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Abstract—A Python module for rapid prototyping of
constraint-based closed-loop inverse kinematics controllers is
presented. The module allows for combining multiple tasks that
are resolved with a quadratic, nonlinear, or model predictive
optimization-based approach, or a set-based task-priority inverse
kinematics approach. The optimization-based approaches are
described in relation to the set-based task approach, and a novel
multidimensional “in tangent cone” function is presented for set-
based tasks. A ROS component is provided, and the controllers
are tested with matching a pose using either transformation
matrices or dual quaternions, trajectory tracking while remaining
in a bounded workspace, maximizing manipulability during a
tracking task, tracking an input marker’s position, and force
compliance.

I. INTRODUCTION

ROBOTS perform tasks that involve interacting and mov-
ing objects in Cartesian space by moving joints and

motors. Finding control setpoints in terms of the joint coordi-
nates such that the robot can achieve the desired task requires
solving the inverse kinematics problem. Inverse kinematics
is fundamental to all robots, and occurs in everything from
humanoid service robots to 3D printers, surgical robots to
autonomous vehicles. In this article we present CASCLIK,
a Python module for rapid prototyping of closed-loop inverse
kinematics controllers for realizing multiple constraint-based
tasks.

Closed-loop inverse kinematics involves defining a feedback
controller for achieving the desired task. In [1], Sciavicco et al.
present a closed-loop inverse kinematic approach where joint
speed setpoints minimize the distance to a given end-effector
pose. The distance errors have a guaranteed convergence char-
acteristics. The controller works by inverting the differential
kinematics and defines a continuous motion control of the
robot.

The task function approach by Samson et al. [2] describes
a robotic task as defined by an arbitrary output function and a
control objective. The output function is a mapping from the
joint states and time to an output space. Samson formulates
the task such that the control objective is to bring the output
function to zero. The task function approach generalizes to a
large class of tasks as the output function may go from any

M. H. Arbo and J. T. Gravdahl are with Department of Engineering
Cybernetics, NTNU, Norwegian University of Science and Technology.

E. I. Grøtli is with Mathematics and Cybernetics, SINTEF DIGITAL,
Trondheim, Norway

The work reported in this paper was supported by the centre for research
based innovation SFI Manufacturing in Norway. The work is partially funded
by the Research Council of Norway under contract number 237900.

robot states to any positions or orientations defined relative
the robot or world frame.

The constraint-based task specification approach of
De Schutter et al. [3] describes procedures for designing tasks
with complex sensor-based robot systems and geometric un-
certainties. Constraint-based task specification uses variables
termed feature variables to describe position of geometric and
task related features that are useful for the task. A key aspect
of constraint-based task specification is to allow for feature
variables.

A robot is redundant with respect to its task when it has
more degrees of freedom than there are dimensions in the
output function of the task. This allows one to utilize the
free degrees of freedom to achieve tasks simultaneously. A
common approach to handling redundancy involves inverting
the differential kinematics using a pseudo-inverse. The pseudo-
inverse often introduces a null-space within which additional
tasks can be achieved. To the author’s knowledge, the earliest
article combining multiple tasks in this manner is by Hanafusa
et al. [4] where a 7 degrees-of-freedom robot tracks a trajectory
and avoids an obstacle. This is achieved by placing the lower
priority tracking task in the null-space of the higher priority
obstacle avoidance task. Chiaverini et al. shows in [5] that
multiple tasks can be combined in a singularity robust way.
Any framework that supports closed-loop inverse kinematics
using task specification should allow for multiple tasks. The
state of the art presents two approaches to multiple tasks, strict
prioritization with null-space based approaches such as the
set-based singularity robust task-priority inverse kinematics
framework [6] and optimization-based prioritization which
lacks strict priority but allows prioritization through the cost
function in an optimization problem [7].

Calculating the Jacobians involved in closed-loop inverse
kinematics has been a complicated process requiring explicit
knowledge of the underlying representation used in the tasks.
Modern algorithmic differentiation systems such as CasADi
[8] simplify this process, allowing us to generate compiled
functions of complicated Jacobians. CasADi uses a symbolic
framework for performing algorithmic differentiation on ex-
pression graphs to construct Jacobians. CasADi provides meth-
ods for formulating linear, quadratic, and nonlinear problems
that can be solved with e.g. QPOASES [9] and IPOPT [10].
CASCLIK translates a set of tasks to optimal problems of
a form that CasADi can solve. This allows the user to test
constraint-based programming with any of the available opti-
mizers in CasADi with the different controller formulations
presented in this article. The purpose of CASCLIK is to
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facilitate rapid prototyping of constraint-based control of robot
systems.

The architecture of CASCLIK is inspired by eTaSL/eTC
[7] by Aertbeliën et al., which is a more mature task spec-
ification language and controller. A core principle of the
architecture of eTaSL/eTC is to separate the low-level robot
controller, numerical solver, and the task specification. Tasks
are robot-agnostic and transferrable to any robot system with
known forward kinematics. The power of constraint-based
task specification and control has allowed the creation of a
system architecture capable of exploiting CAD knowledge for
assembly [11], for which this work may present alternative
controller formulations of interest. Robot-agnostic task speci-
fication enables execution of the same task with different robot
platforms, which also allows for easier delegation of tasks to
the appropriate robots, and transferral of skills from one robot
system to another.

CASCLIK is a CasADi-based Python module for testing
closed-loop inverse kinematics controllers. The module fo-
cuses on being cross-platform and defers to CasADi for the
symbolic backend and optimization. The purpose of this mod-
ule is to explore alternative controller and constraint formula-
tions that utilize the same general structure as eTaSL/eTC. It
considers nonlinear and model predictive formulations which
are less real-time applicable, in an attempt to investigate
aspects that may later be implemented into more industrially
relevant frameworks. As it uses CasADi for optimization,
CASCLIK utilizes the development efforts of the CasADi
community to enable a variety of solvers.

The article is divided into six sections. The first section
introduces relevant concepts such as closed-loop inverse kine-
matics, task function approach, algorithmic differentiation, and
presents modern related research. The second section describes
the theory involved in CASCLIK. The third section gives a
brief description of the implementation. The fourth section
gives example applications of CASCLIK and preliminary
studies. The fifth and sixth section is the discussion and
conclusion.

The main contributions of the article are:
• A nonlinear programming formulation of the constraint-

based closed-loop inverse kinematics task controller,
• a model predictive formulation of the constraint-based

closed-loop inverse kinematics task controller,
• a general implementation of the set-based singularity ro-

bust multiple task-priority inverse kinematics framework
of [6],

• a novel multidimensional in tangent cone function for the
set-based singularity robust multiple task-priority inverse
kinematics framework,

A. Related Research

When considering fundamental robotics problems such as
inverse kinematics, there are innumerable important refer-
ences. To limit the scope we focus on related modern frame-
works.

Stack-of-Tasks [12], [13] is a C++ software development
kit for real-time motion control of redundant robots. Tasks and

robots are defined using dynamic graphs that allow for caching
results in functions for fast evaluation. The system allows for
equality and set tasks by activating and deactivating control
of the set tasks. The framework allows for joint torque level
control of the robot. Stack-of-tasks also supports a hierarchical
quadratic programming formulation [14]. It is open-source,
includes tools for integration with ROS, and is limited to Unix
platforms.

iTaSC [15], [16] is a software framework for constraint-
based task specification and execution. It presents a modular
design for task specification, scenegraph representation, and
solver. The software framework is a part of the OROCOS
project, and uses OROCOS RTT [17], [18] to control robots.

The previously mentioned eTaSL/eTC [7] is a successor
to iTaSC, and is a C++/LUA constraint-based task speci-
fication and control framework. Expressions are formulated
using expressiongraphs [19], a symbolic framework that uses
OROCOS KDL definitions [20] for frames and rotations.
Arbitrary symbolic expressions are used in constraints to
form a task specification. The architecture of eTaSL/eTC is
modular, allowing one to define new controllers for a task
specification and new solvers if they have a C++ interface. It
currently supports QPOASES and the hierarchical quadratic
programming solver of Stack-of-Tasks. eTaSL/eTC includes a
Python interface for rapid prototyping and an OROCOS RTT
[17], [18] component for real-time control of robots using
OROCOS. eTaSL/eTC is open-source and is currently limited
to Linux platforms.

Other advanced constraint-based approaches include the
task level robot programming framework of Somani et al.
[21], that supports an optimization based solver, and an ana-
lytical solver [22]. The software focuses on semantic process
description and CAD level tasks and constraints [23]. The
CAD level constraints have composition rules, allowing for
a reduction of the space of possible control setpoints. The
reduced space is used to formulate the analytical solver. To
the author’s knowledge, the software is not open-source.

The set-based singularity robust multiple task-priority in-
verse kinematics controller [6] is a task controller that uses the
augmented null-space projection operator [24] and activation
or deactivation of null-spaces to implement set tasks. This
controller forms the null-space approach in CASCLIK and this
article extends the approach with support for multidimensional
set constraints.

II. THEORY

In this section we present the underlying theory used in
CASCLIK. We present the variables and output function
involved, the available control objectives one can define, the
convexity of the constraints in optimization based controllers,
and their effect in the null-space projection based controller.
Then we present the four different controllers available:
the quadratic, nonlinear, and model predictive optimization-
based approaches, and the null-space projection approach.
The quadratic programming approach is based on eTaSL/eTC
[7] and the null-space approach is based on the set-based
singularity robust task-priority inverse kinematics controller
[6].
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A. Variables and Output Function

CASCLIK currently supports four different variable types:
• t, time,
• q(t) ∈ Rnq , robot variable (e.g. joint angles),
• x(t) ∈ Rnx , virtual variable (e.g. path-timing),
• y(t) ∈ Rny , input variables (e.g. sensor values).

Time and robot variables are self-explanatory. Virtual variables
are similar to the feature variables of eTaSL/eTC or iTaSC,
but the term feature implies a relation to geometric aspects
of the task. We describe these as virtual variables as they
are variables maintained by the computer, and not necessarily
linked to any features of the objects involved. This is merely
a semantic choice. Virtual variables simplify task specification
and are present in cases such as path-following. Input variables
are variables for which we have no information about the
derivative behavior.

The output function is a function:

e(t, q,x,y) ∈ Rne , (1)

where ne ≤ nq+nx and t, x and y are optional. In CASCLIK
we assume no knowledge of the underlying geometry involved
when evaluating the partial derivatives of the output function.
This differs from most other closed-loop inverse kinematics
frameworks where the representation is used when evaluating
the derivative of transformation matrices and orientations. This
is a design choice to make the library as general as possible
and allows us to inspect the behavior with different representa-
tions. This may require more from the task programmer as the
behavior of the robot may differ depending on the formulation
of the output function.

Assumption 1 (Velocity Control). The robot system is
equipped with a sufficiently fast velocity controller giving
q̇(t) = q̇des(t) where q̇des is the designed control setpoint.
The velocity controller controls all robot state velocities.

Samson et al. [2] describe how the first industrial robots
had velocity-controlled electrical motors, leading to the joint
velocity becoming the “true control variable” for robot sys-
tems in the control literature. Assumption 1 stems from this
time and has been a common robotics assumption since.

B. Constraints

We use a formulation of robotic tasks similar to Samson et
al. [2]: a task is defined by an output function and a control
objective. Samson et al. defines the control objective as a
regulation problem where a task is performed perfectly during
[t0, tf ] if

e(t, q,x,y) = 0 (2)

for all t ∈ [t0, tf ]. This is achieved by designing a controller
such that the output function converges to zero.

Similar to eTaSL, we refer to the control objective as a type
of constraint. CASCLIK specifies four types of constraints:
• equality constraints,

e(t, q,x,y) = 0, (3)

• set constraints,

el(t, q,x,y) ≤ e(t, q,x,y) ≤ eu(t, q,x,y), (4)

• velocity equality constraints,

ė(t, q,x,y) = ėd(t, q,x,y), (5)

• and velocity set constraints,

ėl(t, q,x,y) ≤ ė(t, q,x,y) ≤ ėu(t, q,x,y). (6)

where subscript l and u refer to the lower and upper bounds,
and subscript d refers to a desired derivative of the output
function. The control objectives of the tasks are achieved
perfectly if the equations hold during t ∈ [t0, tf ].

As the control objectives both include equality (converging
to zero), and set constraints (converging to or remaining in a
set), and set constraints can have different upper and lower
bounds, we cannot use the regulation problem formulation of
Samson et al. We rely on linearization of the time-derivative
of the output functions to achieve the control objectives.

Assumption 2 (Linearization). The partial derivatives ∂e
∂t ,

∂e
∂q

and ∂e
∂x (commonly called the task Jacobian) can be considered

constant with respect to the control duration. That is:

∂e

∂t
(τ)+

∂e

∂q
(τ)q̇(tn) +

∂e

∂x
(τ)ẋ(tn) ≈

∂e

∂t
(tn) +

∂e

∂q
(tn)q̇(tn) +

∂e

∂x
(tn)ẋ(tn) (7)

for tn ≤ τ ≤ tn + ∆t where tn is a sampling point and ∆t is
the duration of the control step.

The linearization assumption is often used in closed-loop
inverse kinematics frameworks without explicitly stating it as
an assumption. The linearization assumption does not always
hold, and for long control steps or rapidly moving trajectories
a tracking error may occur [25].

Defining a controller for a set of tasks is finding (q̇, ẋ)
such that we achieve the tasks. For the optimization-based
controller approaches we do this by imposing constraints on
the optimization problem, and for the null-space approach we
do this by both null-space projection and inversion of the
differential kinematics.

1) Equality Constraints: Taking the time-derivative of the
output function, we get:

ė =
∂e

∂t
+
∂e

∂q
q̇ +

∂e

∂x
ẋ (8)

where the best guess for the derivatives of y is zero. An equal-
ity constraint forms a regulation problem, which is achieved
by ensuring that:

ė =
∂e

∂t
+
∂e

∂q
q̇ +

∂e

∂x
ẋ = −K(t, q,x,y)e(t, q,x,y) (9)

for which exponential convergence to zero is guaranteed if
(9) is upheld and K is positive definite. K is a user-defined
function, and its dependent variables will be omitted for
brevity in the rest of the paper.
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Fig. 1: Visualization of set constraint convergence in one
dimension. q̇ and ẋ must be chosen such that ė remains in
the gray area. As this results in requiring ė to be positive
when e < el and negative when e > eu, we will converge to
el ≤ e ≤ eu. The slope of the lines are defined by K.

Velocity equality constraints are included to allow for ve-
locity following, but do not guarantee convergence:

ė =
∂e

∂t
+
∂e

∂q
q̇ +

∂e

∂x
ẋ = ėd(t, q,x,y), (10)

where the right hand side is the desired constraint velocity.
This is to accommodate control situations for which the
desired output function derivative is easy to define, but its
integral is not. Because we rely on Assumption 1 and As-
sumption 2, the lack of convergence of velocity constraints is
not considered in this article.

By using the Moore-Penrose pseudo-inverse (superscript †)
we get (9) and (10) on a form that fits with the null-space
projection approach. For equality constraints it becomes:[

q̇
ẋ

]
= −

([
∂e
∂q

∂e
∂x

])†(
Ke+

∂e

∂t

)
. (11)

Similarly for the velocity equality constraint we have:[
q̇
ẋ

]
=
([

∂e
∂q

∂e
∂x

])†(
ėd −

∂e

∂t

)
. (12)

2) Set Constraints: Set constraints are different in opti-
mization approaches and the null-space projection approach.
In optimization based controllers we enable exponential con-
vergence to the set by defining the constraint as:

K(e− el) ≤
∂e

∂t
+
∂e

∂q
q̇ +

∂e

∂x
ẋ ≤K(e− eu) (13)

where the gain is defined as previously. Fig.1 visualizes how
(13) leads to convergence. When approaching a limit from
inside the constraint, the maximum of ė will gradually be
reduced, which causes an exponential decay when approaching
a constraint limit.

Similar to the velocity equality constraints, velocity set
constraints do not ensure convergence and are defined as:

ėl(t, q,x,y) ≤ ∂e

∂t
+
∂e

∂q
q̇ +

∂e

∂x
ẋ ≤ ėu(t, q,x,y) (14)

which can be visualized as horizontal lines in Fig.1.
Set constraints in the null-space approach are handled

using null-space projection and the in tangent cone function
(Algorithm 1 in [6]). The method states that if the desired
(q̇, ẋ) ensures that the output function remains in the set,
by asking whether the (e, ė) pair is in the extended tangent

_e

Fig. 2: Visualization of when in tangent cone evaluates to true
for a one-dimensional output function. For any (e, ė) not in
the gray area, the set constraint becomes active and lower level
tasks are projected into the null-space of the set constraint.

cone, then the set constraint is not active. If the desired robot
state velocity is not in the extended tangent cone then the set
constraint is active and lower priority tasks are modified by
the null-space projection operator of the active set constraint.
The choice of (e, ė) pairs that do not cause an activation of
the set constraint is visualized in Fig.2.

In [25] it was noted that formulating multidimensional
tracking tasks as one dimensional tasks of differing priorities
may lead to unexpected tracking errors. The in tangent cone
function of Moe et al. [6] assumes one-dimensional output
functions. CASCLIK addresses this by implementing a multi-
dimensional version which allows for using multidimensional
output functions with set constraints. The algorithm is given in
Alg.1. If at a time we are at e then the vector d describes the
normal vector to the closest point that is in the set. This allows
us to identify when ė points inwards. The signs of e−el and
e−eu are equal when the closest point inside the set is on the
corners of a set, allowing us to identify the corners as special
cases.

Algorithm 1 Multidimensional in tangent cone

Input: t, q,x,y, q̇, ẋ
1: d← sign(e− el) + sign(e− eu)
2: in_crnr← sign(e− el) == sign(e− eu)
3: if el(t, q,x,y) ≤ e(t, q,x,y) ≤ eu(t, q,x,y) then
4: return True
5: else if in_crnr and |− d · ė| < ‖d‖ ‖ė‖ cos(45◦) then
6: return True
7: else if not in_crnr and d · ė < 0 then
8: return True
9: else

10: return False
11: end if

The multidimensional in tangent cone function assumes that
corners can be approximated with a 45◦ cone situated at the
corner. This is an approximation that may falsely report that
we are not in the extended tangent cone for dim(e) > 2, e.g.
when the desired ė points along an edge of the set constraint.

Velocity set constraints are not currently defined in the task-
priority inverse kinematics framework, and are therefore not
included in the null-space projection approach.

3) Convexity of Desired Control Input Space: For the
optimization-based approaches, the task constraints form con-
straints in the optimization problem. The derivative of the
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output function is an affine function with respect to the desired
control input q̇ and ẋ. For the different constraint types, the
space of desired control inputs are:

D(e, eq) =

{
q̇, ẋ

∣∣∣∣∂e∂t +
∂e

∂q
q̇ +

∂e

∂x
ẋ = −Ke

}
(15)

D(e, vel.eq) =

{
q̇, ẋ

∣∣∣∣∂e∂t +
∂e

∂q
q̇ +

∂e

∂x
ẋ = ėd

}
(16)

D(e, set) ={
q̇, ẋ

∣∣∣∣∂e∂t +
∂e

∂q
q̇ +

∂e

∂x
ẋ ∈ [K(e− el),K(e− eu)]

}
(17)

D(e, vel.set) =

{
q̇, ẋ

∣∣∣∣∂e∂t +
∂e

∂q
q̇ +

∂e

∂x
ẋ ∈ [ėl, ėu]

}
.

(18)

At any particular time instance t, q,x and y are constant,
making ė an affine transformation with respect to q̇ and ẋ.
From [26] we know that the inverse image of an affine function
on a convex set is convex, which makes D convex. The set of
possible choices of (q̇, ẋ) with multiple tasks is

S(t, q,x,y) =

nc⋂
i=1

D(ei, ci)(t, q,x,y), (19)

where we have nc tasks, each with an output function ei
and a control objective ci ∈ {eq., vel.eq., set, vel.set}. As
the intersection of convex sets is convex, combining tasks
maintains convexity of the set of possible control variables.
This convexity hinges on the derivative of the output function
being affine with respect to the control variables. Thus the
convexity argument does not hold for the model predictive
approach where q and x are predicted variables for the
predicted constraints.

Tasks are incompatible if S = ∅ (e.g. first task is to remain
in a box, second task is to track a reference that leaves the
box). We can easily see that adding a slack variable term ε to ė
reinstates the convexity with respect to the variables (q̇, ẋ, ε)
for the non-predictive approaches.

4) Null-Space Projection: Given an output function ei, we
define the null-space projection operator of the task as:

Ni = Inq+nx
−
[
∂ei
∂q ,

∂ei
∂x

]† [
∂ei
∂q ,

∂ei
∂x

]
(20)

such that Niv = 0 if v is a vector that extends only into the
space of the task. For multiple tasks, the null-space of all the
tasks combined uses the augmented inverse-based projection
of [24]:

Ni,i+1,... = Inq+nx−


∂ei
∂q ,

∂ei
∂x

∂ei+1

∂q , ∂ei+1

∂x
...


† 

∂ei
∂q ,

∂ei
∂x

∂ei+1

∂q , ∂ei+1

∂x
...

 (21)

With multidimensional set constraints the null-space should
only consider directions in which the output function violates
the set constraints. For each set constraint we define a diagonal
activation matrix Si ∈ Rnei

×nei with diagonal elements:

si,j =

{
1, ei,j < el,i,j or ei,j > eu,i,j
0, else (22)

where subscript i, j refers to jth element of the ith output
function, upper bound, or lower bound. With the activation
matrix, the augmented inverse-based projection becomes:

Ni,i+1,... = Inq+nx
−


∂ei
∂q ,

∂ei
∂x

∂ei+1

∂q , ∂ei+1

∂x
...


†  JA,i
JA,i+1

...

 (23)

where

JA,i =

{
[∂ei∂q ,

∂ei
∂x ], if equality constraint

Si[
∂ei
∂q ,

∂ei
∂x ], if set constraint.

(24)

C. Quadratic Programming Approach

The quadratic programming (QP) approach is a reactive
control that formulates a QP problem based on the current
sensor information. At time t = tk, we know q(tk),x(tk),
and y(t). q̇k is a setpoint sent to the robot system and ẋk is
used to obtain xk+1. The optimization problem is:

min
q̇k,ẋk,ε

cq̇TkWq̇q̇k + cẋTkWẋẋk + (1 + c)εTWεε (25a)

s.t. :

(q̇k, ẋk) ∈ S(tk, q(tk),x(tk),y(tk), ε) (25b)

where S is the set of all (q̇k, ẋk) such that:

∂ei
∂t

+
∂ei
∂q
q̇k +

∂ei
∂x
ẋk = −Kiei + εi (26)

Kj(ej − el,j) ≤
∂ej
∂t

+
∂ej
∂q
q̇k +

∂ej
∂x

ẋk + εj (27)

‘
∂ej
∂t

+
∂ej
∂q
q̇k +

∂ej
∂x

ẋk + εj ≤Kj(ej − eu,j) (28)

∂em
∂t

+
∂em
∂q

q̇k +
∂em
∂x

ẋk = −ėd,m + εm (29)

ėl,n ≤
∂en
∂t

+
∂en
∂q

q̇k +
∂en
∂x

ẋk + εn ≤ ėu,n (30)

where i ∈ [0, I] are all equality constraints, j ∈ [0, J ] are all
set constraints, m ∈ [0,M ] are all velocity equality constraints
and n ∈ [0, N ] are all the velocity set constraints. ε denotes a
vector of all slack variables, and c is a regularization weight.
The matrices Wq̇,Wẋ and Wε are positive definite matrices
denoting the weights on the robot velocity, virtual variable
velocity, and the slack variables respectively.

This formulation is based on the QP controller in
eTaSL/eTC. The gains, output functions, and partial derivatives
of the output functions are evaluated at time t = tk and
assumed constant with respect to the optimization problem.
When the controller is started for the first time, the virtual
variables and the slack variables must be initialized. This is
done by solving the QP problem (25) at time t = t0 with
q̇0 = 0.

The slack variable defines the behavior when constraints
are incompatible. This is a form of soft “prioritization” of
the constraints by avoiding the case where S = ∅. With the
QP approach all objectives of the controller are formulated in
terms of constraints.
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D. Nonlinear Programming Approach

The nonlinear programming (NLP) approach is a reactive
control approach that uses the same problem formulation as
the QP approach, but allows for more general cost expressions.
The optimization problem is:

min
q̇k,ẋk,ε

cf(tk, q,x,y, q̇k, ẋk) + (1 + c)εTWεε (31a)

s.t. :

(q̇k, ẋk) ∈ S(tk, q,x,y, εk) (31b)

where the cost function f is a user-defined function. If the
cost function is convex, then we have a convex optimization
problem for which efficient solvers exist. The cost function
must depend upon q̇k, and ẋk if there are virtual variables,
the rest are optional.

As the QP and NLP approach are similar in their constraints
and regularization, any set of tasks implemented for the QP
approach can be implemented for the NLP approach. The
NLP approach allows defining more complex controllers by
implementing objectives in terms of costs.

E. Model Predictive Approach

The QP and NLP approaches are reactive approaches where
the current states of the robot system are used to determine
what the next control input should be. A natural extension to
such a system is the introduction of model predictive control
(MPC). The states are predicted by relying on Assumption 1.
The MPC approach does not support inputs y as there is no
way of predicting what the input will be.

The MPC approach problem is implemented using a
multiple-shooting strategy. We define the horizon length as
nh steps of length ∆t and the optimization variable χ =
{q̇k, ẋk, εk, qk+1,xk+1, }k∈[0,nh−1]. The times are tk = t0 +
∆tk. The control input duration is ∆t. The problem is formu-
lated as:

min
χ

Φ(χ) (32a)

s.t. :

q0 = q(t0) (32b)
x0 = x(t0) (32c)
qk+1 − (qk + q̇k∆t) = 0 (32d)
xk+1 − (xk + ẋk∆t) = 0 (32e)
(q̇k, ẋk) ∈ S(tk, qk,xk) (32f)

where k ∈ [0, nh] and

Φ(χ) =

nh−1∑
k=0

cf(tk, qk,xk, q̇k, ẋk) + (1 + c)εTkWεεk (33)

is the cost from the NLP applied to each timestep along the
prediction horizon. (32b)-(32c) are lifting conditions for the
current timestep. (32d)-(32e) are the shooting gap constraints.
S uses either the shooting-gap variables for the predicted
constraints or the numerical value for the initial constraints.
As mentioned, the convexity of the task constraints is not
guaranteed for the shooting-gap variables. This is because the

terms depend on predictions rather than constants, and the
derivative of the output function is not necessarily affine.

The MPC approach is a bridge between closed-loop in-
verse kinematics and motion planning. The MPC approach
may utilize knowledge along its prediction horizon to choose
more appropriate control inputs. This comes at the cost of
computational complexity, and not guaranteeing convexity of
the constraints. With nq robot variables, nx virtual variables,
nε slack variables, and the dimension of the task constraints
as nc, the number of decision variables for the QP and NLP
approach is nq+nx+nε and there are nc constraint equations.
For the MPC approach the number of decision variables is
nh(2nq + 2nx + nε) and the dimension of the constraints is
nh(2nq + 2nx + nc).

F. Null-Space Projection Approach

As previously stated, the null-space projection approach
comes from the singularity robust task-priority framework of
Moe et al. [6]. Tasks have a strict prioritization as lower
priority tasks are projected into the null-space of higher
priority tasks.

Given a priority sorted sequence i ∈ [0, . . . , nc − 1] of
constraints, the desired control variables are:[

q̇
ẋ

]
=

[
q̇d,0
ẋd,0

]
+

nc−1∑
j=1

N0,...,j

[
q̇d,j
ẋd,j

]
(34)

where [q̇Td,0, ẋ
T
d,0]T and [q̇Td,j , ẋ

T
d,j ]

T are defined by (11) for
equality constraints, (12) for velocity equality constraints, and
0 for set constraints. If a set constraint is inactive, it does
not contribute to the augmented null-space projection of its
lower priority tasks. If it is active, its task Jacobian is used
when formulating the null-space projector. The null-space is
formed using (21) or (23) when using the multidimensional
in tangent cone function. With nset set based tasks, we have
2nset possible activation combinations of the set constraints.
These form 2nset possible modes of the controller. In Table I
we see the activation map of which map to activate based on
whether the sets are active, or inactive. This example has 3 set
constraints, thus it has 8 modes. Check marks are active, dash
marks are inactive set constraints. At each timestep, we check

TABLE I: Activation map with 3 set constraints

Mode Set 1 Set 2 Set 3

1 - - -
2 - - X
3 - X -
4 X - -
5 - X X
6 X - X
7 X X -
8 X X X

each mode for whether the (q̇, ẋ) it proposes is in the extended
tangent cone for all inactive set constraints. This is done by
going down the list of modes, activating set constraints until
all other set constraints are in their extended tangent cones.
At worst we will evaluate each mode and the times in tangent
cone is run is O(nset log2(nset)) [27].
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The null-space projection approach gives hard limits on the
constraints. It ensures that we cannot chose control inputs
that go out of the sets. This differs from the optimization
approaches where the control variables are chosen such that
the controller converges to the sets. If external disturbances,
numerical errors, or measurement noises causes the null-space
projection controller to end up outside the edge of a set
constraint, the controller will still attempt to move along the
null-space of the constraint, and not necessarily converge into
the set again. This means that one must start the controller
with the system inside the sets.

III. IMPLEMENTATION

In this section we briefly present the implementation of
CASCLIK and the support packages. This is to give insight
into their purpose, and important design choices.

A. CasADi - Jacobian Damping

As CasADi is a symbolic framework, it performs pseudo-
inverse by assuming that the item to be inverted has full rank.
If M is the matrix to be inverted CasADi solves the linear
problem:

MMTx = M (35)

for x if M is wide, or by

MTMx = M (36)

if M is tall. We employ Jacobian damping [28] to give
the Jacobian full rank as the activation matrix Si in the
multidimensional set constraint may lead to zero rows in JA,
or ill-defined tasks may lead to zero rows. This modifies (35)
to solve:

(MMT + λI)x = M (37)

for wide matrices, where λ is the damping factor, and similar
for tall matrices. The default damping factor is set to 10−7

and is an option in the null-space approach controller.

B. CASCLIK

CASCLIK is a Python module that only depends on
CasADi. This is to have an operating system independent,
robot middleware independent software solution. The module
is compatible with both Python 2.7 and Python 3. CASCLIK
is available on GitHub under the MIT license [29]. The overall
architecture is inspired by eTaSL/eTC. The core module con-
tains classes for constraints, skill specification, and controllers.

The output function of a constraint is an arbitrary CasADi
expression. The gain, target derivative, and upper or lower lim-
its can be added depending on what type of control objective
is involved. Priority is added by specifying the constraint as
soft or hard for the optimization-based approaches, or as a
numerical value for the null-space based approach.

A collection of constraints is a skill. As the user is free to
define both what the time, robot, virtual, and input variables
are called when formulating the constraints, the user must
provide the symbol for each of the relevant variables to the
skill specification as well as a label and a list of constraints.

The skill sorts the constraints according to their numerical
priority (relevant for the null-space projection approach), and
keeps track of whether there are slack variables or virtual
variables involved in the skill.

Controllers take a skill specification and other controller-
dependent parameters as well as an option dictionary. The
ReactiveQPController (QP) takes a list of weights for the robot
or virtual variables. The ReactiveNLPController (NLP) takes a
cost expression. The ModelPredictiveController (MPC) takes
a cost expression as well as the horizon length, and a timestep
length. The null-space based PseudoInverseController (PINV)
has no optional input.

The controllers are compiled using CasADi’s just-in-time
compilation of solvers and functions. For problems containing
a large number of sets, PseudoInverseController has generally
the longest compilation time as there are 2nset separate modes
to compile.

C. Other modules

Two additional modules were created to simplify prototyp-
ing. urdf2casadi is a Python module for generating CasADi
expressions for the forward kinematics of robots. It uses
either URDF files, which are common in ROS, or Denavit-
Hartenberg parameters, common in industry, for creating for-
ward kinematics reprented by a transformation matrix or a
dual quaternion. casclik_basics provides classes for interfacing
with robots that maintain the virtual variables and subscribes
to joint and sensor topics. Its DefaultRobotInterface publishes
joint position commands, and its URModernInterface is specif-
ically intended for use with the ur_modern_driver [30] and
publishes joint speed commands. casclik_basics is available
on GitHub under the MIT License [29].

IV. EXAMPLES

The tests were performed on a computer with an Intel
Xeon CPU E5-1650 v3 running Ubuntu 16.04 with ROS
Kinetic Kame. In all the experiments we use QPOASES for
the QP controller, IPOPT for the NLP and MPC controller,
and Jacobian damping for the PINV controller (null-space
approach).

A. Representation - Matrix or Quaternion

In this example we are controlling a UR5 robot using either
dual quaternions or transformation matrices for frame repre-
sentation. The example uses the UR5 URDF with urdf2casadi
to determine forward kinematics. The robot is simulated at
joint velocity level with Euler discretization as we rely on
Assumption 1.

Transformation matrices T ∈ T ⊂ R4×4 are composed of
a rotation matrix R ∈ R ⊂ R3×3, and a displacement vector
p ∈ R3. Dual quaternions Q̆ are composed of

Q̆ = QR + εQp (38)

where QR ∈ Qunit is a unit quaternion for rotation and Qp ∈
Q a quaternion for displacement. ε is the dual unit which
satisfies εε = 0. Dual quaternions can be represented by a
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vector such that Q̆ ∈ R8, and in vector form the quaternion
product of two dual quaternions Q̆c = Q̆a⊗Q̆b can be defined
as:

Q̆c = H̄(Q̆b)Q̆a = H(Q̆a)Q̆b (39)

where H̄,H ∈ R8×8 are matrices referred to as the minus
and plus Hamilton operator [31].

The UR5 has q ∈ R6 joint angles forming the robot
variables, and forward kinematics described by R(q) for the
rotation matrix, p(q) for the displacement, and Q̆(q) for the
dual quaternion.

The task is for the end-effector frame to match a desired
frame. The desired frame is described by (Rd,pd) with
transformation matrices, and Q̆d with dual quaternions. Using
rotation and displacement we can define this as the task:

eT (q) =

[
p(q)− pd∥∥RT
dR(q)− I

∥∥
F

]
(40)

where the first line ensures convergence of position and the
second ensures convergence of the rotation. The second line
uses the orientation metric of Larochelle et al. [32] using the
Frobenius norm.

For dual quaternions, we employ the strategy of Figueredo
et al. [31]:

eQ(q) = H̄(Q̆d)C(Q̆d − Q̆(q)) (41)

where C = diag(−1,−1,−1, 1,−1,−1,−1, 1) is the conju-
gate operator for dual quaternions in vector form. As Qd is
constant, we see that (41) becomes linear with respect to Q̆(q).

The joints have hard set constraints such that qi ∈
[−2π, 2π], and q̇i ∈ [−π/5, π/5]. As the null-space based
controller does not support velocity set constraints, the applied
q̇ is also saturated by the max speed. The example is simulated
with a desired frame at pdes = [0.5, 0, 0.5]T , with a roll of 5◦.
The control duration is 8 ms, and corresponds to 125 Hz. The
MPC approach has a prediction horizon of 10 control steps.
All cost functions are the same as for the QP approach.

In Fig.3 we see the Euclidean norm of the two repre-
sentations for each of the controller classes. The null-space
approach has a greater error while moving closer to the point
as it does not account for the speed saturation. It also struggles
more with the dual quaternion formulation and takes a more
circuitous route. The different controllers have different limits
before numerical issues arise and these may be optimizer
settings dependent.

In Tab.II the initial and average runtimes are given for the
different controllers during the simulations. The null-space
approach is denoted by PINV.

TABLE II: Controller runtimes for Representation Example

PINV QP NLP MPC

Initial (eQ) 0.11 ms 0.95 ms 4.23 ms 26.80 ms
Average (eQ) 0.04 ms 0.27 ms 2.74 ms 20.01 ms
Initial (eT ) 0.09 ms 1.44 ms 4.37 ms 16.90 ms

Average (eT ) 0.04 ms 0.26 ms 2.81 ms 147.08 ms

The NLP approach uses approximately half the control
duration, and MPC approach generally uses an order of
magnitude longer. This means that the controllers would not
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Fig. 3: Euclidean norm of the output functions (40) and (41).

be applicable to this control situation with the default settings.
The QP approach and null-space approach have applicable
timings with the QP approach being an order of magnitude
slower than the null-space approach. The average runtime of
the MPC formulation with transformation matrix formulation
is much higher as a result of using the Frobenius norm and
matrix operations. This is likely caused by the prediction
constraints becoming more difficult to apply.

B. Set Constraints - Bounded Workspace

This is a recreation of Example 2 from [6] where a
UR5 tracks a Cartesian trajectory while not escaping a box
defined workspace. The forward kinematics are defined by the
Denavit-Hartenberg parameters in [6] using urdf2casadi.

Fig. 4: RViz visualization of the bounded workspace example.

The output function is defined by

e(t, q) = p(q)− pdes(t) (42)
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Listing 1: Equality Constraint Example
track_cnstr = EqualityConstraint(

label="tracking_constraint",
expression=p(q) - p_d(t),
gain=1.0,
constraint_type="soft",
priority=3

)

Listing 2: Set Constraint Example
box_cnstr = SetConstraint(

label="box_constraint",
expression=p(q),
set_min = np.array([0.1, -0.5, 0.3]),
set_max = np.array([0.5, 0.4, 0.85]),
gain = 100.0,
constraint_type="hard",
priority=1

)

where p(q) is the forward kinematics to the origin of the end-
effector, and

pdes(t) =

 0.5 sin2(0.1t) + 0.2
0.5 cos(0.1t) + 0.25 sin(0.1t)
0.5 sin(0.1t) cos(0.1t) + 0.7

 . (43)

The set constraint is defined by p(q) ∈ [pl,pu] with
pl = [0.1,−0.5, 0.3] and pl = [0.5, 0.4, 0.85]. Examples
of the code used to define the equality and set constraints
can be seen in Listing.1 and Listing.2, where p(q) and
p_d(t) are CasADi functions for end-effector position and
desired position, and t and q are MX symbols for time and
robot variable. For the null-space projection approach the set
constraint can either be formulated using the experimental
multidimensional set constraint, or as three separate constraints
for x, y, and z as in [6]. The equality constraint has a lower
priority (3rd) such that it can work with either formulation.

From Fig.1 we know that the approach speed to the upper
or lower bound on a set constraint are determined by the
gain in the optimization approaches. This can be seen as an
exponential decay in the tracking task as we approach the set
limits. From Fig.2 we see that as the gain approaches ∞, we
will have the same sharp change when approaching a set limit
as the null-space approach exhibits. In this example the set
gain is 100 for the QP and NLP. The MPC has gains of 1 as
large set gains may lead to more difficult predicted constraints.

In Fig.5 we see the position of the end-effector for the
different controllers when handling x, y, and z as separate
constraints and in Fig.6 we see the position when handling
them as a single multidimensional constraint.

In Fig.7 we see the tracking error with the different con-
trollers when handling x, y, and z constraints as separate
constraints. In Fig.8 we see the tracking error with the
different controllers when handling x, y, and z as a single
multidimensional constraint. Similar to the results in [25],
setting the constraints in a priority ordered sequence causes
unwanted behavior. The multidimensional formulation gives

a more correct interpretation of the constraint. Also note that
the multidimensional null-space approach and the optimization
approaches are similar. If more set constraints are included,
such as joint limits, the two methods will differ again. In Fig.9
we see the mode the null-space based controller is in for both
the separate x, y, and z formulation and the multidimensional
formulation. The “noisy” rapid switching of modes occurs due
to numerical issues with the linearization and the comparison
between current and set limits. Tuning either the control
duration or the comparison with some numerical lower limit
can mitigate this effect.

Fig.4 shows a visualization of the controller running with
the DefaultRobotInterface and ROS.

0 20 40 60 80

t [s]

0.2

0.4

0.6

x
[m

]

traj

qp

nlp

pinv

mpc

(a) x

0 20 40 60 80

t [s]

−0.50

−0.25

0.00

0.25

0.50

y
[m

]

traj

qp

nlp

pinv

mpc

(b) y

0 20 40 60 80

t [s]

−0.2

0.0

0.2

z
[m

]

traj

qp

nlp

pinv

mpc

Fig. 5: Position of the end-effector for x, y, z controlled
separately. z omitted for brevity.

C. Nonlinear cost - Manipulability Index

In this example a 7 degrees of freedom KUKA LWR
IIWA 14 R820 arm is to follow a circular trajectory in its
workspace and maximize the manipulability index of the
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Fig. 6: Position of the end-effector for x , y, z controlled using
a multidimensional constraint. The MPC approach exhibits the
exponential approach to the constraint limit.

task. The forward kinematics are defined by the URDF and
urdf2casadi. The robot is simulated at joint velocity level with
Euler discretization. IIWA has q ∈ R7 where q ∈ [−qu, qu]
with

qTu = [170◦, 120◦, 170◦, 120◦, 170◦, 120◦, 175◦]. (44)

The circular trajectory is defined by:

pd(t) =

0.1 cos(0.05t− 0.5π) + 0.45
0.1 sin(0.05t− 0.5π) + 0.4

0.3

 . (45)

We define the manipulability index of the task as

m(q) =

√
det

(
∂p

∂q
(q)

∂p

∂q
(q)T

)
(46)
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Fig. 7: Tracking error for x, y, and z as separate constraints.
The error does not converge to zero as the desired trajectory
goes out of the box.
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Fig. 8: Tracking error for x, y and z as a multidimensional
constraint. The error does not converge to zero as the desired
trajectory goes outside the box. All are equal except MPC
which deviates slightly.

where m is a measure of the area of the ellipsoid that
the Jacobian of the end-effector position forms. We want to
both achieve the task and to maximize our manipulability.
Maximizing the manipulability can be beneficial in collision
avoidance, as a high manipulability means we have more
options as to which direction we can move to avoid collision.
Maximizing the manipulability can be achieved by adding a
term to the nonlinear costs of the NLP and the MPC approach:

mc(q, q̇) = −αm(q + ∆tq̇)2 (47)

where ∆t is the control duration and α is set to 500. This
essentially states that we attempt to maximize the manipu-
lability of the subsequent step. Optimization problems often
struggle with square roots, so we square the manipulability
index before using it in the cost. As the tracking constraint is
of lower priority than the joint limits, we must ensure that the
tracking constraint’s slack weight is greater than α. In Listing
3, we see an example of setting its slack weight to 2000.
The QP approach and null-space approach does not support
nonlinear costs and do not maximize their manipulability. The
MPC has a horizon length of 10 control steps.

In Fig.10 we see the tracking error over time. The lower
limit stems from the linearization assumption, and one must
either use a path-following approach, or use lower control du-
rations to overcome this. At t = 30s, the MPC approach is able



11

0 10 20 30 40 50

t [s]

0

2

4

m
o
d

e

separate

multidim

Fig. 9: Excerpt of the mode the null-space based controller
is in for both separate constraints and multidimensional con-
straints. Note the rapid switching at t = 15s and t = 45s when
using separate constraints.

Listing 3: Equality Constraint With Slack Weight
track_cnstr = EqualityConstraint(

label="tracking_constraint",
expression=p(q) - p_d(t),
gain=1.0,
constraint_type="soft",
slack_weight=2e3

)

to find a different configuration with higher manipulability at
the cost of a short duration of deviating from the trajectory.
This reconfiguration does not affect the final tracking error of
the MPC.

In Fig.11 we see the manipulability index m over time. The
NLP performs slightly better than the QP approach, and the
MPC performs best by far as it chooses to deviate slightly
from the trajectory to arrive at a configuration with a higher
manipulability.
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Fig. 10: Tracking error when following the circular trajectory.
The MPC approach deviates slightly at t = 30s as it is
reconfiguring to an orientation with higher manipulability.

TABLE III: Controller runtimes for Manipulability Example

PINV QP NLP MPC

Initial 0.11 ms 0.48 ms 4.94 ms 54.72 ms
Average 0.07 ms 0.19 ms 3.02 ms 49.52 ms
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Fig. 11: Manipulability index for different controllers over
time when tracking the circular trajectory. The MPC approach
is able to find a configuration with higher manipulability index
at t = 30s.

Fig. 12: RViz visualization of tracking an input marker.

In Tab.III we see the initial and average runtimes of the
different controllers. The inclusion of the manipulability cost
has not made the controllers deviate from the rule of an order
of magnitude separation between the approaches.

D. Input - Tracking a marker in ROS

In this example a UR5 robot tries to track user input.
The DefaultRobotInterface is used with ROS and an RViz
interactive marker to simulate an external input. The robot
is simulated with Gazebo and is controlled at 50 Hz. We use
the QP approach in this example. The maximum joint speed
is 3 rad/s.

In Fig.13 we see the position of the marker and the end-
effector frame. The end-effector has an exponential conver-
gence to the desired input marker position, but as it does not
consider the speed of the input marker, there is a tracking error
when following the input marker during a continuous motion.
The DefaultRobotInterface has a delay of 7.8s before it starts
as it waits for topics and compiles the controller.

E. Velocity Equality Constraint - 6 DOF compliance

In this example the end-effector of a UR5 is to comply to
forces and torques acting on it. The example uses urdf2casadi
to determine forward kinematics, and ur_modern_driver [30].
The end-effector has an ATI Mini45 force/torque sensor at-
tached with a mounting plate on it. The robot is in an open
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Fig. 13: Position of the input marker and end-effector frame
when tracking the input marker.

Fig. 14: Experimental setup for 6 DOF compliance.

workspace. To ensure the robot does not crash with the table
or is moved to undesired regions, the end-effector is limited
to a box. The box is defined by the set constraint−0.7

−0.4
−0.2

 ≤ p(q) ≤

−0.3
0.5
0.5

 . (48)

Velocity resolved compliance can be achieved using damp-
ing control [33] by [

v(t)
ω(t)

]
=

[
Kff(t)
Kττ (t)

]
(49)

where v is the Cartesian velocity, ω is the rotational velocity,
f are the linear forces, and τ are the torques. All evaluated
at the end-effector. Kf and Kτ are the damping constants for
the forces and torques respectively.

For linear forces f acting on the end-effector, and a position
p(t) of the end-effector, we desire:

ṗ(t) = Kff
w(t) = KfR(q)f(t) (50)

where fw are the forces acting on the end-effector represented
in the world coordinates.

We can relate the rotational velocity to the derivative of the
orientation quaternion by following [34], and arrive at

Q̇r(t) =
Kτ

2
H̄

([
τ (t)

0

])
Qr(t) (51)

where τ (t) are the torques acting on the end-effector in the
end-effector frame.

Listing 4: Velocity Equality Constraint Example
comply_cnstr = VelocityEqualityConstraint(

label="comply_constraint",
expression=vertcat(p(q), Q_rot(q)),
target=vertcat(Kf*p(q),

0.5*Kt*mtimes(H(tau,0), Q_rot(q))),
constraint_type="soft"

)
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Fig. 15: Position over time of the end-effector during the
velocity equality experiment for compliance. The stippled and
dotted lines denote the box constraint. From t = 36s until
t = 40s we attempt to pull the end-effector out of the box
constraint in x direction, but the set constraint does not allow
it. At t = 80s we let go of the end-effector, and it drifted to
the bottom of the box due to sensor bias.

An example of the constraint is given in Listing 4.
The controller is running at 125 Hz, and the force/torque

sensor runs at 250 Hz but only the most recent value is used.
The damping factors are Kf = 0.01 and Kt = 0.1. This
experiment was run with the QP controller. To inspect the
behavior of the system we look at the right hand side of (50)
and (51) with the sensor value for force, torque, and q. We
refer to this as sensed speed. The left hand side of (50) and
(51) as desired by the CASCLIK controller or as reported by
the robot, is referred to as the controller speed and the robot
speed respectively.

In Fig.15 we see the position of the end-effector over
time. In Fig.16 we see sensed speed, controller speed and
robot speed. The controller moves to track the target function,
resulting in compliance of the end-effector with respect to the
force. In Fig.17 we comply with respect to the torques. From
t = 36s until t = 40 we try to pull the end-effector out of the
box constraint. As the robot approaches the box constraint, the
compliance is reduced to zero. At t = 80s we let go of the
end-effector and sensor bias moved it slowly to the bottom
and along the bottom of the box constraint. The noise is both
a result of the latency introduced by using ROS for real-time
feedback control, by the computation time of the controller,
and by inherent noise in the joint speed signal.

V. DISCUSSION

Closed-loop inverse kinematics frameworks handle local
problems rather than global problems. When given desired po-
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Fig. 16: Sensor and controller Cartesian speeds (right and left
hand side of (50)), and robot Cartesian speeds of the end-
effector. The zoomed inset at t = 36s in subfigure (b) shows
the exponential convergence to zero speed in z direction as
we try to pull the end-effector out of the box constraint.
Otherwise, the sensed and controller speeds perfectly overlap
as long as we are inside the box.

sitions far from the current position, closed-loop inverse kine-
matics may succumb to local minima. This means that they are
mid-level controllers to which a desired path may be supplied
from a high-level path planner. The model predictive controller
formulation is an attempt at bridging the gap between local
and global planning. Proper design of cost and constraint
formulations to better achieve tasks may lead to better handling
of local minima. As of yet, the model predictive approach is
significantly slower than its reactive counterparts and further
work includes investigating sequential quadratic programming
approaches with warmstart as they may have shorter execution
time than the non-warmstarted interior point method of IPOPT.
By using CasADi at the core, CASCLIK can quickly benefit
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Fig. 17: Sensor and controller angular speed (right and left
hand side of (51)), and robot angular speeds of the end-
effector. As the box constraint only considers the position of
the end-effector, not the orientation, the box constraint does
not affect the torque compliance.

from any new solver implemented in CasADi. The lack of
convexity of the constraints along the prediction horizon in the
current formulation also suggests that further work should be
done to investigate the optimality and stability of the approach.

CASCLIK is independent of the underlying representation
used to define kinematics. This allows for inspecting behavior
of different representations, but complicates programming for
the user. A more robust framework can be created by defining
the underlying representation. The choice of using arbitrary
functions is a design choice intended to allow a larger range
of scenarios and systems to be handled by CASCLIK as well
as being easier to implement. Future work includes examining
other coordinate representations and constraints.

From the input experiments we see that the controllers
have an exponential convergence to the reference signal during
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positioning, and classical compliance can be implemented in
CASCLIK for the controllers that accept velocity equality
constraints. As sensors are becoming cheaper and more avail-
able, it is important to allow for arbitrary input signals. As
the derivative of inputs are unknown, they are considered to
be zero. For input signals such as distance sensors or force
sensors, this is a false assumption and can lead to tracking
error for time varying sensor signals. Future work includes
allowing the user to provide input derivatives for CASCLIK.
These may come from speed observers, derivative filters, or
any other sources the user provides.

CASCLIK only considers control at the velocity setpoint
level. This stems from the main use-case for which the
framework was intended, industrial manipulators. In most
cases, industrial manipulators only provide joint position or
joint velocity setpoints. However, the task function approach
allows for specifying control at the acceleration or torque level
[2]. Extending CASCLIK to include acceleration resolved
controllers would allow specifying velocity constraints that
ensure convergence to the desired velocity.

Although CasADi is intended for prototyping, C code
generation is possible. This could allow for specifying tasks
and controllers with CASCLIK before deploying the controller
to an embedded system. For control from an external computer
the just-in-time compilation feature of CasADi allows for
defining quadratic problem or null-space based controllers that
can be run at ≤1 ms speeds, which can allow for employ-
ing CASCLIK on real systems. However, for industrial use-
cases and real-time sensitive systems, the authors recommend
eTaSL/eTC [7]. Many robot systems have limits on accel-
eration or jerk applied to the system, further work includes
investigating methods of implementing such constraints in
CASCLIK.

From the examples, we see that the null-space approach has
similar behavior to the optimization approaches when handling
a single set constraint with very high gain. For multiple tasks,
the null-space projection operator will cause the set-based task
priority framework to behave differently from the optimization
approaches. The optimization approaches uses slack variables
to handle multiple tasks. This moves prioritization into the
cost expression of the optimization problem and does not
allow for strict prioritization between tasks, but tuning of the
slack weight can be used to specify different behavior of the
tasks. As strict prioritization may be desired in certain cases,
future work includes creating a hybrid approach that uses the
optimization approach to define the desired control variables
for certain tasks, and the null-space projection to ensure strict
priority of other tasks.

The optimization approaches are closely related, and the
complexity of implementing them is similar. The null-space
approach requires more bookkeeping by the programmer but
generally provides controllers with shorter execution time.
Generally the execution speeds are in the order: null-space
approach, QP approach, NLP approach, and MPC approach.
Each increasing by an order of magnitude in the sequence,
depending on the horizon length of the MPC. For rapid
prototyping and large set of tasks, the compilation time may
also be of interest. As the null-space approach compiles each

separate mode, and there are 2nset modes, its compilation time
drastically increases with multiple set constraints.

The nonlinear cost example shows that the NLP and MPC
approach can improve the manipulability in cases where the
QP and null-space approach did not. Although the MPC
approach managed to find an alternative configuration that
increased the manipulability significantly, the reactive NLP
approach did not. As the manipulability cost can be added
to the QP formulation via Taylor expansion of the cost as in
[35], the NLP approach may not be as beneficial as initially
expected.

VI. CONCLUSION

In this paper, CASCLIK, a rapid prototyping framework for
multiple task-based closed-loop inverse kinematics controllers
is presented. It translates tasks into quadratic, nonlinear, or
model predictive optimization problems that can be solved
with CasADi. Tasks are formulated as constraints, and multiple
tasks can be achieved simultaneously.

CASCLIK also provides a CasADi based implementation of
the set-based task priority inverse kinematics framework. The
paper includes a novel multidimensional formulation of the
in tangent cone function such that the set-based task prior-
ity framework can support multidimensional set constraints.
The results show that the multidimensional set constraint
formulation can give a better representation of the desired
behavior than when a multidimensional set constraint is split
into multiple one dimensional constraints.
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