on Vn, H is not f -homogeneous.
Thus RT

n
k 6≤id Rn

k (V )-ARITH-SCA-RTn

k and RT
n
k (V,WRTn

k
) does not admit strong cone avoidance for non-

arithmetical cones. �

3.2. Strongly avoiding non-computable cones. The strong cone avoidance analysis is very similar to
the one for non-arithmetical cones, mutatis mutandis. We start again by defining a restricted version of
SCA-RTn

k.
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Statement 3.7. Let S be a set of functions of type χ : Ln → k. S-SCA-RTn

k: For every function f : [ω]n → k,
there is a strongly increasing relative left-c.e. function µ : ω → ω+, an infinite strongly µ-transitive setH ⊆ ω,
and a coloring χ ∈ S such that for every D ∈ [H ]n, f(D) = χ(Ln(µ,D)).

Given a collection of RTn
k -patterns, we define a class Sn

k (W ) for SCA-RTn

k is a similar way as the class
Rn

k (W ) for ARITH-SCA-RTn

k, that is, given some n, k ∈ ω and a collection W of RTn
k -patterns, let

Sn
k (W ) = {χ : Ln → k | RT

n
k (W ) ≤id {χ}-SCA-RTn

k}

In particular, if RTn
k (W ) is a true statement, then every constant function χ : Ln → k belongs to Sn

k (W ).

Lemma 3.8. Let V and W be collections of RTn
k -patterns such that RTn

k (W ) ≤id Sn
k (V )-SCA-RTn

k. Then
RT

n
k (V,W ) admits strong cone avoidance.

Proof. Fix two sets Z and C with C 6≤T Z and let f : [ω]n → k be an instance of SCA-RTn

k.
By Lerman [14, 4.18], there is a set Z1 ≥T Z such that C is ∆0

2(Z1) but C 6≤T Z1. Since C is ∆0
2(Z1),

there is a left Z1-c.e. modulus µ : ω → ω for C. By Lemma 2.23, we can assume that µ is strongly increasing.
Let f : [ω]n → k be an instance of RTn

k (V,W ). Let f1 : [ω]n → k × Ln be defined for each D ∈ [ω]n by
f1(D) = 〈f(D),Ln(µ,D)〉. By strong cone avoidance of RTn

<∞,Cn
(Cholak and Patey [2, Theorem 4.18]),

there is an infinite set H ⊆ ω such that C 6≤T Z1 ⊕ H and |f1[H ]n| ≤ Cn. In particular, Z1 ⊕ H does
not compute a function dominating µ, so by Theorem 2.26, for every G ∈ Ln, there is some i < k and
some D ∈ [H ]n such that f1(D) = 〈i,G〉. Since |Ln| = Cn (Cholak and Patey [2, Lemma 3.16]), this i is
unique. For each G, let χ(G) be such an i. Then for every D ∈ [H ]n, f(D) = χ(Ln(µ,D)). By Cholak
and Patey [2, Corollary 5.5], there is an infinite µ-transitive subset H1 ⊆ H such that C 6≤T Z ⊕ H1. By
Lemma 2.25, there is an infinite strongly µ-transitive subset H2 ⊆ H1 such that C 6≤T Z ⊕H2. Therefore,
H2 is a SCA-RTn

k-solution to f .
If χ ∈ Sn

k (V ), then since RT
n
k (W ) ≤id Sn

k (V )-SCA-RTn

k, H2 is an RT
n
k (V,W )-solution to f , and we are

done. So suppose χ 6∈ Sn
k (V ). Unfolding the definition, RTn

k (V ) 6≤id {χ}-SCA-RTn

k, so there is a coloring
fχ : [ω]n → k and some infinite SCA-RTn

k-solution Hχ to fχ with witnesses µχ : ω → ω+ and χ : Ln → k,
that meets some RT

n
k -pattern Pχ ∈ V .

However, H2 f -avoids Pχ since f is an instance of RTn
k (V,W ). By Lemma 2.29, H2 ⊕ Z computes a

function dominating µ, hence C ≤T Z ⊕H2, contradiction. This completes the proof of Lemma 3.8. �

Lemma 3.9. Let V and W be collections of RT
n
k -patterns such that RT

n
k (W ) 6≤id Sn

k (V )-SCA-RTn

k. For
every strongly increasing left-c.e. function µ : ω → ω, there is an RT

n
k (V,W )-instance such that every

solution computes a function dominating µ.

Proof. Since RT
n
k (W ) 6≤id Sn

k (V )-SCA-RTn

k, there is some coloring ffail : [ω]n → k and some infinite
SCA-RTn

k-solution Hfail to ffail with some witness µfail : ω → ω and χ ∈ Sn
k (V ) that meets some RT

n
k -

pattern P ∈ W . Define f : [ω]n → k by f(D) = χ(Ln(µ,D)). Suppose that µ is not dominated by a
computable function. By Cholak and Patey [2, Theorem 5.11] and Lemma 2.25, there is an infinite strongly
µ-transitive set H which does not compute a function dominating µ. Therefore, H is a SCA-RTn

k-solution
to f with witnesses µ and χ ∈ Sn

k (V ). By definition of Sn
k (V ), RTn

k (V ) ≤id {χ}-SCA-RTn

k and H is an
RT

n
k (V )-solution to f , so f : [H ]n → k is an instance of RTn

k (V,W ).
We claim that for every RT

n
k (V,W )-solution G ⊆ H to f , G computes a function dominating µ. In

particular, G f -avoids P , so by Lemma 2.29, G computes a function dominating µ. This completes the proof
of Lemma 3.9. �

Theorem 3.10. Let V and W be two collections of RTn
k -patterns. RT

n
k (V,W ) admits strong cone avoidance

if and only if RTn
k (W ) ≤id Sn

k (V )-SCA-RTn

k.

Proof. ⇐: This is Lemma 3.8. ⇒: We prove the contrapositive. Suppose RT
n
k (W ) 6≤id Sn

k (V )-SCA-RTn

k.
Let µ be a strongly increasing left-c.e. modulus of ∅′. By Lemma 3.9, there is a RT

n
k (V,W )-instance such

that every solution computes a function dominating µ, hence computes ∅′. �

Corollary 3.11. Let V be a collection of RTn
k -patterns. RT

n
k (V,WRTn

k
) admits strong cone avoidance if and

only if Sn
k (V ) contains only constant functions.

Proof. By Theorem 3.10, RTn
k (V,WRTn

k
) admits strong cone avoidance if and only if RTn

k ≤id Sn
k (V )-SCA-RTn

k.

Case 1: Sn
k (V ) contains only constant functions. Then for any f : [ω]n → k, any Sn

k (V )-SCA-RTn

k-solution
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to f is f -homogeneous, hence RT
n
k ≤id Sn

k (V )-SCA-RTn

k, so RT
n
k (V,WRTn

k
) admits strong cone avoidance.

Case 2: Sn
k (V ) contains a non-constant function χ : Ln → k. Let µ : ω → ω be a strongly increasing

left-c.e modulus of a non-computable set C. Let f(D) = χ(Ln(µ,D)). By Cholak and Patey [2, Corollary
5.5] and Lemma 2.25, there is an infinite strongly µ-transitive set H such that C 6≤T H . Therefore, H is
an Sn

k (V )-SCA-RTn

k-solution to f with witnesses µ and χ. We claim that H is not f -homogeneous. Since
C 6≤T H , then in particular, H does not compute a function dominating µ, so by Theorem 2.26, for every
G ∈ Ln, there is some D ∈ [H ]n such that G = Ln(µ,D). Since χ is not constant on Ln, H is not f -
homogeneous. Thus RTn

k 6≤id Sn
k (V )-SCA-RTn

k and RT
n
k (V,WRTn

k
) does not admit strong cone avoidance. �

3.3. Avoiding non-computable cones. Last, we complete our analysis of this extended class of promise
Ramsey-like theorems with cone avoidance. The analysis follows the same scheme.

Statement 3.12. Let T be a set of functions of type χ : Pn → k. T -CA-RTn

k: For every function f : [ω]n →
k, there is a strongly increasing relative left-c.e. function µ : ω → ω+, an infinite strongly µ-transitive set
H ⊆ ω, and a coloring χ ∈ T such that for every D ∈ [H ]n, f(D) = χ(Pn(µ,D)).

We now define T n
k (W ) the same way we defined Rn

k (W ) and Sn
k (W ) for ARITH-SCA-RTn

k and SCA-RTn

k,
respectively. Given some n, k ∈ ω and a collection W of RTn

k -patterns, let

T n
k (W ) = {χ : Pn → k | RT

n
k (W ) ≤id {χ}-CA-RTn

k}

In particular, if RTn
k (W ) is a true statement, then every constant function χ : Pn → k belongs to T n

k (W ).

Lemma 3.13. Let V and W be collections of RTn
k -patterns such that RTn

k (W ) ≤id T n
k (V )-CA-RTn

k. Then
RT

n
k (V,W ) admits cone avoidance.

Proof. Fix two sets Z and C with C 6≤T Z and let f : [ω]n → k be a Z-computable instance of CA-RTn

k.
By Lerman [14, 4.18], there is a set Z1 ≥T Z such that C is ∆0

2(Z1) but C 6≤T Z1. Since C is ∆0
2(Z1),

there is a left Z1-c.e. modulus µ : ω → ω for C. By Lemma 2.23, we can assume that µ is strongly increasing.
Let f1 : [ω]n → k × Pn be defined for each D ∈ [ω]n by f1(D) = 〈f(D),Pn(µ,D)〉. By cone avoidance of

RT
n
<∞,Cn−1

(Cholak and Patey [2, Corollary 4.19]), there is an infinite set H ⊆ ω such that C 6≤T Z1⊕H and

|f1[H ]n| ≤ Cn−1. In particular, Z1 ⊕H does not compute a function dominating µ, so by Theorem 2.26, for
every G ∈ Pn, there is some i < k and some D ∈ [H ]n such that f1(D) = 〈i,G〉. Since |Pn| = Cn−1 (Cholak
and Patey [2, Lemma 3.15,Lemma 3.16]), this i is unique. For each G, let χ(G) be such an i. For every
D ∈ [H ]n, f(D) = χ(Pn(µ,D)). By Cholak and Patey [2, Corollary 5.5], there is an infinite µ-transitive
subset H1 ⊆ H such that C 6≤T Z ⊕H1. By Lemma 2.25, there is an infinite strongly µ-transitive subset
H2 ⊆ H1 such that C 6≤T Z ⊕H2. Therefore, H2 is a CA-RTn

k-solution to f .
If χ ∈ T n

k (V ), then since RT
n
k (W ) ≤id T n

k (V )-CA-RTn

k, H2 is an RT
n
k (V,W )-solution to f , and we are

done. So suppose χ 6∈ T n
k (V ). Unfolding the definition, RTn

k (V ) 6≤id {χ}-CA-RTn

k, so there is a coloring
fχ : [ω]n → k and some infinite CA-RTn

k-solution Hχ to fχ with witnesses µχ : ω → ω+ and χ : Pn → k, that
meets some RT

n
k -pattern Pχ ∈ V .

However, H2 f -avoids Pχ since f is an instance of RTn
k (V,W ). By Lemma 2.45, H2 ⊕ Z computes a

function dominating µ, hence C ≤T Z ⊕H2, contradiction. This completes the proof of Lemma 3.13. �

Lemma 3.14. Let V and W be collections of RTn
k -patterns such that RT

n
k (W ) 6≤id T n

k (V )-CA-RTn

k. For
every strongly increasing left-c.e. function µ : ω → ω, there is a set Z which does not compute a function
dominating µ, and a Z-computable RT

n
k (V,W )-instance such that every solution Z-computes a function

dominating µ.

Proof. Since RTn
k (W ) 6≤id T n

k (V )-CA-RTn

k, there is some coloring ffail : [ω]
n → k and some infinite CA-RTn

k-
solution H to f with some witness µfail : ω → ω+ and χ ∈ T n

k (V ) that meets some RT
n
k -pattern P ∈ W .

Define f : [ω]n → k by f(D) = χ(Pn(µ,D)). Suppose that µ is not dominated by a computable function.
By Cholak and Patey [2, Theorem 5.11] and Lemma 2.25, there is an infinite strongly µ-transitive set H
which does not compute a function dominating µ. Therefore, H is a CA-RTn

k-solution to f with witnesses
µ and χ ∈ T n

k (V ). By definition of T n
k (V ), RTn

k (V ) ≤id {χ}-CA-RTn

k and H is an RT
n
k (V )-solution to f ,

so f : [H ]n → k is an H-computable instance of RTn
k (V,W ) such that H does not compute a function

dominating µ.
We claim that for every RT

n
k (V,W )-solution G ⊆ H to f , G⊕H computes a function dominating µ. In

particular, G f -avoids P , so by Lemma 2.45, G⊕H computes a function dominating µ. This completes the
proof of Lemma 3.14. �
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Theorem 3.15. Let V and W be two collections of RTn
k -patterns. RT

n
k (V,W ) admits cone avoidance if and

only if RTn
k (W ) ≤id T n

k (V )-CA-RTn

k.

Proof. ⇐: This is Lemma 3.13. ⇒: We prove the contrapositive. Suppose RTn
k (W ) 6≤id T n

k (V )-CA-RTn

k. Let
µ be a strongly increasing left-c.e. modulus of ∅′. By Lemma 3.14, there is a set Z which does not compute
a function dominating µ and a Z-computable RT

n
k (V,W )-instance such that every solution Z computes a

function dominating µ, hence computes ∅′. Therefore RT
n
k (W ) does not admit cone avoidance. �

Corollary 3.16. Let V be a collection of RTn
k -patterns. RT

n
k (V,WRTn

k
) admits cone avoidance if and only

if T n
k (V ) contains only constant functions.

Proof. By Theorem 3.15, RTn
k (V,WRTn

k
) admits cone avoidance if and only if RTn

k ≤id T n
k (V )-CA-RTn

k. Case

1: T n
k (V ) contains only constant functions. Then for any f : [ω]n → k, any T n

k (V )-CA-RTn

k-solution to
f is f -homogeneous, hence RT

n
k ≤id T n

k (V )-CA-RTn

k, so RT
n
k (V,WRTn

k
) admits cone avoidance. Case 2:

T n
k (V ) contains a non-constant function χ : Pn → k. Let µ : ω → ω be a strongly increasing left-c.e

modulus of a non-computable set C. Let f(D) = χ(Pn(µ,D)). By Cholak and Patey [2, Corollary 5.5] and
Lemma 2.25, there is an infinite strongly µ-transitive set H which does not compute C. Therefore, H is a
T n
k (V )-CA-RTn

k-solution to f with witnesses µ and χ. We claim that H is not f -homogeneous. Indeed, since
C 6≤T H , then H does not compute a function dominating µ, so by Theorem 2.39, for every G ∈ Pn, there
is some D ∈ [H ]n such that G = Pn(µ,D). Since χ is not constant on Pn, H is not f -homogeneous. Thus
RT

n
k 6≤id T n

k (V )-CA-RTn

k and RT
n
k (V,WRTn

k
) does not admit cone avoidance. �

4. Applications

In this section, we exemplify the use of this framework by reproving existing theorems in reverse mathe-
matics without involving any forcing argument.

4.1. Ramsey’s theorem. Ramsey’s theorem for pairs is one of the most famous theorems studied in reverse
mathematics as it is historically the first one which is not equivalent (and not even linearly ordered with) the
five systems of axioms known as the Big Five [25]. The first theorem that we reprove with our framework is
the celebrated Seetapun theorem [24, Theorem 2.1], answering negatively the long-standing question whether

RT
2
2 is equivalent to the Arithmetical Comprehension Axiom (ACA) over RCA0.

Theorem 4.1 (Seetapun and Slaman [24]). For every k ≥ 1, RT2
k admits cone avoidance.

Proof. By Theorem 2.44, CA-RT2

k admits cone avoidance. As explained, CA-RT2

k is nothing but the statement

RT
2
k. Indeed, since |P2| = 1, the function χ : P2 → k is constant, and CA-RT2

k asserts the existence of an
infinite set H over which f belongs to the range of χ. In particular H is f -homogeneous. �

Later, Jockusch and Dzhafarov [13, Lemma 3.2] adapted the proof of Seetapun’s theorem to obtain strong

cone avoidance of RT1
k.

Theorem 4.2 (Jockusch and Dzhafarov [13]). For every k ≥ 1, RT1
k admits strong cone avoidance.

Proof. By Theorem 2.28, SCA-RT1

k admits strong cone avoidance. Here again, SCA-RT1

k is nothing but the
statement RT1

k, since |L1| = 1. �

Wang [27, Theorem 3.1] surprisingly proved that for every n, whenever ℓ is sufficiently large, then RT
n
<∞,ℓ

admits strong cone avoidance. Cholak and Patey [2, Theorem 4.18] improved his bound to Catalan’s se-
quence, and proved the tightness of the result. The following theorem was used all over the article, and we
can actually get a reversal.

Theorem 4.3 (Cholak and Patey [2]). For every n ≥ 1, RTn
<∞,Cn

admits strong cone avoidance.

Proof. By Theorem 2.28, SCA-RTn

k admits strong cone avoidance. In particular, SCA-RTn

k asserts the exis-
tence, for every coloring f : [ω]n → k, of an infinite setH and a function χ : Ln → k such that f [H ]n ⊆ χ(Ln).
Since |Ln| = Cn, it follows that |f [H ]n| ≤ Cn and therefore that H is an RT

n
<∞,Cn

-solution to f . �
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4.2. The Erdős-Moser theorem and the Ascending Descending sequence. A tournament T is a
directed graph such that any two vertices has exactly one arrow. We consider the predicate T (x, y) to be
true if there is an arrow from x to y. A set H is T -transitive if for every x, y, z ∈ H such that T (x, y) and
T (y, z) both hold, then T (x, z) holds.

Statement 4.4 (Erdős-Moser). EM: Every infinite tournament admits an infinite transitive set.

A tournament T can be represented by a coloring f : [ω]2 → 2 such that for every x < y, f(x, y) = 1 if and
only if T (x, y) holds. A set H is f -transitive if for every x < y < z ∈ H and i < 2, if f(x, y) = f(y, z) = i
then f(x, z) = i. One can see the Erdős-Moser theorem as the Ramsey-like statement “For every coloring
f : [ω]2 → 2, there is an infinite f -transitive set H .”

The following ADS principle was introduced and studied by Hirschfeldt and Shore [12] in the context of
reverse mathematics.

Statement 4.5 (Ascending Descending sequence). ADS: Every infinite linear order has an infinite ascending
or descending sequence.

As explained, a linear order (ω,≺L) can be represented by a coloring f : [ω]2 → 2 such that for every
x < y ∈ ω, f(x, y) = 1 if and only if x ≺L y. In particular, ω is f -transitive. The Ascending Descending
sequence principle can be seen as the promise Ramsey-like statement “For every coloring f : [ω]2 → 2 such
that ω is f -transitive, there is an infinite f -homogeneous set.”

The EM principle was introduced by Bovykin and Weiermann [1] as a way to decompose the proof of

RT
2
2 into two steps. Indeed, given a coloring f : [ω]2 → 2, by EM, there is an infinite set X over which f is

transitive, and by ADS, there is an infinite f -homogeneous subset Y ⊆ X . The author [20] proved that EM
admits strong cone avoidance.

Theorem 4.6 (Patey [20]). EM admits strong cone avoidance.

Proof. By Theorem 2.31, it suffices to prove that EM ≤id SCA-RT2

2. However, SCA-RT2

2 is the statement
LARGE2 saying that for every coloring f : [ω]2 → 2, there is some i < 2 and an infinite set H such that for
every x < y < z ∈ H , f(x, y) = f(y, z) = i if and only if f(x, z) = i. In particular H is f -transitive. �

The author [20] also deduced that ADS does not admit strong cone avoidance. Indeed, if ADS and EM

both admit strong cone avoidance, then RT
2
2 does, which is known not to be the case. One can however

reprove it directly from our criterion for promise Ramsey-like theorems.

Theorem 4.7 (Patey [20]). ADS does not admit strong cone avoidance.

Proof. Let VADS be the set of RT2
2-patterns forbidding non-transitive colorings. ADS is the promise Ramsey-

like statement RT2
2(VADS,WRT2

2
). By Corollary 3.11, ADS admits strong cone avoidance if and only if S2

2 (VADS)

contains only constant functions. Since RT
2
2(VADS) ≤id LARGE2 and LARGE2 is the statement SCA-RT2

2,
then S2

2 (VADS) contains all the functions χ : L2 → 2. Since |L2| = 2, ADS does not admit strong cone
avoidance. �

Dorais et al [7] studied combinatorial principles, including Ramsey’s theorem, under the Weihrauch re-
duction. They introduced for this some new consequences of Ramsey’s theorem for pairs, such as SHER.
Given a coloring f : [ω]2 → k, a set H ⊆ ω is f -semi-hereditary if for all i < k except possibly one, whenever
x < y < z ∈ H and f(x, z) = f(y, z) = i, then f(x, y) = i.

Statement 4.8 (Semi-hereditary). SHERk: Every coloring f : [ω]2 → k such that ω is f -semi-hereditary
has an infinite f -homogeneous set.

The restriction SHER2 was studied by Dorais (unpublished), who showed that it follows from ADS. Thanks
to our general criterion for promise Ramsey-like principles, we can prove the following theorem.

Theorem 4.9. For every k ≥ 2, SHERk does not admit strong cone avoidance.

Proof. Let VSHERk
be the set of RT2

k-patterns forbidding non-semi-hereditary colorings. SHERk is the promise

Ramsey-like statement RT2
2(VSHERk

,WRT2
k
). By Corollary 3.11, SHERk admits strong cone avoidance if and

only if S2
k(VSHERk

) contains only constant functions.
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We now prove that SHERk ≤id LARGEk. Fix a coloring f : [ω]2 → k and let H be an infinite LARGEk-
solution to f . In particular, there are two colors is, iℓ < k such that f [H ]2 ⊆ {is, iℓ} and for every x < y <
z ∈ H , f(x, y) = f(y, z) = is if and only if f(x, z) = is. Therefore, for all colors i < k except possibly iℓ,
whenever f(x, z) = f(y, z) = i, then f(x, y) = i.

Since LARGEk is the statement SCA-RT2

k, then S2
k(VSHERk

) contains all the functions χ : L2 → k. Since
|L2| = 2, SHERk does not admit strong cone avoidance �

4.3. The free set theorem. We now provide an example of application to a statement which involves
ω-colorings of [ω]n. The free set theorem was introduced by Friedman [9] and then studied by Cholak et
al [3] in the framework of reverse mathematics. Given a coloring f : [ω]n → ω, a set H ⊆ ω is f -free if
for every D ∈ [H ]n, whenever f(D) ∈ H then f(D) ∈ D. Equivalently, H is f -free if for every x ∈ H ,
x 6∈ f [H r {x}]n.

Statement 4.10 (Free set theorem). FS
n: Every coloring f : [ω]n → ω has an infinite f -free set.

Given a coloring f : [ω]n → ω, for every D = {x0 < · · · < xn} ∈ [ω]n+1, let g(D) be the function
gD : [n + 1]n → 2 defined for every E ∈ [n + 1]n by gD(E) = 1 if and only if f({xi : i ∈ E}) = xj where
j is the unique value in D r E. Since there are 2n+1 functions of type [n + 1]n → 2, one can see g as a
function of type [ω]n+1 → 2n+1. Moreover, every g-homogeneous set H must be for color the 0-constant
function of type [n+1]n → 2, and H is then f -free. We say that an infinite set H is g-functional if for every
D1 = {x0 < · · · < xn}, D2 = {y0 < · · · < yn} ∈ [ω]n+1 and E ∈ [n+ 1]n, if g(D1)(E) = g(D2)(E) = 1, then
{xi : i ∈ E} = {yi : i ∈ E}. In particular, ω is g-functional for the coloring g : [ω]n+1 → 2n+1 defined above.
We can therefore see FS

n as the promise Ramsey-like statement “For every coloring g : [ω]n+1 → 2n+1 such
that ω is g-functional, there is an infinite g-homogeneous set.” Wang [27, Theorem 4.1] proved the following
theorem.

Theorem 4.11 (Wang [27]). For every n ≥ 1, FSn admits strong cone avoidance.

Proof. Let VFSn be the set of RTn+1
2n+1-patterns which ensures that ω is g-functional. By Corollary 3.11, FSn

admits strong cone avoidance if and only if Sn+1
2n+1(VFSn) contains only constant functions.

Let χ : Ln+1 → 2n+1 be a non-constant function. In particular, there is some G ∈ Ln+1 such that
χ(G) : [n+ 1]n → 2 is different from the 0-constant function of type [n+ 1]n → 2.

Let µ : ω → ω be a strongly increasing left-c.e. modulus of ∅′. Let ρ : ω → ω be the left-c.e. function
defined for every n, x ∈ ω by ρ2n(2x) = 2µn(x), ρ2n(2x + 1) = ρ2n(2x) and ρ2n+1 = ρ2n. Informally, ρ
is obtained from µ by considering the integers of µ as even numbers for ρ, and interleaving odd numbers
which do not change the value of ρ. We claim that ρ is strongly increasing. First of all for every n, ρ2n
is non-decreasing, and since ρ2n+1 = ρ2n, neither is ρ2n+1. We need to check that for every x < y ∈ ω
and s ∈ ω, if ρs+1(x) > ρs(x) then ρs+1(y) > s. By construction of ρ, if ρs+1(x) > ρs(x) then s is of the
form 2s1 + 1. Let x1 = ⌊x/2⌋ and y1 = ⌊y/2⌋. In particular µs1+1(x1) > µs1(x1), and since µ is strongly
increasing, µs1+1(y1) > s1 so ρs+1(y) = 2µs1+1(y1) > 2s1 so ρs+1(y) > s. Thus ρ is a strongly increasing
left-c.e. function. Moreover, every function dominating ρ computes ∅′.

Let f : [ω]n+1 → 2n+1 be defined by f(D) = χ(Ln+1(ρ,D)). By Cholak and Patey [2, Corollary 5.5] and
Lemma 2.25, there is an infinite strongly ρ-transitive set Heven ⊆ {2n : n ∈ ω} which does not compute ∅′,
hence does not compute a function dominating ρ. We claim that H = {x, x + 1 : x ∈ Heven} is strongly
ρ-transitive. Let w < x < y < z ∈ H be such that ρz(w) > x and ρz(x) > y. Let w1, x1, y1 and z1 be
the largest even value smaller or equal to w, x, y and z, respectively. Then ρz1(w1) = ρz(w) > x ≥ x1 and
ρz1(x1) = ρz(x) > y ≥ y1. By strong ρ-transitivity of Heven, ρz1(w1) > y1. In particular, ρz(w) = ρz1(w1) >

y1, and since ρz(w) is even, ρz(w) > y. Therefore, H is a χ-SCA-RTn+1

2n+1-solution to f with witness ρ.

We claim that H is not an RT
n+1
2n+1(VFSn)-solution to f . Let G ∈ Ln+1 be such that χ(G) is not the

0-constant function of type [n+ 1]n → 2. In particular, there is some E ∈ [n+ 1]n such that χ(G)(E) = 1.
Since Heven does not compute ∅′, hence does not compute a function dominating ρ, by Theorem 2.26,

there is some Deven = {x0 < · · · < xn} ∈ [Heven]
n+1 such that G = Ln+1(ρ,Deven). Let t be the unique

element of {0, . . . , n+1}rE and let D = {xi : i ∈ E}∪{xt+1}. In particular, D ∈ [H ]n+1. By construction
of ρ, Ln+1(ρ,Deven) = Ln+1(ρ,D) = G, so f(D) = f(Deven) = χ(G). Then D and Deven ∈ [H ]n+1 witness

that H is not f -functional, and therefore that H is not an RT
n+1
2n+1(VFSn)-solution to f . �
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4.4. The canonical Ramsey theorem and the rainbow Ramsey theorem. We conclude this section
by providing a more general translation scheme from principles involving ω-colorings of [ω]n into promise
Ramsey-like statements.

As shown by Theorem 2.4, Ramsey’s theorem is the maximal true Ramsey-like theorem for finite colorings
of [ω]n. The following canonical Ramsey theorem can be seen as the maximal true Ramsey-like theorem for
ω-colorings from [ω]n. Given a coloring f : [ω]n → ω, a setH is f -canonical if there is a set U ⊆ {0, . . . , n−1}
such that for every D0 = {x0 < · · · < xn−1} ∈ [H ]n and D1 = {y0 < · · · < yn−1} ∈ [H ]n, f(D0) = f(D1) if
and only if for every i ∈ U , xi = yi.

Statement 4.12 (Canonical Ramsey theorem). CRT
n: Every coloring f : [ω]n → ω has an infinite f -

canonical set.

The canonical Ramsey theorem was first studied by Mileti [16] from a computability-theoretic viewpoint.
He proved in particular that CRT

2 does not admit cone avoidance. We now explain how to express the
canonical Ramsey theorem as a promise Ramsey-like statement.

Given a function f : [ω]n → ω, for every D = {x0 < · · · < x2n−1} ∈ [ω]2n, let g(D) be the function
gD : [2n]n × [2n]n → 2 defined for every E0, E1 ∈ [2n]n by gD(E0, E1) = 1 if and only if f({xi : i ∈ E0}) =
f({xi : i ∈ E1}).

Lemma 4.13. An infinite set H is g-homogeneous if and only if it is f -canonical.

Proof. ⇒: Suppose first that H is g-homogeneous, say for color c : [2n]n × [2n]n → 2.
Claim 1: There is a finite set U ⊆ {0, . . . , n− 1} such that for every E0 = {a0 < · · · < an−1} ∈ [2n]n and

E1 = {b0 < · · · < bn−1} ∈ [2n]n, c(E0, E1) = 1 if and only if for every i ∈ U , ai = bi. Fix E0 and E1. By the
classical canonical Ramsey theorem, there is an infinite subsetH1 ⊆ H which is f -canonical with some witness
set U ⊆ {0, . . . , n − 1}. Note that c(E0, E1) = 1 if and only if for every F = {z0 < · · · < z2n−1} ∈ [H1]

2n,
letting D0 = {zi : i ∈ E0} and D1 = {zi : i ∈ E1}, f(D0) = f(D1). Since H1 is f -canonical with witness U ,
then f(D0) = f(D1) if and only if for every i ∈ U , the ith element of D0 equals the ith element of D1, if for
every i ∈ U , ai = bi. This proves Claim 1. From now on, fix the set U .

Claim 2: H is f -canonical with witness U . Fix some D0, D1 ∈ [H ]n, and let F = {z0 < · · · < z2n−1} ∈
[H ]2n be some set such that D0 ∪D1 ⊆ F . Let E0 = {i < 2n : zi ∈ D0} and E1 = {i < 2n : zi ∈ D1}. By
definition of g, f(D0) = f(D1) if and only if c(E0, E1) = 1. By Claim 1, c(E0, E1) = 1 if and only if for
every i ∈ U , the ith element of E0 equals the ith element of E1. Therefore, f(D0) = f(D1) if and only if for
every i ∈ U , the ith element of D0 equals the ith element of D1. This proves Claim 2.

⇐: Suppose now that H is f -canonical, with witness U ⊆ {0, . . . , n − 1}. We claim that H is g-
homogeneous. Fix some D = {z0 < · · · < z2n−1} ∈ [H ]2n and let c = f(D), with c : [2n]n × [2n]n → 2. We
claim that c is fully specified by U . Fix some E0, E1 ∈ [2n]n and let D0 = {zi : i ∈ E0} and D1 = {zi : i ∈
E1}. Then c(E0, E1) = 1 if and only if f(D0) = f(D1), and by f -canonicity of H , this holds if and only if
for every i ∈ U , the ith element of D0 equals the ith element of D1, which again holds if and only if the ith
element of E0 equals the ith element of E1. This property depends only on E0, E1 and U . Therefore c is
unique. �

We say that a set H is g-comparing if g behaves as the coding of some function f , that is, for every F1,2 =
{x0 < · · · < x2n−1} ∈ [H ]2n, F1,3 = {y0 < · · · < y2n−1} ∈ [H ]2n and F2,3 = {z0 < · · · < z2n−1} ∈ [H ]2n and
E1

1,2, E
1
1,3, E

2
1,2, E

2
2,3, E

3
1,3, E

3
2,3 such that {xi : i ∈ E1

1,2} = {yi : i ∈ E1
1,3}, {xi : i ∈ E2

1,2} = {zi : i ∈ E2
2,3} and

{yi : i ∈ E3
1,3} = {zi : i ∈ E3

2,3}, if g(F1,2)(E
1
1,2, E

2
1,2) = g(F2,3)(E

2
2,3, E

3
2,3) = 1 then g(F1,3)(E

1
1,3, E

3
1,3) = 1.

Moreover g(F1,2)(E
1
1,2, E

2
1,2) = 1 and if g(F1,2)(E

1
1,2, E

2
1,2) = 1 then g(F1,2)(E

2
1,2, E

1
1,2) = 1. Let VCRTn be the

set of RT2n
ℓ -patterns (where ℓ is the number of functions of type [2n]n× [2n]n → 2) forbidding the sets which

are non g-comparing. Then CRT
n can be seen as the promise Ramsey-like statement RT2n

ℓ (VCRTn ,WRT2n
ℓ
).

A function f : [ω]n → ω is k-bounded if for every c ∈ ω, |f−1(c)| ≤ k, that is, each color appears at most
k times. A set H ⊆ ω is an f -rainbow if f is injective over [H ]n.

Statement 4.14 (Rainbow Ramsey theorem). RRTn
k : Every k-bounded coloring f : [ω]n → ω has an infinite

f -rainbow.

Cisma and Mileti [5] first studied the rainbow Ramsey theorem in the context of reverse mathematics.
Wang [27, Theorem 4.2] proved that RRT

n
2 follows directly from FS

n, thus that RRT
n
2 admits strong cone
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avoidance for every n ≥ 1. Later, the author [19, Theorem 4.6] proved that FS
n follows from RRT

2n+1
2 .

Given a k-bounded function f : [ω]n → ω, we can define g : [ω]2n → [2n]n × [2n]n → 2 as for the canonical
Ramsey theorem. An infinite set H is g-homogeneous if and only if it is an f -rainbow. Then letting VRRTn

k

be the set of RT2n
ℓ -patterns which force the sets to be g-comparing and to code a k-bounded function, the

rainbow Ramsey theorem can be seen as the promise Ramsey-like statement RT2n
ℓ (VRRTn

k
,WRT2n

ℓ
).

5. Open questions

This article provides an extensive analysis of cone avoidance for Ramsey-like and promise Ramsey-like
theorems. Other weakness notions have been proven to be very useful in reverse mathematics. It would be
interesting to extend this analysis to these notions. We detail some of the remaining questions.

5.1. PA avoidance. Among the five main subsystems of second-order arithmetics studied in reverse math-
ematics, weak König’s lemma (WKL) captures compactness arguments. Weak König’s lemma asserts that

every infinite binary tree admits an infinite path. The question whether RT
2
2 implies WKL was a long-

standing open question, until Liu [15] answered it negatively using the notion of PA avoidance. A Turing
degree d is PA relative to X if every infinite X-computable binary tree has an infinite path bounded by d.

Definition 5.1 (PA avoidance). A problem P admits PA avoidance if for every set Z of non-PA degree and
every Z-computable P-instance X , there is a P-solution Y to X such that Z ⊕ Y is of non-PA degree.

The notion of strong PA avoidance is defined accordingly. Liu [15] proved that RT
1
2 admits strong PA

avoidance and deduced that RT2
2 admits PA avoidance.

Question 5.2. What Ramsey-like statements admit PA and strong PA avoidance, respectively?

The cone avoidance analysis for Ramsey-like statements strongly relies on finding the exact bounds for
which the thin set theorems admits cone avoidance. The author [20] proved that for every n ≥ 1, there is
some ℓ ∈ ω such that RTn

<∞,ℓ admits strong PA avoidance.

5.2. Preservation of hyperimmunities. A very important and successful computability-theoretic notion
to separate statements in reverse mathematics is simultaneous preservation of hyperimmunities. A function
f : ω → ω is X-hyperimmune if it is not dominated by any X-computable function.

Definition 5.3 (Preservation of hyperimmunities). A problem P admits preservation of k hyperimmunities
if for every set Z, every k-tuple of Z-hyperimmune functions f0, . . . , fk−1 and every Z-computable P-instance
X , there is a P-solution Y such that all the functions f0, . . . , fk−1 are Z ⊕ Y -hyperimmune.

Again, the notion of strong preservation of k hyperimmunities is defined accordingly. The analysis of
Section 2 actually shows that whenever RTn

k (W ) 6≤id SCA-RTn

k, then RT
n
k (W ) does not admit strong preser-

vation of 1 hyperimmunity. Actually, the proof of Cholak and Patey [2] that RTn
<∞,Cn

admits strong cone
avoidance can be adapted to prove that RT

n
<∞,Cn

admits strong preservation of 1 hyperimmunity. By a
similar analysis, we can prove that SCA-RTn

k admits strong preservation of 1 hyperimmunity, and thus that
the Ramsey-like statements which admit strong preservation of 1 hyperimmunity and strong cone avoid-
ance coincide. The situation becomes different when preserving 2 hyperimmunities. Indeed, the author [18,
Lemma 25 and Lemma 27] proved that RT1

2 does not admit strong preservation of 2 hyperimmunities, while

Dzhafarov and Jockusch [8] proved that RT1
2 can strongly avoid multiple cones simultaneously.

Question 5.4. What Ramsey-like statements admit preservation and strong preservation of k hyperimmuni-
ties, respectively?

The author [22, Theorem 8.4.1] proved that for every k ∈ ω and n ≥ 1, there is some ℓ ∈ ω such that
RT

n
<∞,ℓ admits preservation of k hyperimmunities.

5.3. Jump cone avoidance. The question of the relation between stable Ramsey’s theorem for pairs and
cohesiveness [21] motivated the study of jump computation and yielded the notion of jump cone avoidance
which is similar to the notion of cone avoidance, but for jump computation.

Definition 5.5 (Jump cone avoidance). A problem P admits jump cone avoidance if for every set Z,
every non-∆0

2(Z) set C, and every Z-computable P-instance X , there is a P-solution Y such that C is not
∆0

2(Z ⊕ Y ).
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Once again, the notion of strong jump cone avoidance is defined accordingly by dropping the effectiveness
restraint on the P-instance. Recently, Monin and Patey [17, Theorem 4.1] proved that RT

1
2 admits strong

jump cone avoidance. It is however currently unknown whether for every n ≥ 1, there is some ℓ ∈ ω such
that RTn

<∞,ℓ admits strong jump cone avoidance.

Question 5.6. What Ramsey-like statements admit jump cone and strong jump cone avoidance, respectively?

References

[1] Andrey Bovykin and Andreas Weiermann. The strength of infinitary Ramseyan principles can be
accessed by their densities. Annals of Pure and Applied Logic, page 4, 2005. To appear.

[2] Peter A. Cholak and Ludovic Patey. Thin set theorems and cone avoidance. To appear., 2019.
[3] Peter A. Cholak, Mariagnese Giusto, Jeffry L. Hirst, and Carl G. Jockusch Jr. Free sets and reverse

mathematics. Reverse mathematics, 21:104–119, 2001.
[4] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey’s theorem

for pairs. Journal of Symbolic Logic, 66(01):1–55, 2001.
[5] Barbara F. Csima and Joseph R. Mileti. The strength of the rainbow Ramsey theorem. Journal of

Symbolic Logic, 74(04):1310–1324, 2009.
[6] Barbara F. Csima, Denis R. Hirschfeldt, Julia F. Knight, and Robert I. Soare. Bounding prime models.

Journal of Symbolic Logic, pages 1117–1142, 2004.
[7] François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti, and Paul Shafer. On uniform

relationships between combinatorial problems. Trans. Amer. Math. Soc., 368(2):1321–1359, 2016. ISSN
0002-9947. doi: 10.1090/tran/6465. URL http://dx.doi.org/10.1090/tran/6465.

[8] Damir D. Dzhafarov and Carl G. Jockusch. Ramsey’s theorem and cone avoidance. Journal of Symbolic
Logic, 74(2):557–578, 2009.

[9] HarveyM. Friedman. Fom:53:free sets and reverse math and fom:54:recursion theory and dynamics. URL
http://www.math.psu.edu/simpson/fom/. Available at https://www.cs.nyu.edu/pipermail/fom/.

[10] Marcia J Groszek and Theodore A Slaman. Moduli of computation (talk). Buenos Aires, Argentina,
2007.

[11] Denis R. Hirschfeldt and Carl G. Jockusch. On notions of computability-theoretic reduction between Π1
2

principles. J. Math. Log., 16(1):1650002, 59, 2016. ISSN 0219-0613. doi: 10.1142/S0219061316500021.
URL http://dx.doi.org/10.1142/S0219061316500021.

[12] Denis R. Hirschfeldt and Richard A. Shore. Combinatorial principles weaker than Ramsey’s theorem
for pairs. Journal of Symbolic Logic, 72(1):171–206, 2007.

[13] Carl G. Jockusch. Ramsey’s theorem and recursion theory. Journal of Symbolic Logic, 37(2):268–280,
1972.

[14] Manuel Lerman. Degrees of unsolvability: Local and global theory. perspectives in mathematical logic.
1983.

[15] Lu Liu. RT2
2 does not imply WKL0. Journal of Symbolic Logic, 77(2):609–620, 2012.

[16] Joseph Roy Mileti. Partition theorems and computability theory. Pro-
Quest LLC, Ann Arbor, MI, 2004. ISBN 978-0496-13959-0. URL
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3153383.
Thesis (Ph.D.)–University of Illinois at Urbana-Champaign.

[17] Benoit Monin and Ludovic Patey. Pigeons do not jump high. To appear. Available at
https://arxiv.org/abs/1803.09771, 2018.

[18] Ludovic Patey. Iterative forcing and hyperimmunity in reverse mathematics. In Arnold Beckmann,
Victor Mitrana, and Mariya Soskova, editors, CiE. Evolving Computability, volume 9136 of Lecture Notes
in Computer Science, pages 291–301. Springer International Publishing, 2015. ISBN 978-3-319-20027-9.
doi: 10.1007/978-3-319-20028-6 30. URL http://dx.doi.org/10.1007/978-3-319-20028-6_30.

[19] Ludovic Patey. Somewhere over the rainbow Ramsey theorem for pairs. Submitted. Available at
http://arxiv.org/abs/1501.07424, 2015.

[20] Ludovic Patey. Combinatorial weaknesses of Ramseyan principles. In preparation. Available at
http://ludovicpatey.com/media/research/combinatorial-weaknesses-draft.pdf, 2015.

http://dx.doi.org/10.1090/tran/6465
http://www.math.psu.edu/simpson/fom/
https://www.cs.nyu.edu/pipermail/fom/
http://dx.doi.org/10.1142/S0219061316500021
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3153383
https://arxiv.org/abs/1803.09771
http://dx.doi.org/10.1007/978-3-319-20028-6_30
http://arxiv.org/abs/1501.07424
http://ludovicpatey.com/media/research/combinatorial-weaknesses-draft.pdf


26 LUDOVIC PATEY

[21] Ludovic Patey. Open questions about Ramsey-type statements in reverse mathematics. Bull.
Symb. Log., 22(2):151–169, 2016. ISSN 1079-8986. doi: 10.1017/bsl.2015.40. URL
https://doi.org/10.1017/bsl.2015.40.

[22] Ludovic Patey. The reverse mathematics of Ramsey-type theorems. PhD thesis, Universit Paris Diderot,
2016.

[23] Ludovic Patey. Iterative forcing and hyperimmunity in reverse mathematics. Computability, 6(3):209–
221, 2017. ISSN 2211-3568. doi: 10.3233/COM-160062. URL https://doi.org/10.3233/COM-160062.

[24] David Seetapun and Theodore A. Slaman. On the strength of Ramsey’s theorem. Notre Dame Journal
of Formal Logic, 36(4):570–582, 1995.

[25] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Cambridge University Press, 2009.
[26] Robert M. Solovay. Hyperarithmetically encodable sets. Trans. Amer. Math. Soc., 239:99–122, 1978.

ISSN 0002-9947.
[27] Wei Wang. Some logically weak Ramseyan theorems. Advances in Mathematics, 261:1–25, 2014.
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