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CLASSIFICATION OF UNIFORM FLAG TRIANGULATIONS OF THE

LEGENDRE POLYTOPE

RICHARD EHRENBORG, GÁBOR HETYEI AND MARGARET READDY

Abstract. The Legendre polytope is the convex hull of all pairwise differences of the standard basis
vectors. It is also known as the full root polytope of type A. We completely classify all flag triangula-
tions of this polytope that are uniform in the sense that the edges may be described as a function of
the relative order of the indices of the four basis vectors involved. These triangulations fall naturally
into three classes: the lex class, the revlex class and the Simion class. We also determine that the
refined face counts of these triangulations only depend on the class of the triangulations. The refined
face generating functions are expressed in terms of the Catalan and Delannoy generating functions and
the modified Bessel function of the first kind.

1. Introduction

Triangulations of root polytopes and of products of simplices have been a subject of intense study
in recent years [2, 5, 6, 7, 13]. Motivated by an observation made in [9], we recently [11] established
that the Simion type B associahedron [19] may be realized as a pulling triangulation of the Legendre
polytope, defined as the convex hull of all differences of pairs of standard basis vectors in Euclidean
space. These vertices can be thought of as arrows between numbered nodes. We also showed that
all pulling triangulations are flag. The Legendre polytope is the centrally symmetric variant of the
type A root polytope whose lexicographic and revlex triangulations were studied by Gelfand, Graev
and Postnikov [13]. A question naturally arises: Are there other reasonably uniform triangulations of
the Legendre polytope?

In this paper we fully answer this question. We classify all flag triangulations that are uniform in
the sense that the flag condition depends only on the relative order on the numbering of the basis
vectors involved. The key tool we use is a characterization of triangulations of a product of simplices
given by Oh and Yoo [16, 17] in terms of matching ensembles. We determine that there are three
classes of triangulations: variants of the lexicographic pulling triangulation, variants of the revlex
pulling triangulation, and variants of the triangulation representing the Simion type B associahedron.

It is known that all triangulations of the boundary of the Legendre polytope have the same face
numbers. For pulling triangulations, this was shown in [14]. For general triangulations it may be

Date: January 23, 2019.
2000 Mathematics Subject Classification. Primary 52B05, 52B12, Secondary 05A15, 05E45.
Key words and phrases. Bessel function; Catalan number; Cyclohedron; Delannoy number; Face vector; Flag complex;

Matching ensemble; Type B associahedron.

1

http://arxiv.org/abs/1901.07113v1
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shown by generalizing the argument in [14] and using the fact that all triangulations of a product of
simplices have the same face numbers [17, Lemma 2.3].

To distinguish between the three major classes of uniform flag triangulations, we introduce a refined
face count which keeps track of the number of forward and backward arrows in each face. Surprisingly
we find that the refined face count of a triangulation only depends on which class it belongs to,
regardless how we fix the number of forward and backward arrows. For the Simion class the generating
function for Catalan numbers and weighted generalizations of the Delannoy numbers play a crucial
role in the refined face count. For the revlex class different weighted generalizations of the Delannoy
numbers and modified Bessel functions of the first kind play the important role. Finally for the lex
class, the Catalan numbers play the essential role.

Our paper is structured as follows. In Section 3 we state our main classification theorem and prove
the sufficiency part. The necessity part is in Section 4. In Section 5 we outline that all triangulations
that we consider are actually pairwise non-isomorphic. Results facilitating the refined face count in
all cases are presented in Section 6. The actual refined face count appears in Sections 7, 8 and 9,
respectively. We end the paper with concluding remarks.

2. Preliminaries

2.1. The Legendre polytope. The Legendre polytope Pn is the convex hull of the n(n+ 1) vertices
ej − ei where i 6= j and {e1, e2, . . . , en+1} is the orthonormal basis of the Euclidean space R

n+1. This
polytope was first studied by Cho [8], and it is called the “full” type A root polytope in the work
of Ardila, Beck, Hoşten, Pfeifle and Seashore [2]. The name Legendre polytope [14] is motivated
by the fact that the polynomial

∑n
j=0 fj−1 · ((x − 1)/2)j is the nth Legendre polynomial, where fi

is the number of i-dimensional faces in any pulling triangulation of the boundary of Pn. Another
way to view the Legendre polytope is to intersect the hyperplane x1 + x2 + · · · + xn+1 = 0 with the
(n+1)-dimensional cross-polytope formed by the convex hull of the vertices ±2e1, ±2e2, . . ., ±2en+1.

The Legendre polytope Pn contains the root polytope P+
n , defined as the convex hull of the origin

and the set of points ej − ei, where i < j. The polytope P+
n was first studied by Gelfand, Graev

and Postnikov [13] and later by Postnikov [18]. Many properties of the Legendre polytope Pn are
straightforward generalizations of the properties of the root polytope P+

n .

We use the shorthand notation (i, j) for the vertex ej − ei of the Legendre polytope Pn. We may
think of these vertices as the set of all directed nonloop edges on the vertex set {1, 2, . . . , n + 1}. To
avoid confusion between edges and vertices of the Legendre polytope, we will refer to the vertices of Pn

as arrows. The root polytope P+
n is then the convex hull of the origin and of the forward arrows.

Suppressing the orientation, we arrive at the edges representing vertices in the work of Gelfand, Graev
and Postnikov [13].

A subset of arrows is contained in some face of Pn exactly when there is no i ∈ {1, 2, . . . , n+1} that
is both the head and the tail of an arrow; see [14, Lemmas 4.2 and 4.4]. Equivalently, the faces are
products of two simplices [11, Lemma 2.2]: we may write them as ∆I ×∆J where I, J 6= ∅, I ∩ J = ∅
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and the symbol ∆K denotes the convex hull of the set {ei : i ∈ K} for K ⊆ {1, 2, . . . , n + 1}. The
analogous observations regarding the faces of the root polytope P+

n that do not contain the origin
may be found in [13] where the sets of edges (forward arrows in our terminology) representing vertices
contained in a proper face are called admissible. Facets of Pn are exactly the faces ∆I × ∆J where
the disjoint union of I and J is {1, 2, . . . , n + 1}. The edges of Pn are of the form ∆I × ∆J where
{|I|, |J |} = {1, 2}. The two-dimensional faces ∆I ×∆J of Pn are either squares when |I| = |J | = 2 or
triangles when {|I|, |J |} = {1, 3}.

Affine independent subsets of vertices of faces of the Legendre polytope are described as follows. A
set S = {(i1, j1), (i2, j2), . . . , (ik, jk)} is a (k − 1)-dimensional simplex if and only if, disregarding the
orientation of the directed edges, the set S contains no cycle, that is, it is a forest [14, Lemma 2.4].
The analogous observations were made for the root polytope P+

n in [13] and for products of simplices
in [10, Lemma 6.2.8] (see also [5, Lemma 2.1]).

In a recent paper [11], the authors have shown that the Simion type B associahedron [19] is com-
binatorially equivalent to a pulling triangulation of the boundary of the Legendre polytope. For an
exact definition of a pulling triangulation we refer the reader to [11]. Here we only point out the
following key observation [11, Theorem 3.1]. Recall that a simplicial complex is flag if the minimial
non-faces have cardinality 2.

Theorem 2.1. Every pulling triangulation of the boundary of the Legendre polytope Pn is flag.

Thus the triangulation giving rise to a combinatorial equivalent of the Simion type B associahedron
is completely determined by the rules given in the associated column of Table 1.

The last two columns in Table 1 are the analogous rules for two other pulling triangulations of
the boundary of the Legendre polytope Pn, also discussed in [11]. These are the lexicographic (lex)
and revlex pulling orders. Their restriction to the root polytope P+

n are called the antistandard,
respectively, standard triangulations in [13]. The terminology we use in [11] was introduced in [14],
where it was observed that these are pulling triangulations. (These pulling triangulations are not to be
confused with the terms “lexicographic triangulation” and “reverse lexicographic triangulation” used
in [21] where the first is a placing triangulation, and only the second is a true pulling triangulation.)
The lexicographic pulling order was also studied in [2]. The reader may take Table 1 as a definition
of these flag complexes. We obtain an independent verification of the fact that these rules yield
triangulations of the boundary ∂Pn of the Legendre polytope. However, our results in this paper also
apply to the twelve other variants of these triangulations.

2.2. Characterizing triangulations of ∆a−1 ×∆b−1 via matching ensembles. Our key tool to
verify that the flag complexes we define triangulate the boundary of the Legendre polytope Pn is
the characterization of the triangulations of the Cartesian product ∆a−1 × ∆b−1 given by Oh and
Yoo [16, 17]. See also [5]. We identify the vertices of ∆a−1 × ∆b−1 with edges in the complete
bipartite graph Ka,b, whose vertex set is {1, 2, . . . , a} ⊎ {1, 2, . . . , b}, and call this the bipartite graph
representation of ∆a−1×∆b−1. By [10, Lemma 6.2.8] a set of affine independent vertices of ∆a−1×∆b−1

corresponds to a forest in the bipartite graph representation, and maximal affine independent sets
correspond to trees. Facets of a triangulation of ∆a−1 ×∆b−1 thus correspond to spanning trees. The
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Type Order of nodes Type B Lexicographic Revlex
associahedron pulling pulling

THTH i1 < j1 < i2 < j2 i1 j1 i2 j2 i1 j1 i2 j2 i1 j1 i2 j2

HTHT j1 < i1 < j2 < i2 j1 i1 j2 i2 j1 i1 j2 i2 j1 i1 j2 i2

THHT i1 < j1 < j2 < i2 i1 j1 j2 i2 i1 j1 j2 i2 i1 j1 j2 i2

HTTH j1 < i1 < i2 < j2 j1 i1 i2 j2 j1 i1 i2 j2 j1 i1 i2 j2

TTHH i1 < i2 < j1 < j2 i1 i2 j1 j2 i1 i2 j1 j2 i1 i2 j1 j2

HHTT j1 < j2 < i1 < i2 j1 j2 i1 i2 j1 j2 i1 i2 j1 j2 i1 i2

Table 1. Pairs of arrows that are edges in three triangulations of the boundary ∂Pn

of the Legendre polytope.

results of Oh and Yoo characterize those sets of spanning trees that correspond to a triangulation of
∆a−1 ×∆b−1.

Definition 2.2. A family M of matchings of Ka,b is a matching ensemble if it satisfies the following
three axioms:

Support axiom: For I ⊆ {1, 2, . . . , a} and J ⊆ {1, 2, . . . , b} with |I| = |J | there is a unique
matching in M that matches the elements of I with the elements of J in the subgraph induced
by I ⊎ J of Ka,b.

Closure axiom: Any subset of a matching in M is also a matching in M.
Linkage axiom: If m is a non-empty matching in M and v is any vertex of Ka,b not incident

to any edge of m then there is an edge e ∈ m and there is an edge e′ 6∈ m incident to v such
that the resulting matching m′ = (m− e) ∪ e′ also belongs to M.

For T a spanning tree of Ka,b define φ(T ) to be the set of all matchings contained in the edges of
the tree T . Extend this notion to families of spanning trees by defining

Φ(T ) =
⋃

T∈T

φ(T ).

S. Oh and H. Yoo proved the following result [17, Theorem 5.4].

Theorem 2.3 (Oh–Yoo). The function Φ is a bijection between families of spanning trees representing
triangulations of ∆a−1 ×∆b−1 and matching ensembles of the bipartite graph Ka,b.
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Ceballos, Padrol and Sarmiento [6, Lemma 2.5] explicitly describe the inverse Φ−1.

Lemma 2.4 (Ceballos–Padrol–Sarmiento). Given a matching ensemble M on Ka,b, the spanning
tree T of Ka,b belongs to Φ−1(M) if and only if for each matching m ∈ M, there is no cycle in T ∪m
that alternates between T and m.

Closely related to this result is the following lemma, essentially due to Postnikov; see Lemma 12.6
in [18]. Although Postnikov originally made the statement in the case of spanning trees, the proof
carries over with very little modification to the case of forests. Recall that for a forest F in Ka,b we
denote ∆F to be simplex in ∆a−1 ×∆b−1 whose vertices correspond to the edges of the forest.

Lemma 2.5 (Postnikov). Let F and F ′ be two forests in the bipartite graph Ka,b. The intersection
of the two simplices ∆F ∩ ∆F ′ is either empty or a simplex represented by a set of edges of Ka,b if
and only if the graph F ∪F ′ does not contain a cycle of length greater than or equal to 4 in which the
edges alternate between F and F ′.

Proof. The proof of the necessity is exactly the same as for spanning trees. If there is a cycle
(i1, j1, i2, j2, . . . , ik, jk) such that

{{i1, j1}, {i2, j2}, . . . , {ik, jk}} ⊆ F and {{i1, jk}, {i2, j1}, . . . , {ik, jk−1}} ⊆ F ′

then the point 1/k ·∑k
s=1(eis−ejs) belongs to the intersection ∆F ∩∆F ′, but all vertices of the smallest

dimensional faces of the two simplices containing the point do not belong to the intersection. To prove
the converse, we only need to add one sentence to Postnikov’s proof. Direct all edges {i, j} ∈ F \ F ′

from i to j and direct all edges {i, j} ∈ F ′ \F from j to i. The resulting set U(F,F ′) of directed edges
is acyclic. We select a height function that is constant on the connected components of F ∩ F ′ and
increases along the directed edges in U(F,F ′) joining two connected components of F ∩ F ′. Since we
started with forests instead of spanning trees, the resulting height function is still undefined on those
nodes that are not incident to any edge in the union F ∪F ′. For these, we select the height to be the
same constant selected to be less than any of the already defined values. �

3. Classifying uniform flag triangulations of the Legendre polytope

3.1. Uniform triangulations and their classification. A common property of all three flag com-
plexes described in Table 1 is that the edges are defined in a uniform fashion. We make this clear in
the following definition. First, let Vn be the vertex set defined by

Vn = {(i, j) : 1 ≤ i, j ≤ n+ 1, i 6= j}.
Definition 3.1. A flag simplicial complex △n on the vertex set Vn is a uniform flag complex if
determining whether or not a pair of vertices {(i1, j1), (i2, j2)} forms an edge depends only on the
equalities and inequalities between the values of i1, i2, j1 and j2.

We begin with the necessary conditions for describing uniform flag triangulations. To facilitate
making statements, we introduce some new terminology and notation. We use the letter T to mark
the tail of each arrow and the letter H to mark the head. For each pair of arrows on four nodes, we
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will indicate the relative order of the two heads and two tails by writing down the appropriate letters
left to right in the order as they occur. We will refer to the resulting word as the type of the pair of
arrows. After that we will simply state in words the condition that a pair of arrows of a given type
must satisfy to be an edge of the triangulation. Examples of this convention are given in Table 1.

The main classification result in this paper is the following.

Theorem 3.2. Let △n be a uniform flag complex on the vertex set Vn for some n ≥ 5 that satisfies
the necessary conditions stated in Proposition 3.4. Then the complex △n represents a triangulation
of the boundary ∂Pn of the Legendre polytope if and only if it satisfies exactly one of the following
conditions:

(1) Both THTH and HTHT types of pairs of arrows do not nest, and both HTTH and THHT
types of arrows do not cross.

(2) Both THTH and HTHT types of pairs of arrows nest, and both HTTH and THHT types of
arrows cross.

(3) Exactly one of the THTH and HTHT types of pairs of arrows nest. Furthermore, if both
THHT and HTTH types of pairs cross then both TTHH and HHTT types of pairs nest.

The three classes in listed in Theorem 3.2 are pairwise mutually exclusive. We name them as follows,
and give brief motivations why.

(1) This class contains the triangulation obtained by the lexicographic pulling order of the Le-
gendre polytope and hence is named the lex class.

(2) This class contains the triangulation obtained by the revlex pulling order of the Legendre
polytope and hence is named the revlex class.

(3) This class contains the Simion type B associahedron and hence is called the Simion class.
Furthermore, we subdivide this class into the three subclasses, the Simion subclass of types a
through c, according to:
(a) Both THHT and HTTH types of pairs do not cross.
(b) Exactly one of the THHT and HTTH types of pairs cross.
(c) Both THHT and HTTH types of pairs cross, and both TTHH and HHTT types of

pairs nest.

In Subsection 3.2 we prove the necessity part of Theorem 3.2 in Propositions 3.6 through 3.8.
The sufficiency part of Theorem 3.2 is proved Section 4. The main tool for proving these results is
Theorem 3.5 which gives necessary and sufficient conditions for a simplicial complex on the vertex
set Vn to be a triangulation of the boundary ∂Pn of the Legendre polytope. These conditions, called
the support and the linkage axioms, are based upon Definition 2.2.

We end this subsection by introducing two commuting operations on triangulations. Let △n be a
uniform flag complex on the vertex set Vn. Let the dual triangulation △∗

n be the triangulation obtained
by reversing all the arrows. Let the reflected dual triangulation △n be the triangulation obtained by
reversing all the arrows and replacing node i with n+ 2− i.
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△ △∗ △ △ △∗ △

T H T H H T H T T H T H T H T H H T H T T H T H

H T H T T H T H H T H T H T H T T H T H H T H T

T H H T H T T H H T T H T H H T H T T H H T T H

H T T H T H H T T H H T H T T H T H H T T H H T

H H T T T T H H H H T T H H T T T T H H H H T T

T T H H H H T T T T H H T T H H H H T T T T H H

Table 2. The action of the two involutions △ 7−→ △∗ and △ 7−→ △.

Lemma 3.3. Let △n be a uniform flag complex on the vertex set Vn. Then the uniform flag complexes
△n and △∗

n belong to the same (sub)class. Furthermore, the conditions on the types THTH, HTHT ,
TTHH and HHTT stay invariant under the involution △n 7−→ △n, whereas the condition on the
types THHT and HTTH switches.

Proof. See Table 2. �

3.2. Necessary conditions for uniform flag complex. We now state necessary conditions for a
uniform flag complex to represent a triangulation of the boundary ∂Pn of the Legendre polytope.

Proposition 3.4. Let △n be a uniform flag complex on the vertex set Vn where each vertex (i, j) ∈ Vn
is identified with the vertex ej − ei of the Legendre polytope Pn. If the complex △n represents a
triangulation of the boundary ∂Pn of the Legendre polytope then it satisfies the following criteria:

(1) There is no edge of the form {(i, j), (j, k)} in the complex △n.
(2) For each three-element subset {i, j, k} of {1, 2, . . . , n + 1}, the two sets {(i, j), (i, k)} and

{(j, i), (k, i)} are edges in the complex △n.
(3) For each four-element subset {i1, i2, j1, j2} of {1, 2, . . . , n + 1}, exactly one of the two sets

{(i1, j1), (i2, j2)} and {(i1, j2), (i2, j1)} is an edge in the complex △n.

Proof. Condition (1) is equivalent to requiring that the faces of the flag complex represent affine
independent vertex sets. Condition (2) is necessary to make sure that the 2-dimensional triangular
faces of Pn belong to the triangulation. Condition (3) is necessary to ensure that each 2-dimensional
square face is subdivided into two triangles by a diagonal. �
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Condition (2) and the fact that the complex △n is a flag complex imply that for two disjoint subsets
I and J such that |I| = 3 and |J | = 1 that the set I × J forms a 2-dimensional face (triangle) of △n.
Similarly, J × I is also a triangular face of the complex △n.

The next result is essential for proving the necessary and sufficient conditions in Theorem 3.2.

Theorem 3.5. Let △n be a uniform flag complex on the vertex set Vn satisfying the conditions of
Proposition 3.4. Let M be the family of all faces that are matchings, that is, let

M = {{(i1, j1), (i2, j2), . . . , (ik, jk)} ∈ △n : |{i1, j1, i2, j2, . . . , ik, jk}| = 2k}.
Identify each vertex (i, j) with the vertex ej − ei of the Legendre polytope. Then the complex △n

represents a triangulation of the boundary ∂Pn of the Legendre polytope if and only if the family of
matchings M satisfies the following two properties:

(SA) For two disjoint subsets I, J ⊂ {1, 2, . . . , n + 1} satisfying |I| = |J | there is a unique σ ∈ M
such that σ ⊆ I × J and |σ| = |I|;

(LA) Assume I and J are disjoint subsets of {1, 2, . . . , n + 1}. Let σ be a non-empty matching
in M such that σ ⊆ I × J . Then for each k 6∈ I ∪ J there is an edge (i, j) ∈ σ such that
(σ − {(i, j)}) ∪ {(k, j)} ∈ M. Also, for each k 6∈ I ∪ J there is an edge (i, j) ∈ σ such that
(σ − {(i, j)}) ∪ {(i, k)} ∈ M.

Proof. The conditions stated in Proposition 3.4 imply that each face of △n represents a subset of a
proper face ∆I×∆J of the Legendre polytope Pn, where I and J are disjoint subsets of {1, 2, . . . , n+1}.
Under these conditions △n represents a triangulation of ∂Pn if and only if for each pair (I, J) of disjoint
nonempty subsets of {1, 2, . . . , n + 1} the set of faces whose vertices are contained in I × J represent
a triangulation of the face ∆I ×∆J of Pn. Property (SA) is equivalent to the support axiom in the
definition of a matching ensemble, while property (LA) is equivalent to the linkage axiom. The closure
axiom is an immediate consequence of the fact that a subset of a face is a face in a simplicial complex.
By Theorem 2.3 the family of matchings M must satisfy the stated axioms.

To prove the converse, assume that M satisfies the stated axioms and let I and J be an arbitrary
pair of nonempty disjoint subsets of {1, 2, . . . , n + 1}. Then the restriction M| I×J of M to I × J ,
i.e., the set of matchings contained in M whose elements belong to I × J , is a matching ensemble.
By Theorem 2.3 there is a triangulation △(I, J) of ∆I ×∆J corresponding to this matching ensemble
for which the elements of M| I×J are the matchings of the complete bipartite graph KI,J contained
in the spanning trees representing the facets of △(I, J). It suffices to show that △(I, J) is the family
△n| I×J of faces of △n whose vertices are contained in I × J .

Assume, by way of contradiction, that the two simplicial complexes △(I, J) and △n| I×J differ. If
there is a face σ of △(I, J) that does not belong to △n| I×J then (the vertex sets being equal) this
face σ also contains an edge {(i1, j1), (i2, j2)} that does not belong to △n| I×J , since △n| I×J is a flag
complex which would contain σ if it contained all of its edges. By part (2) of Proposition 3.4 the set
{i1, j1, i2, j2} must have four distinct elements, and by part (3) of the same proposition we must have
{(i1, j2), (i2, j1)} ∈ △n| I×J . By the definition of M we have {(i1, j2), (i2, j1)} ∈ M| I×J and by our
assumption we also have {(i1, j1), (i2, j2)} ∈ M| I×J . This violates the uniqueness part of the support
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T H T H & H T H T =⇒ T H H T & H T T H

Figure 1. A graphical representation of Proposition 3.6.

axiom (SA) for the pair of subsets ({i1, i2}, {j1, j2}). Hence △(I, J) is contained in △n| I×J , that is,
△(I, J) ⊆ △n| I×J .

We are left with the possibility of having a face σ in △n| I×J that does not belong to △(I, J). After
adding a few more vertices, if necessary, we may assume that this face σ is a facet of △n| I×J . The ver-
tices of the facet σ are arrows from I to J which, disregarding their orientation, must form a forest. If
some arrows of σ form a cycle {{i1, j1}, {i2, j1}, {i2, j2}, . . . , {ik, jk}, {i1, jk}} then the uniqueness part
of the support axiom (SA) is violated for the pair of sets ({i1, i2, . . . , ik}, {j1, j2, . . . , jk}), since both
{(i1, j1), (i2, j2), . . . , (ik, jk)} and {(i1, jk), (i2, j1), . . . , (ik, jk−1)} belong to M. Consider the centroid
1/|σ| ·∑(i,j)∈σ(ej − ei) of the face of Pn represented by σ. This point belongs to some facet ∆T of the

triangulation △(I, J). Here T is the spanning tree of KI,J representing the facet. All vertices of σ can-
not be represented by edges belonging to T , for otherwise σ belongs to △(I, J). Hence, by Lemma 2.5
there is a cycle (i1, j1, i2, j2, . . . , ik, jk) in KI,J such that the matching {(i1, j1), (i2, j2), . . . , (ik, jk)}
belongs to T and the matching {(i1, jk), (i2, j1), . . . , (ik, jk−1)} belongs to σ. Both matchings belong
to M, and we have reached a contradiction with Lemma 2.4. �

We now begin to obtain the necessary conditions.

Proposition 3.6. Let △n be a uniform flag complex on the vertex set Vn representing a triangulation
of the boundary ∂Pn of the Legendre polytope for n ≥ 4. Assume that pairs of arrows of types THTH
and HTHT do not nest in the triangulation △n. Then pairs of arrows of types HTTH and THHT
do not cross in the triangulation △n.

Proof. Assume by way of contradiction, that HTTH type pairs of arrows cross in △n. Hence the edge
σ = {(2, 5), (4, 1)} is in the triangulation △n. Now let k = 3 and apply the linkage axiom (LA) in
Theorem 3.5. We obtain either the edge {(2, 5), (4, 3)} or {(2, 3), (4, 1)}, contradicting the assumed
condition on THTH or HTHT . The second conclusion follows by reversing all the arrows in the
proof. �

The next necessary condition is completely analogous to that of Proposition 3.6.

Proposition 3.7. Let △n be a uniform flag complex on the vertex set Vn representing a triangulation
of the boundary ∂Pn of the Legendre polytope for n ≥ 4. Assume that pairs of arrows of the types
THTH and HTHT nest in the triangulation △n. Then pairs of arrows of types HTTH and THHT
cross in the triangulation △n.

Proof. The proof is completely analogous to the proof of Proposition 3.6, but this time use the edge
σ = {(2, 1), (4, 5)} in △n. �
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T H T H & H T H T =⇒ T H H T & H T T H

Figure 2. A graphical representation of Proposition 3.7.

T H T H & H T H T & T H H T & H T T H

=⇒

T T H H & H H T T

Figure 3. A graphical representation of the first case of Proposition 3.8.

Proposition 3.8. Let △n be a uniform flag complex on the vertex set Vn representing a triangulation
of the boundary ∂Pn of the Legendre polytope for n ≥ 5. Assume exactly one of the THTH and
HTHT type of pairs of arrows nest, and the other type does not nest. Also assume that both THHT
and HTTH type of pairs of arrows cross. Then both TTHH and HHTT type of pairs nest.

Proof. Without loss of generality we may assume that THTH type of arrows nest and HTHT type of
pairs do not nest; the opposite case may be dealt with by reversing all arrows. Assume that HHTT
type of arrows cross and observe that both {(2, 1), (4, 3), (6, 5)} and {(2, 5), (4, 1), (6, 3)} form faces in
the triangulation △n. Note that this contradicts the support axiom (SA) in Theorem 3.5 and thus
HHTT type of arrows must nest. A similar contradiction may be reached when TTHH type of arrows
cross, by considering the faces {(1, 6), (3, 2), (5, 4)} and {(1, 4), (3, 6), (5, 2)}. �

We conclude this section by an observation that we will frequently use in our proofs in the situations
when we need to consider only forward arrows or only backward arrows.

Theorem 3.9. Let △n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4, and the condition that THTH type of pairs of arrows do not
nest. Then the restriction △+

n of △n to the set of forward arrows represents a triangulation of the
union of those boundary facets of the polytope P+

n that do not contain the origin.

Proof. Since all the arrows are forward arrows and any non-incident pair of such arrows is of the
type TTHH or THTH, the face structure of △+

n depends on the rules associated with TTHH
and THTH. If such arrow pairs cross then the faces of any △+

n | I×J are all sets of forward arrows
{(i1, j1), (i2, j2), . . . , (ik, jk)} where i1 < i2 < · · · < ik and j1 < j2 < · · · < jk hold. If such pairs
of arrows nest then the faces of △n| I×J are all sets of forward arrows {(i1, j1), (i2, j2), . . . , (ik, jk)}
such that i1 < i2 < · · · < ik and j1 > j2 > · · · > jk hold. In other words, we obtain the well-known
lexicographic and revlex pulling triangulations of P+

n . �
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4. Verifying the sufficiency part of the classification

In this section we show that any uniform flag complex △n on Vn that satisfies one of the sets of
criteria listed in Theorem 3.2 represents a triangulation of the boundary ∂Pn of the Legendre polytope.
We do this by verifying in each case that the support and linkage axioms of Theorem 3.5 are satisfied.

To verify the support axiom (SA), we will list the elements of the disjoint union I ∪ J in order,
marking each element of I with a T (tail) and each element of J with a H (head). Thus we obtain
a word containing the same number of letters T and H. We also associate to each tail an up (1, 1)
step, and to each head a down (1,−1) step. These steps yield a lattice path starting at the origin and
ending on the x-axis. We will describe the unique matching contained in △n whose tail set is I and
head set is J in terms of this associated TH-word and associated lattice path.

During the verification of the support axiom (SA) we will often treat forward and backward arrows
separately. This separation leads to considering special associated TH-words and lattice paths.

Definition 4.1. We call a lattice path consisting of up (1, 1) steps and down (1,−1) steps a lower
(upper) Dyck path if it starts and ends on the x-axis and never goes above (below) the x-axis. We call
a TH-word a lower (upper) Dyck word if replacing each T with an up step and each H with a down
step results in a lower (upper) Dyck path.

The following lemma is straightforward.

Lemma 4.2. For any uniform flag complex on Vn and any face σ ⊂ Vn that is a matching and consists
of backward arrows only the lattice path associated to the tail set I and head set J is a lower Dyck path.

Indeed, at any stage the number of tails listed cannot exceed the number of heads listed. The next
lemma is a partial converse of Lemma 4.2.

Lemma 4.3. Let △n be a uniform flag complex on Vn that satisfies the necessary conditions stated
in Theorem 3.2 and has the property that HTHT type of pairs of arrows do not nest. Let I and J be
two sets satisfying I, J ⊂ {1, 2, . . . , n + 1}, I ∩ J = ∅ and |I| = |J | 6= 0. Assume that the TH-word w
associated with the two sets I and J is a lower Dyck word. Then there is a unique matching contained
in △n that matches I to J . Furthermore, this matching consists of backward arrows only.

Proof. First we show that no matching from I to J contains a forward arrow. Assume by way of
contradiction that there is a smallest counterexample to this statement, and let (i, j) be the forward
arrow with the smallest tail i in such an example. The associated lattice path must start with a down
step, hence the least element of I ∪ J is a head j1, the head of a backward arrow (i1, j1). If i1 < i
holds then the removal of the arrow (i1, j1) yields a smaller counterexample, in contradiction with our
assumption of minimality. We cannot have i1 > j either as HTHT type of pairs of arrows do not
nest. Hence we have j1 < i < i1 < j and HTTH type of pairs of arrows cross. The same reasoning
may be repeated for any backward arrow whose head is to the left of i: the tails of these arrows are
all between i and j, in particular no tail of a backward arrow is to the left of i. By the choice of i,
there is no tail of a forward arrow to the left of i either: the first up step in the associated lattice
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path is contributed by the tail i. Hence i is preceded by k ≥ 1 heads: j1, j2, . . . , jk, and the tails
i1, i2, . . . , ik of these backward arrows all occur before j. The associated lattice path goes above the
x-axis before the down step associated to j unless there is a backward arrow (i′, j′) whose head j′

occurs before j, while i′ occurs only after it. The pair {(i, j), (i′ , j′)} is a crossing THHT type of
pair of arrows. Since both THHT and HTTH type of pairs cross, the complex △n cannot belong to
the lex class. It cannot belong to the revlex class either because HTHT type of pairs of arrows do
not nest by our assumption. We are left with the possibility that HTHT type of pairs do not nest
and THTH type of pairs nest. By Proposition 3.8 HHTT type of pairs nest. As a consequence no
backward arrow (i′, j′) satisfying j′ < j < i′ can cross any arrow (is, js) satisfying js < i < is < j.
But then the associated lattice path goes above the x-axis at the step associated to max(i1, i2, . . . , ik)
and we obtain a contradiction.

Having established that no matching can contain a forward arrow, we may show the existence of a
unique matching by induction. Regardless on the condition on the HHTT type of pairs of arrows, the
first step of the associated lattice path is a down step, corresponding to a head j1. We only need to
show that there is a unique way to identify the tail i1 of this arrow, and that the removal of the steps
associated to j1 and i1 results in a lattice path that does not go above the horizontal axis. In the case
when HHTT type of pairs nest, i1 must be the tail marking the first return to the horizontal axis,
because all arrows whose head is between j1 and i1 must also have their tail in the same interval as
backward arrows cannot cross. The removal of the first down step and the first return to the x-axis
yields a lattice path that does not go above the x-axis. Finally, in the case when HHTT type of pairs
cross, i1 must be the least tail, marking the first up step, as any back arrow whose tail precedes i1
would form a HHTT type of nesting pair with (i1, j1). The removal of the first up step and the first
down step yields once again a lattice path that does not go above the x-axis. �

Remark 4.4. The proof of Lemma 4.3 defines the matchings induced by the associated lattice paths
in a recursive fashion, but it is not difficult to prove the following explicit rules by induction:

(1) If HHTT type of arrows nest then each head j, representing a down step, is matched to the
tail i representing the first return to the same level.

(2) If HHTT type of arrows cross then the kth head in the left to right order is matched to the
kth tail in the left to right order.

(3) In either case, each head j is matched to a tail i in such a way that there is no return to the
x-axis strictly between the down step associated to j and the up step associated to i.

Lemma 4.5. Assume the same conditions hold as in Lemma 4.3, but with the extra condition that
the associated word w factors as a product of two lower Dyck words w1 and w2. Then the matching
as a graph is a disjoint union of the two matchings for w1, respectively w2.

Proof. The matching obtained by taking the union of the two matchings for w1, respectively w2,
satisfies all the conditions. Hence by uniqueness the result follows. �

Remark 4.6. We will use Lemmas 4.2 and 4.3 for backward arrows most of the time, but the reader
should note that the dual statements, for forward arrows and associated lattice paths being upper
Dyck paths, also hold.
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These lemmas were about the case when THTH type of arrows do not nest. We will consider the
case when they nest in the dual form below.

Lemma 4.7. Let △n be a uniform flag complex on Vn that satisfies the necessary conditions stated in
Theorem 3.2 and has the property that HTHT type of pairs of arrows nest. Let I and J be two sets
satisfying I, J ⊂ {1, 2, . . . , n+ 1}, I ∩ J = ∅ and |I| = |J | 6= 0. There is a matching in △n consisting
of forward arrows only that matches I to J if and only if every tail precedes every head, that is, i < j
holds for all i ∈ I and j ∈ J . Furthermore, if every tail precedes every head in I ∪J then the matching
contained in △n that matches I to J is unique.

Proof. It is a direct consequence of the condition on THTH type of pairs of arrows that all tails
must precede all heads in every face that consists of forward arrows only. Conversely assume that
I = {i1, i2, . . . , ik} and J = {j1, j2, . . . , jk} satisfy i1 < i2 < · · · < ik and ik < j for all j ∈ J . Clearly,
any arrow whose tail is in I and whose head is in J is a forward arrow. Any pair of such arrows is a
TTHH type of pair. Hence the only matching contained in △n is {(i1, j1), (i2, j2), . . . , (ik, jk)} where
j1 < j2 < · · · < jk holds if TTHH type of pairs cross and j1 > j2 > · · · > jk holds when TTHH type
of pairs nest. �

The verification of the linkage axiom (LA) is facilitated by the following observations.

Lemma 4.8. Let △n be any uniform flag complex on Vn satisfying the conditions stated in Proposi-
tion 3.4. Then the complex △n satisfies the relevant part of the linkage axiom (LA) when k is inserted
as a tail and there exist i ∈ I such that there is no element of I ∪J strictly between k and i. Similarly,
when k is inserted as a head and there exist j ∈ J such that there is no element of I ∪ J strictly
between k and j, the linkage axiom is satisfied.

In other words, if we insert a new tail in position k next to a tail, then we may extend the arrow
containing the old tail to contain the new tail instead. A similar observation can be made about
inserting a new head. We only need to verify the linkage axiom (LA) in the cases when a new head
is inserted between two tails (or as the least or largest node, next to a tail), and when a new tail is
inserted between two heads (or as the least or largest node, next to a head).

Lemma 4.9. Let △n be any uniform flag complex on Vn satisfying the necessary conditions stated
in Theorem 3.2, and that HTHT type of arrows do not nest. Let I and J be two sets satisfying
I, J ⊂ {1, 2, . . . , n + 1}, I ∩ J = ∅, and |I| = |J | 6= 0. Assume that TH-word associated with the two
sets I and J is a lower Dyck word. If k > min(I ∪ J) is inserted as a tail or k < max(I ∪ J) and k is
inserted as a head, then the relevant part of the linkage axiom is verified in such a way that the new
arrow is also a backward arrow.

Proof. By symmetry, it is enough to consider the case when k is inserted as a tail. By Lemma 4.8 we
can assume that k is inserted after head j of an arrow (i, j). If HHTT type of pairs nest then we
match j to k and we remove the tail i. Note that the new arrow does not introduce any crossings. If
HHTT type of pairs cross then consider the least tail i′ > k, which is the tail of an arrow (i′, j′). Note
that j′ ≤ j since otherwise there would be two nesting backward arrows. Match k to j′ and remove
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the tail i′. By Remark 4.4 part (2), it is straightforward to see that we obtain a matching belonging
to △n. Note that in both cases, all the new arrows are backward arrows. �

4.1. The lex class. In this subsection we show that all four triangulations in the lex class are possible.

Theorem 4.10. Let △n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4 and has the property that both THTH and HTHT types of arrows
do not nest. Then the complex △n represents a triangulation of the boundary ∂Pn of the Legendre
polytope.

Proof. We begin by observing that Proposition 3.6 implies that THHT and HTTH types of arrows
do not cross. Next we verify the support and linkage axioms of Theorem 3.5.

To verify the support axiom (SA), mark maximal runs of the associated lattice path that are above
the x-axis with forward arrows. Similarly, mark the maximal runs of the lattice path that are below
the x-axis with backward arrows. The fact that no end of a forward arrow can occur between the head
and tail of a backward arrow follows from the fact that arrows of opposite direction neither cross nor
nest. By the same reason no tail of a backward arrow can occur between the head and tail of a forward
arrow. Within each maximal run, match the heads H and the tails T according to the TTHH and
HHTT rules. By Lemmas 4.2, 4.3 and their duals, this can be done in a unique way. Furthermore,
note that arrows of opposite direction do not cross and do not nest. This shows that there is a unique
way to obtain a matching between the set of tails I and the set of heads J .

To verify the linkage axiom (LA), we may by symmetry assume that we are inserting a new tail
at position k. Denote this node by T ′. If the new tail is adjacent to an old tail, we are done by
Lemma 4.8. If a new tail T ′ is inserted in between two heads we have three possible cases. If the two
heads are part of a THHT pattern then we are between two maximal runs as described above. Take
any of the two heads adjacent to the inserted element, unlink it from its pair and link it to the inserted
tail; see the first line of Figure 4. If the two heads are part of a HHTT pattern, there are two subcases
depending upon whether the two arrows nest or cross, and these two cases are explained in the second
and third line of Figure 4. In each of these two subcases, one can verify that the new matching is
in fact a face. Finally, if the two heads are part of a TTHH pattern, it is mirror symmetric to the
previous case. �

4.2. The revlex class. We now turn our attention to the revlex class and show that all four trian-
gulations are possible.

Theorem 4.11. Let △n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4 and has the properties that both THTH and HTHT types of
arrows nest. Then the complex △n represents a triangulation of the boundary ∂Pn of the Legendre
polytope.

Proof. By Proposition 3.7 we conclude that THHT and HTTH types of arrows cross. Hence if we
disregard the direction of the arrows, we have that the pattern . . . . cannot occur. Thus all pairs
of arrows must either nest or cross.
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T H T ′ H T. . . . . . T H T ′ H T. . . . . .

H T ′ H T T. . . . . . H T ′ H T T. . . . . .

H T ′ H T T. . . . . . H T ′ H T T. . . . . .

Figure 4. Verifying the linkage axiom in the lex class of triangulations.

The fact that every pair of arrows nests or crosses implies that all arrows must arch over themidpoint
of the set I ∪ J , that is, the point that has the same number of elements of I ∪ J to the left of it as
the number of such elements to the right. For example, for the word TTHT |HHTH, the midpoint
is marked with a vertical bar. Hence the number of tails to the left of the midpoint must equal the
number of heads to the right of it. The tails to the left of the midpoint are tails of the forward arrows.
They must be matched with the heads to the right of the midpoint. The analogous statement is true
for the heads and tails of the backward arrows. Now match the left of midpoint tails with the right
of the midpoint heads according to the TTHH rule. Similarly, match the right of midpoint tails with
the left of the midpoint heads according to the HHTT rule. Both of these matchings are unique,
proving the support axiom.

To verify the linkage axiom (LA), by symmetry it is enough to verify the linkage axiom after inserting
a new tail at position k, denoted by T ′. Assume that there another tail T of an arrow (i, j) in the
set of tails I adjacent to T ′ and that the position i is on the same side of the midpoint as position k.
Then we can replace the arrow (i, j) with (k, j). If there is no such arrow (i, j), there is no tail on
the same side as T ′, that is, the situation is T · · ·T |HH · · ·HT ′H · · ·H or H · · ·HT ′H · · ·HH|T · · · T .
These two possibilities are symmetric, so it enough to consider the first one. Note that all the arrows
are forward arrows. Let (i, j) be the arrow with the smallest value of j, that is, the arrow attached
to the first H. Replace the arrow (i, j) with the new arrow (k, j). Note that this yields the new word
T · · ·TH|H · · ·HT ′H · · ·H, where there is now an H on the left of the new midpoint. This completes
the verification of the linkage axiom. �

4.3. The Simion class of triangulations. In this section we conclude the proof of Theorem 3.2.
The remaining case is the Simion class of triangulations.

Theorem 4.12. Let △n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4 and has the properties that exactly one of the types THTH and
HTHT do nest. Then the complex △n represents a triangulation of the boundary ∂Pn of the Legendre
polytope.

Using the involution △n 7−→ △∗
n it is enough to consider the cases where THTH type of arrows

nest and HTHT type of arrows do not nest in the following propositions. We begin by considering
all four flag complexes in the Simion subclass of type a.



16 RICHARD EHRENBORG, GÁBOR HETYEI AND MARGARET READDY

Proposition 4.13. Let △n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4 and has the properties that the THTH type of arrows nest, the
HTHT type of arrows do not nest, and both THHT and HTTH types of arrows do not cross. Then
the complex △n represents a triangulation of the boundary ∂Pn of the Legendre polytope.

Proof. Let w be the associated TH-word to the two sets I and J . Factor the word w as follows

w = w1T · · ·TwhTwh+1Hwh+2H · · ·Hw2h+1

where the factors w1, w2, . . . , w2h+1 are lower Dyck words. Note that such a factorization exists and
is unique since the h T s in the expression correspond to left-to-right maxima of the lattice path.
Similarly, the Hs correspond to right-to-left maxima. Create a matching from I to J by making h
forward arrows from the h T s to the h Hs, according to the TTHH rule. Finally, apply Lemma 4.3
to each factor wr to create a matching consisting of only backward arrows. It is straightforward to see
that there is no crossing between a forward and a backward arrow, that is, the THHT and HTTH
conditions hold. Furthermore, no backward arrow nests a forward arrow, the HTHT condition follows
and finally no two forward arrows follow each other, so the THTH condition is also true.

Next we show the uniqueness part of the support axiom. Assume a matching from I to J contains h
forward arrows. Since THTH type of pairs nest, the tails of all forward arrows precede all heads. The
heads and tails of the forward arrows partition the number line into 2h + 1 segments. Since THHT
and HTTH types of pairs do not cross and HTHT do not nest, backward arrows that have one end
in one of these line segments have their other end in the same line segment. By Lemma 4.2 the part of
the lattice path associated to all backward arrows in one of these line segments represent a lattice path
starting and ending at the same level and never going above the level where it started. Hence the tails
of the forward arrows mark the first ascents to level 1, 2, . . ., h and the heads of the forward arrows
mark the last descents to levels h− 1, h− 2, . . ., 0. This observation shows the unique determination
of the endpoints of the forward arrows. By Lemma 4.7 there is a unique way to match the heads and
tails of the forward arrows, and by Lemma 4.3 there is a unique way to match the heads and tails of
the backward arrows within each segment created by the endpoints of the forward arrows.

To verify the linkage axiom (LA), note that Lemma 4.9 is applicable unless k is inserted as a tail at
the beginning of a run of backward arrows or as a head at the end of such a run. Assume k is inserted
as a tail; the case when k is inserted as a head is completely analogous. If k is inserted right after a
tail, then we are done by Lemma 4.8. If k is inserted right after a head j, then this head is necessarily
the head of a forward arrow (i, j). In this case insert the backward arrow (k, j) and remove the arrow
(i, j). Note that this results in a matching in △n in which there is one less forward arrow and the
arrow (k, j) becomes part of the run of backward arrows immediately succeeding it. We are left with
the case when the inserted tail k satisfies k < min(I ∪ J). If the current matching contains at least
one forward arrow, then we select the forward arrow (i, j) with the smallest i. We remove the arrow
(i, j) and add the arrow (k, j). This move does not change the crossing or nesting properties of arrows
of the same direction, nor does it create crossing arrows of opposite directions. Finally, if the current
matching on I ∪ J consists of backward arrows only, then we associate an initial NE step to k, and
continue with the lattice path associated to I ∪ J which now starts and ends at level 1 and never goes
above that level. Let j ∈ J be the head associated to the last descent from level 1 to level 0. This
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is the head of a backward arrow (i, j). Removing (i, j) and adding (k, j) results in a valid matching
because of part (3) of Remark 4.4. �

We next turn our attention to the Simion subclass of type c.

Proposition 4.14. Let △n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4 and has the properties that the THTH type of arrows nest, the
HTHT type of arrows do not nest, both THHT and HTTH types of arrows cross and both TTHH
and HHTT type of arrows nest. Then the complex △n represents a triangulation of the boundary ∂Pn

of the Legendre polytope.

Proof. Let w be the associated TH-word to the two sets I and J and assume that the associated lattice
path reaches height h. That is, there are at least h ascents (T ) before the path reaches height h, and
at least h descents (H) since it leaves height h the last time. Hence we factor the word w uniquely as

w = Hm1THm2T · · ·THmhT · u ·HT n1HT n2H · · ·HT nh

Using the rule for TTHH (nest), match the first h tails in this expression with the last h heads
to create h pairwise nesting forward arrows. The remaining nodes contribute the subword w′ =
Hm1+m2+···+mh · u · T n1+n2+···+nh . Note that this is a lower Dyck word. Thus apply Lemma 4.3 to
this word to create the remaining arrows, which are all backward arrows. Directly by the construction
rules hold for types THTH, TTHH and HHTT . Next notice that HTTH must cross, since all
tails of backward arrows are after the tails of forward arrows. By the symmetric argument THHT
must also cross. The final condition for HTHT is that no backward arrow can nest a forward arrow.
Recall that the word w reaches its maximum height somewhere in the factor u. Hence the word w′

reaches the maximum of 0 also in the factor u. Thus w′ can be factored into two lower Dyck words
w′ = (Hm1+m2+···+mh · u1) · (u2 · T n1+n2+···+nh). By Lemma 4.5 each backward arrow has either its
tail or head (or both) in the word u1 ·u2. Hence it lies between the tail and and head of every forward
arrow and last condition is proved.

Next we prove uniqueness. Assume that the associated lattice path reaches height h. Observe that
the conditions imply that all the forward arrows must nest. Let (i′, j′) be the innermost forward
arrow. Since no backward arrow nests, whether in front or behind this shortest forward arrow, each
backward arrow must have either its tail or head (or both) in the interval from i′ to j′. Let h′ be the
number of forward arrows. Hence the first h′ T s in the associated TH-word correspond to the tails
of the forward arrows. Similarly, the last h′ Hs correspond to the head of the forward arrows. Since
the backward arrows nest. Consider the backward arrow (i′′, j′′) with the smallest head j′′. If j′′ < i′

then there is no backward arrow above the tail i′′, only h′ forward arrows. Similarly, if there is no
such backward arrow then there is no backward arrow above i′, and only h′ forward arrows. In both
cases we obtain that the maximal height h is h′. This agrees with the construction in the previous
paragraph. The uniqueness in Lemma 4.3 implies that the matching from I to J is unique.

Before proving the linkage axiom recall that the TH-word w has the following factorization

w = Hm1THm2T · · ·THmhT︸ ︷︷ ︸
1st factor

·z ·HT n1HT n2H · · ·HT nh︸ ︷︷ ︸
5th factor

,
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where

z = u1Tu2T · · · umT︸ ︷︷ ︸
2nd factor

· x︸︷︷︸
3rd factor

·Hv1Hv2 · · ·Hvn︸ ︷︷ ︸
4th factor

,

where m =
∑h

i=1mi, n =
∑h

i=1 ni and u1, u2, . . . , um, x, v1, v2, . . . , vn are all lower Dyck words. Con-
sider the case when we insert a new tail T ′. By Lemma 4.9 it can be inserted in the one of the lower
Dyck words u1, . . . , um, x, v1, . . . , vn or immediately after one of these words. If inserted in the 1st
factor, or immediate afterward, we can move one of the tails of the forward arrows. The case when
inserted in the 2nd or 3rd factor is already taken care of. In the 4th factor, in front of a vi then it is
immediately after a head, which can be used for the switch. Finally, in the 5th factor when n > 0 we
can move one of tails of the closest backward edge from the 5th factor to the 4th factor. When n = 0,
remove the innermost forward arrow and use its head. Observe that this is only case that changes the
number of forward arrows. This completes the proof of the linkage axiom (LA). �

Finally, we consider half of the cases in the Simion subclass of type b. Observe that the proof is a
mixture of the two previous proofs.

Proposition 4.15. Let △n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4 and has the properties that the THTH type of arrows nest, the
HTHT type of arrows do not nest, the HTTH type of arrows cross and the THHT type of arrows
do not cross. Then the complex △n represents a triangulation of the boundary ∂Pn of the Legendre
polytope.

Proof. Let w be the associated TH-word to the two sets I and J and assume that the associated
lattice path reaches height h. Factor the word w as follows z1 · z2 = z1 ·Hwh+2H · · ·Hw2h+1 where
the factors wh+2, wh+3, . . . , w2h+1 are lower Dyck words. Note that such a factorization exists and is
unique since the h Hs are right-to-left maxima. Note that the word z1 contains at least h T s. Factor
z1 as Hm1THm2T · · · THmhTwh+1. That is, we have

w = z1 · z2 = Hm1THm2T · · ·THmhTwh+1 ·Hwh+2H · · ·Hw2h+1.

Create a matching from I to J by making h forward arrows from the first h T s in z1 to the h Hs
in z2, according to the TTHH rule. Apply Lemma 4.3 to each factor wh+2 through w2h+1 to create
matchings consisting of only backward arrows. Finally, on the remaining letters Hm1 , Hm2 , . . ., Hmh ,
wh+1 apply Lemma 4.3 again to create the remaining backward arrows. It is straightforward to see
that this matching satisfies all the conditions and hence the existence part of the support axiom (SA)
holds.

We now prove the uniqueness part of the support axiom (SA). Let us denote the number of forward
arrows in the matching between I and J by h. The endpoints of these arrows partition the number
line into 2h + 1 segments. Since THHT pairs do not cross, just as in the proof of Proposition 4.13,
backward arrows having one end in one of the last h segments have both ends in the same segment.
The endpoints of these arrows within the same segment are associated to a lattice path starting and
ending at the same level. Before the leftmost head of a forward arrow the numbers of tails exceeds the
number of heads by h and this is the largest height reached by the associated lattice path. The heads
of the forward arrows mark the last descents to level h − 1, h − 2, . . ., 0, respectively. Since HTTH



CLASSIFICATION OF UNIFORM FLAG TRIANGULATIONS OF THE LEGENDRE POLYTOPE 19

type of pairs cross, no tail of a backward arrow may occur before the tail of the forward arrow: the
leftmost h tails are tails of forward arrows, and they mark the first h ascents in the associated lattice
path. The rest of the proof of the uniqueness and existence parts of the support axiom is very similar
to the one in the proof of Proposition 4.13, thus we omit the details. We only underscore the key
difference: we treat all backward arrows whose tail is to the right of the heads of the forward arrows
as a single set: after removing the tails of the forward arrow this yields a lattice path from level 0 to
level 0 that never goes above the x-axis, and the tails of the forward arrows are correctly reinserted
if and only if they are to the left of the tails of all backward arrows. Hence we consider h + 1 runs
of backward arrows: the last h runs are just like in the proof of Proposition 4.13 and the first run is
different.

To verify the linkage axiom (LA) we observe that Lemma 4.9 is applicable in all cases except when
a new head is inserted at the end or a new tail is inserted at the beginning of any of the h + 1 runs
of backward arrows. If a new tail is inserted at the beginning of one of the last h runs of backward
arrows then we may proceed exactly as in the proof of Proposition 4.13 when k is inserted right after
the head of a forward arrow. If k < min(I ∪ J) is inserted as a tail, again, we may proceed as in
the proof of Proposition 4.13 (note that there is nothing to the left of this inserted new tail). If k
is inserted as a head at the end of one of the first h runs of backward arrows then k is immediately
followed by the head j of a forward arrow (i, j) and Lemma 4.8 is applicable. We are left with the
case when k > max(I ∪ J) and k is inserted as a head. If the matching on I ∪ J contains at least
one forward arrow, we proceed as in the proof of Proposition 4.13 (note that the dual case when k is
inserted as a tail at the beginning was explained). Finally, when the matching on I ∪ J consists of
backward arrows only, then let (i, j) be the backward arrow whose tail i is min(I). Replacing (i, j)
with (i, k) yields a matching in △n. �

Proposition 4.16. Let △n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4 and has the properties that the THTH type of arrows nest, the
HTHT type of arrows do not nest, the HTTH type of arrows do not cross and the THHT type of
arrows cross. Then the complex △n represents a triangulation of the boundary ∂Pn of the Legendre
polytope.

Proof. Follows from Proposition 4.15 and Lemma 3.3 by applying the involution △n 7−→ △n. �

Proof of Theorem 4.12. The result in the case THTH nests and HTHT do not nest follows by com-
bining Propositions 4.13, 4.14, 4.15 and 4.16. The case when THTH do not nest and HTHT nests
follows by the involution △n 7−→ △∗

n. �

5. Fifteen distinct triangulations

The classification given in Theorem 3.2 was accompanied by the observation that some triangu-
lations are (reflected) duals of each other. Taking the dual of a uniform flag triangulation amounts
to taking a centrally symmetric copy, taking the reflected dual amounts to composing this reflection
about the origin with a reflection about the subspace defined as the intersection of the ⌈n/2⌉ hyper-
planes defined by the equations xi = xn+2−i for 1 ≤ i ≤ ⌈n/2⌉. In this section we outline how to
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prove that there are no other isomorphisms between the uniform flag triangulations of the Legendre
polytope.

Theorem 5.1. For n ≥ 4 there are 15 non-isomorphic uniform flag triangulations of the boundary
of the Legendre polytope Pn. They are distributed as follows: the lex class and the revlex class each
contain 3 triangulations; the two Simion subclasses a and b each contain 4 triangulations; and finally
the Simion subclass c only contains 1 triangulation.

The upper bound of 15 is a direct consequence of Lemma 3.3. In the rest of this section we show
how the triangulations differ already when n = 4.

In every flag triangulation of the boundary ∂Pn of the Legendre polytope each arrow (i, j) has at
least 2n − 2 neighbors: the set {(i, k) : k 6∈ {i, j}} ∪ {(k, j) : k 6∈ {i, j}} is a subset of cardinality
2n− 2 of the set of neighbors of (i, j).

Definition 5.2. The excess degree ε(i, j) of the arrow (i, j) ∈ Vn in a uniform flag complex △n on
the vertex set Vn is the number of arrows (i′, j′) such that |{i, i′, j, j′}| = 4 and {(i, j), (i′ , j′)} ∈ △n.

In other words, the excess degree ε(i, j) is the amount by which the degree of (i, j) exceeds 2n− 2.
Table 3 shows how to compute the excess degrees. For example, whenever THTH pairs of arrows
nest and i < j, then for each arrow (i, j) there are

(
q
2

)
ways to select (i′, j′) satisfying i < j′ < i′ < j,

where p = i− 1, q = j − i− 1 and r = n+ 1− j.

In Table 4 we show the sorted lists of the excess degrees for the 15 triangulations when n = 4. It
is straightforward to observe that these lists are distinct, showing that the triangulations are non-
isomorphic.

6. Tools for refined face enumeration

In this section we introduce some terminology and results that we will use to prove theorems
regarding the refined face counting in uniform flag triangulations of the boundary ∂Pn of the Legendre
polytope. Our triangulations are defined by a set of rules, independent of the dimension. After fixing
such a set of rules, we will simultaneously consider each triangulation △n determined on the vertex
set Vn defined by these rules, for each n ≥ 0. Note that the set V0 is the empty set, and the only face
contained in △0 is the empty set.

In order to compute the associated generating function, we introduce the following more general
notion. Let F = (F0,F1, . . .) be a sequence of collections of arrows, where Fn is a subset of the power
set of Vn, that is, Fn ⊆ 2Vn . We define the associated generating function

F (F , x, y, t) =
∑

n,i,j≥0

f(Fn, i, j) · xiyjtn

where f(Fn, i, j) is the number of sets in Fn consisting of i forward arrows and j backward arrows.
Our interest is to compute this generating function when F is the collection F = (△0,△1, . . .). In this



CLASSIFICATION OF UNIFORM FLAG TRIANGULATIONS OF THE LEGENDRE POLYTOPE 21

Condition Contribution Contribution Condition Contribution Contribution

to ε(i, j) to ε(j, i) to ε(i, j) to ε(j, i)

T H T H

(
q
2

)
pr

T H T H

(
p
2

)
+

(
r
2

)
0

H T H T
pr

(
q
2

)
H T H T 0

(
p
2

)
+

(
r
2

)

T H H T

(
r
2

) (
p
2

)
T H H T qr pq

H T T H

(
p
2

) (
r
2

)
H T T H pq qr

H H T T
0 pr +

(
q
2

)
H H T T 0 pq + qr

T T H H
pr +

(
q
2

)
0

T T H H pq + qr 0

Table 3. Table to compute the excess degrees ε(i, j) and ε(j, i) for 1 ≤ i < j ≤ n+1,
where p = i− 1, q = j − i− 1 and r = n+ 1− j.

case f(△n, i, j) counts the faces of the simplicial complex △n with i forward arrows and j backward
arrows, and we call the polynomial

∑
i,j≥0 f(△n, i, j) · xiyj the face polynomial. We note that the

power of t in a term of F (△n, x, y, t) is the same as the number of vertices in an associated facet of
the triangulation. The number of cases to be considered can be reduced by extending the notion of
the dual and reflected dual triangulations to all families F = (F0,F1, . . .).

The following lemma is a straightforward consequence of the definitions.

Lemma 6.1. Let F = (F0,F1, . . .) be a sequence of collections of arrows, where Fn ⊆ 2Vn . Let F∗ =
(F∗

0 ,F∗
1 , . . .) be the dual family obtained by reversing all arrows in all sets, and let F = (F0,F1, . . .)

be the reflected dual family obtained by reversing each arrow, and replacing each node i in Vn with
n+ 2− i. Then the following two equalities hold:

F (F∗, x, y, t) = F (F , y, x, t) and F (F , x, y, t) = F (F , x, y, t).

The families of uniform flag triangulations defined by a set of rules are coherent in the sense that
they are closed under the insertion and removal of isolated nodes. To make this informal observation
precise, consider the map πk : N− {k} → N given by

πk(m) =

{
m if m < k,

m− 1 if m > k.

Definition 6.2. Let F = (F0,F1, . . .) be a collection of families of sets such that for each n the
family Fn consists of subsets of Vn. We call such a collection coherent if for each subset σ of Vn and
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Class/ HHTT & TTHH Sorted list of excess degrees

subclass conditions

Lex H H T T T T H H 16, 24, 32, 44, 64

H H T T T T H H 01, 13, 27, 31, 44, 64

H H T T T T H H 02, 210, 44, 64

Simion a H H T T T T H H 15, 25, 35, 65

H H T T T T H H 01, 13, 24, 35, 44, 63

H H T T T T H H 14, 24, 38, 64

H H T T T T H H 01, 12, 23, 38, 44, 62

Simion b H H T T T T H H 01, 12, 25, 37, 41, 51, 63

H H T T T T H H 02, 11, 25, 34, 45, 51, 62

H H T T T T H H 02, 12, 21, 310, 41, 52, 62

H H T T T T H H 03, 11, 21, 37, 45, 52, 61

Simion c H H T T T T H H 02, 24, 38, 43, 52, 61

Revlex H H T T T T H H 04, 24, 410, 62

H H T T T T H H 04, 24, 31, 47, 53, 61

H H T T T T H H 04, 24, 32, 44, 56

Table 4. The sorted lists of the excess degrees for n = 4, where superscripts denotes multiplicities.

each k ∈ {1, 2, . . . , n+1} that is not incident to any arrow in σ, the set πk(σ) = {(πk(i), πk(j)) : (i, j) ∈
σ} belongs to Fn−1 if and only if σ ∈ Fn. In particular, for a coherent collection F = (F0,F1, . . .),
the empty set either belongs to all Fn or it belongs to none of them.

By abuse of terminology we will say that F contains the empty set if all families Fn in it contain it.
Sets of arrows in coherent collections may be enumerated by counting only the saturated sets in the
families, which we now define.

Definition 6.3. For n ≥ 1, a subset σ of Vn is saturated if the set of endpoints of its arrows is the set
{1, 2, . . . , n+1}. We also consider the empty set to be a saturated subset of V0 = ∅. Given a coherent

collection F = (F0,F1, . . .), we denote the family of saturated sets in Fn by F̂n.

Note that F̂0 = {∅} exactly when F contains the empty set. One of our key enumeration tools is
the following observation.
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Lemma 6.4. Given a coherent collection of families F of arrows, the face generating function satisfies

F (F , x, y, t) = − t

(1− t)2
· δF0,{∅} +

1

(1− t)2
· F

(
F̂ , x, y, t

1− t

)
,(6.1)

F (F̂ , x, y, z) = z

1 + z
· δ

F̂0,{∅}
+

1

(1 + z)2
· F

(
F , x, y, z

1 + z

)
,(6.2)

where δ denotes the Kronecker delta function.

Proof. Consider the second term of equation (6.1). The power n in a term xiyjtn in F (F̂ , x, y, t) counts
the number of spaces between nodes in the digraph. The substitution t 7−→ t/(1 − t) corresponds to
subdividing each space into more spaces, that is, inserting isolated nodes into these spaces. Finally,
the factor of 1/(1 − t)2 corresponds to inserting isolated nodes before and after the full subset. This

completes the proof of the first equation in the case when F̂0 = ∅. In the case when F̂0 = {∅} we
need to correct the right-hand side of the first equation by subtracting 1/(1− t)2 contributed by z0 in

F (F̂ , x, y, z) and we need to add 1/(1 − t) to account for the empty set belonging to all families Fn.
Equation (6.1) is equivalent to (6.2) by noting that z = t/(1− t) is equivalent to t = z/(1 + z). �

An interesting special case is counting all facets with a given number of forward and backward
arrows. The following statement is straightforward.

Lemma 6.5. Let △n be any uniform flag triangulation of the boundary ∂Pn of the Legendre polytope.
Then a face σ ∈ △n is a facet if and only if it is saturated and contains no isolated nodes, that is,
every i ∈ {1, 2, . . . , n+ 1} is incident to some element of σ.

In other words, as a subset of Vn, a facet is the set of edges of a forest with no isolated nodes.
Such a forest has n+ 1 nodes and n arrows. If the number of forward arrows is i then the number of
backward arrows is n− i, contributing a term xiyn−itn to the generating function of all faces and the
term xiyn−izn to the generating function of all saturated faces.

Corollary 6.6. Let F = (△0,△1, . . .) be a coherent family of uniform flag triangulations. Then
the facet generating function

∑
n≥0

∑n
i=0 f(△n, i, n− i)xiyn−izn may be obtained by substituting x/w

into x, y/w into y and wz into t in F (F , x, y, t) and then evaluating the resulting expression at
w = 0. Alternatively it may also be obtained by substituting x/w into x, y/w into y and wz into z in

F (F̂ , x, y, z) and then evaluating the resulting expression at w = 0.

For any uniform flag triangulation of the boundary ∂Pn of the Legendre polytope, the vertex sets
consisting only of forward (backward) arrows form subcomplexes whose face numbers are easier to
count. We first review the rephrasing of a known result.

A useful way to express our results is in terms of the generating function for the Catalan numbers:

C(u) =
∑

n≥0

Cn · un =
1−

√
1− 4u

2u
.
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Proposition 6.7. Let F be a family of uniform flag triangulations defined by a set of rules that
contains the rule that HTHT types of pairs of arrows do not nest. Then the following two identities
hold:

F (F , 0, y, t) = 1− t−
√

1− (4y + 2)t+ t2

2yt
,(6.3)

F (F̂ , 0, y, z) = 1

1 + z
· (C(yz(z + 1)) + z) .(6.4)

Proof. Setting x = 0 implies that we are only interested in digraphs with backward arrows. By the
dual of Theorem 3.9 the subcomplex of faces formed by backward arrows represents the lexicographic
or revlex pulling triangulation of the faces of P+

n not containing the origin. (The choice depends on
the rule for the HHTT pairs of arrows.) Both triangulations have the same face numbers. The proof
of Theorem 5.4 in [14, Theorem 5.4] implies the quadratic equation

F (F , 0, y, t) = 1 + t · F (F , 0, y, t) + yt · F (F , 0, y, t)2,(6.5)

and solving it yields (6.3). Identity (6.4) follows by applying (6.2) in Lemma 6.4 and (6.3). �

Remark 6.8. Another way to prove (6.3) is to use Theorem 5.4 and Corollary 5.6 in [14], which states

n∑

j=0

f(Fn, 0, j) ·
(
u− 1

2

)j

=

n∑

j=0

1

j + 1
·
(
n+ j

j

)
·
(
n

j

)
·
(
u− 1

2

)j

=
P

(−1,1)
n (u)

n+ 1
,

where P
(−1,1)
n (u) is a Jacobi polynomial. The stated equation follows by integrating the well-known

generating function [1, 22.9.1] of the Jacobi polynomials P
(−1,1)
n (u).

We will later use the following corollary of Proposition 6.7. It has a direct bijective proof; see [12].

Corollary 6.9. Let F be a family of uniform flag triangulations such that HTHT types of pairs of
arrows do not nest. Then the sum over all forests F consisting of k ≥ 1 backward arrows, no forward
arrows and no isolated nodes is

Gk(z) =
∑

F

z#nodes of F = Ck · zk+1 · (z + 1)k−1.(6.6)

Similarly, if the uniform flag triangulations F satisfies the requirement that THTH types of pairs of
arrows do not nest, then the sum over all forests F consisting of k ≥ 1 forward arrows, no backward
arrows and no isolated nodes also yields the identity (6.6).

Proof. Equation (6.6) follows by considering the coefficient of yk in equation (6.4). Observe that there
is an extra factor of z since we are counting the number of nodes. The second statement follows by
reversing the first statement. �

Note that the lower extreme cases of Corollary 6.9 enumerate the anti-standard trees and the
noncrossing alternating trees of Gelfand, Graev and Postnikov [13]. We will also use the following
refined variant of Proposition 6.7.
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Proposition 6.10. Let F be a family of uniform flag triangulations defined by a set of rules that

contains the rule that HTHT type of pairs of arrows do not nest. For each n ≥ 0, let F (i)
n denote the

set of all faces where the sequence of heads and tails, listed in increasing order, satisfies the condition
that the i smallest nodes are heads and the next node is a tail. Then the two resulting collections

F (i) =
(
F (i)
0 ,F (i)

1 , . . .
)
and F̂ (i) =

(
F̂ (i)
0 , F̂ (i)

1 , . . .
)
satisfy

F (F (i), 0, y, t) =
yitiF (F , 0, y, t)i

(1− t)i+1
,(6.7)

F (F̂ (i), 0, y, z) =
1

1 + z
· (yz(1 + z)C(yz(z + 1)))i .(6.8)

Proof. Without loss of generality we may assume that HHTT type pairs of arrows nest. Indeed, if we
fix the head-tail pattern of the nodes then we are counting the faces in a triangulation of the convex
hull of all vertices represented by all backward arrows whose heads and tails are selected from the
prescribed set of heads and tails. For example, if we fix n = 3 and the pattern THTH (contributing
to the collection F (1)) then we have to count the faces in the triangulation of the convex hull of e2−e1,
e4 − e1 and e4 − e3. We obtain the same face numbers for the lexicographic and revlex triangulations.

First we show that for i > 1 the formal power series F (F (i), 0, y, t) satisfies the relation

F (F (i), 0, y, t) = t · F (F (i), 0, y, t)(6.9)

+
∑

d≥1

ydtd · F (F (i−1), 0, y, t) · F (F , 0, y, t)d−1 · (1 + tF (F , 0, y, t)).

The term t · F (F (i), 0, y, t) corresponds to the possibility that the node 1 is not incident to any arrow
in a face, and the dth term in the next sum accounts for the possibility that the node 1 is the head of
exactly d arrows. Assume the set of tails of these arrows is {i1, i2, . . . , id}, where 1 < i1 < i2 < · · · < id.
These arrows contribute a factor ydtd. Since no pairs of arrows are allowed to cross, the d arrows whose
tail is 1 partition the set of arrows into d + 1 classes. Each of these classes may be empty, except
for the set of arrows whose head precedes i1: these arrows form a set where i − 1 tails are followed
by the first head when we list their endpoints in increasing order. These arrows contribute a factor
of F (F (i−1), 0, y, t). For each j in {1, 2, . . . , d − 1}, the set of arrows whose head belongs to the set
{ij + 1, ij + 2, . . . , ij+1} contribute a factor F (F , 0, y, t)d−1. (Note that the factor of t contributed
by ij is already counted.) Finally the set of arrows whose tail is id +1 or a larger element contributes
a factor of 1 + tF (F , 0, y, t). Rearranging (6.9) yields the recurrence

F (F (i), 0, y, t) = F (F (i−1), 0, y, t) · yt(1 + tF (F , 0, y, t))
(1− t)(1 − ytF (F , 0, y, t)) .

By (6.5) we may replace the factor 1 + tF (F , 0, y, t) with F (F , 0, y, t) · (1− ytF (F , 0, y, t)). Thus we
obtain

F (F (i), 0, y, t) = F (F (i−1), 0, y, t) · ytF (F , 0, y, t)
1− t

.
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Combining this recurrence with the expression

F (F (1), 0, y, t) =
ytF (F , 0, y, t)

(1− t)2
,

which may be shown in a completely analogous fashion, equation (6.7) follows by induction on i.

Combining equations (6.2), (6.3) and (6.7) yields the identity (6.8). �

When HTHT pairs of arrows do not nest, we obtain a very different expression for enumerating
faces containing backward arrows only. We employ its dual form, obtained after reversing all arrows,
using a generalization of the Delannoy numbers. Recall a Delannoy path from (0, 0) to (a, b) is a lattice
path consisting of North steps (0, 1), East steps (1, 0) and NE steps (1, 1). The number of Delannoy
paths from (0, 0) to (a, b) is the Delannoy number Da,b; see [3] for more on Delannoy numbers.

Definition 6.11. Given two non-negative integers a and b, the Delannoy polynomial Da,b(x) is the
total weight of all Delannoy paths from (0, 0) to (a, b), where each step contributes a factor of x. Thus
the coefficient of xj in Da,b(x) is the number of Delannoy paths from (0, 0) to (a, b) having j steps.

The bivariate ordinary generating function of the Delannoy polynomials is given by

D(u, v, x) =
∑

a,b≥0

uavb ·Da,b(x) =
1

1− x(u+ v + uv)
.(6.10)

Proposition 6.12. Let F be a family of uniform flag triangulations defined by a set of rules requiring

that THTH type of pairs of arrows nest. Then the collection F̂ of families of saturated faces satisfies

F (F̂ , x, 0, z) = 1 + xz ·
∑

a,b≥0

Da,b(x) · za+b.(6.11)

In particular, the contribution to F (F̂ , x, 0, z) of all saturated faces having a+ 1 tails and b+ 1 heads
is Da,b(x) · xza+b+1.

Proof. The constant 1 on the right-hand side of (6.11) accounts for the empty face. The condition
on the THTH type of pairs of arrows implies that for any face consisting of forward arrows only,
all tails precede all heads. Assume that the set of tails of forward arrows representing a saturated
face has cardinality a + 1 and that the set of heads has cardinality b + 1. Let the set of tails be
{i1 < i2 < · · · < ia+1} and the set of heads be {j1, j2, . . . , jb+1}. If TTHH type of pairs of arrows
nest, order the set of heads decreasingly, that is, jb+1 < · · · < j2 < j1. Otherwise, if TTHH type of
pairs of arrows cross, order the set of heads increasingly, that is, j1 < j2 < · · · < jb+1. Order the arrows
in lexicographic order. Associate a North step to each instance when the tail remains unchanged from
the next arrow in the list, an East step to each instance when the head remains unchanged and a NE
step to each instance when both head and tail change. We obtain a Delannoy path from (0, 0) to (a, b)
in which the number of steps is one less than the number of arrows on the list. The correspondence
is a bijection between all saturated faces on the given set of heads and tails and all Delannoy paths
from (0, 0) to (a, b). �
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T H T H H T H T T H H T H T T H

Figure 5. The rules for pairs of arrows in the Simion type a subclass.

7. Face enumeration in the Simion class

In this section we compute generating functions for the class of uniform triangulations of the bound-
aries of the Legendre polytope in the Simion class, that is, exactly one of the THTH and HTHT
types of pairs of arrows nest. Our main result on enumerating faces is the following result:

Theorem 7.1. Let F be a collection of uniform flag triangulations belonging to the Simion class and

let F̂ be the collection of families of saturated faces. If THTH types of pairs of arrows do not nest
and HTHT types of pairs of arrows nest then the following identity holds:

F (F̂ , x, y, z) = C(yz(z + 1)) + z

1 + z
+

xz · (1 + zC(yz(z + 1))) · C(yz(z + 1))2

(1 + z) · (1− 2C(yz(z + 1))xz − C(yz(z + 1))2xz2)
.(7.1)

If THTH types of pairs of arrows nest and HTHT types of pairs of arrows do not nest, then the
symmetric identity holds:

F (F̂ , x, y, z) = C(xz(z + 1)) + z

1 + z
+

yz · (1 + zC(xz(z + 1))) · C(xz(z + 1))2

(1 + z) · (1− 2C(xz(z + 1))yz − C(xz(z + 1))2yz2)
.(7.2)

It suffices to prove the first half of Theorem 7.1. The second half is a direct consequence of
Lemmas 3.3 and 6.1, using the duality △ 7−→ △∗. We prove the first half for each subclass of
the Simion class separately, in Propositions 7.2, 7.3 and 7.4, respectively.

We begin by studying the type a subclass of the Simion class; see Figure 5.

Proposition 7.2. Let F be a collection of uniform flag triangulations defined by a set of rules that
contain the following rules:

(1) THTH type of pairs of arrows nest.
(2) HTHT type of pairs of arrows do not nest.
(3) Both THHT and HTTH types of pairs of arrows do not cross.

Then the collection F̂ of families of saturated faces satisfies:

F (F̂ , x, y, z) = C(yz(z + 1)) + z

1 + z

+
xz · (1 + zC(yz(z + 1))) · C(yz(z + 1))2

1 + z
·D(z · C(yz(z + 1)), z · C(yz(z + 1)), x).
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Proof. First we show that

F (F̂ , x, y, z) = 1

1 + z
· (C(yz(z + 1)) + z)(7.3)

+
∑

a,b≥0

xza+b+1Da,b(x) ·
1 + zC(yz(z + 1))

1 + z
· C(yz(z + 1))a+b+2.

By equation (6.4) the term 1
1+z

· (C(yz(z + 1)) + z) accounts for the possibility of a face containing
backward arrows only. In all the other cases, the face also contains forward arrows. If these arrows
are incident to a+1 tails and b+1 heads, then by Proposition 6.12 these contribute Da,b(x) ·xza+b+1.
The a+ 1 tails and b+ 1 heads of forward arrows partition the number line into a+ b+ 3 segments.
Since THHT and HTTH type of pairs of arrows do not cross, backward arrows that have at least
one end in one of these segments must have both ends in the same segment. Hence the contribution of
the backward arrows may be written as a product of a+ b+3 independent factors. Tails of backward
arrows whose endpoints are contained in one of the leftmost a + 1 segments may coincide with the
tail of a forward arrow. On these segments, the total weight of nonempty sets of backward arrows
must be multiplied by (1 + z) to account for the possibility of (not) identifying the rightmost tail of
a backward arrow with the tail of a forward arrow. By equation (6.4) the total weight of nonempty
sets of arrows is 1

1+z
· (C(yz(z + 1)) + z) − 1. Keeping in mind also the possibility of not inserting

any backward arrow between the tails of two forward arrows, or to the left of all forward arrows, we
obtain that the backward arrows discussed so far contribute a factor of

(
1 + (1 + z) ·

(
1

1 + z
· (C(yz(z + 1)) + z)− 1

))a+1

= C(yz(z + 1))a+1.

Similarly, backward arrows inserted between the b+ 1 heads of forward arrows or to the right of the
heads of all forward arrows contribute a factor of C(yz(z + 1))b+1. The only remaining possibility is
to insert backward arrows between the rightmost tail of a forward arrow and the leftmost head of a
forward arrow. Heads and tails of backward arrows inserted on this segment cannot coincide with the
head or tail of a backward arrow. They contribute a factor of

1 + z ·
(

1

1 + z
· (C(yz(z + 1)) + z)− 1

)
=

1 + zC(yz(z + 1))

1 + z
.

The statement is a direct consequence of (7.3) and the definition of D(u, v, x) given in (6.10). �

We now consider the uniform triangulations which belong to the Simion subclass of type b. Since
there is still no restriction on the rules for the TTHH and HHTT types of pairs, at a first glance this
subclass appears to be the largest one. This appearance is misleading, as it is closed under taking the
reflected dual triangulations. By Lemma 3.3 this operation takes any uniform flag triangulation in
which THHT type pairs cross and HTTH type pairs do not cross into a uniform flag triangulation
in which THHT type pairs do not cross and HTTH type pairs cross. As a direct consequence of

Lemma 6.1, the generating function F (F̂ , x, y, z) does not change if we take the reverse of F .

Proposition 7.3. Let F be a family of uniform flag triangulations defined by a set of rules that
contains the following requirements:

(1) THTH type of pairs of arrows nest.
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T H T H H T H T

(
T H H T H T T H

)
or

(
T H H T H T T H

)

Figure 6. The rules for pairs of arrows in the Simion type b subclass.

(2) HTHT type of pairs of arrows do not nest.
(3) Exactly one of the THHT and HTTH types of pairs of arrows cross.

Then the collection F̂ of families of saturated faces satisfies

F (F̂ , x, y, z) = 1

1 + z
· (C(yz(z + 1)) + z)

+D

(
C(yz(z + 1))z,

z

1− yz(z + 1)C(yz(z + 1))
, x

)

· xz · C(yz(z + 1)) · (1− yzC(yz(z + 1)))

(1− yz(z + 1) · C(yz(z + 1)))2
.

Proof. The proof is similar to the proof of Proposition 7.2. As a consequence of Lemmas 3.3 and 6.1,
without loss of generality we may assume that THHT type of pairs do not cross and HTTH type of
pairs cross. We first prove that

F (F̂ , x, y, z) = 1

1 + z
· (C(yz(z + 1)) + z)(7.4)

+
∑

a,b≥0

xza+b+1Da,b(x) · C(yz(z + 1))b+1

·


1 +

∑

i≥1

(yz(z + 1) · C(yz(z + 1)))i

z + 1
·
((

i+ a+ 1

a+ 1

)
z +

(
i+ a

a

))
 .

Just as in the proof of Proposition 7.2, the term 1
1+z

· (C(yz(z + 1)) + z) accounts for the possibility
of a face containing backward arrows only. In all the other cases, forward arrows that are incident to
a + 1 tails and b + 1 heads contribute a factor of Da,b(x) · xza+b+1. The b + 1 heads of the forward
arrows partition the number line into b + 2 segments. Since THHT type of pairs of arrows do not
cross, backward arrows that have at least one end between the heads of two forward arrows or to the
right of the largest tail of a forward arrow must have both ends in the same position. Backward arrows
contained in the right b + 1 segments contribute a factor of C(yz(z + 1))b+1, just as in the proof of
Proposition 7.2.

It remains the possibility of having backward arrows that are entirely to the left of the head of
any forward arrow. Let us list the endpoints of these backward arrows in increasing order. This list
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T H T H H T H T T H H T H T T H

T T H H H H T T

Figure 7. The rules for pairs of arrows in the Simion type c subclass.

must begin with a positive number of heads, followed by a tail. Let i be the number of heads of
backward arrows preceding all tails. By equation (6.8), the total weight of these backward arrows

is 1
1+z

· (yz(1 + z)C(yz(z + 1)))i. Since HTTH type of pairs of arrows cross, the a + 1 tails of the
forward arrows must all appear before the first tail of a backward arrow, only the rightmost of them
may coincide with the leftmost tail of a backward arrow. There are

(
i+a+1
a+1

)
ways to insert the tails

of the forward arrows strictly in front of the leftmost tail of a backward arrow, and there are
(
i+a
a

)

to perform this insertion if the rightmost tail of a forward arrow is equal to the leftmost head of a
backward arrow. The contribution of these arrows is the sum after 1 on the last line of (7.4).

Observe that by applying the identity
∑

i≥1

(
i+m
m

)
·ti = 1/(1− t)m+1−1 twice to the factor appearing

on the last line of (7.4), we can rewrite this factor as

1 +
z

z + 1
·
(

1

(1− yz(z + 1)C(yz(z + 1)))a+2
− 1

)
+

1

z + 1

(
1

(1− yz(z + 1)C(yz(z + 1))a+1
− 1

)
.

Simplifying this expression, including canceling a factor of z+1 in the numerator and the denominator,
yields

1

(1− yz(z + 1)C(yz(z + 1))a
· (1− yzC(yz(z + 1)))

(1− yz(z + 1)C(yz(z + 1)))2
.

Finally, using (6.10) equation (7.4) simplifies to the desired expression in the proposition. �

We now examine the Simion subclass of type c. This is the smallest subclass, as by Proposition 3.8
the TTHH and HHTT types of pairs of arrows must nest.

Proposition 7.4. Let F be a family of uniform flag triangulations defined by the following rules:

(1) THTH type of pairs of arrows nest.
(2) HTHT type of pairs of arrows do not nest.
(3) Both THHT and HTTH types of pairs of arrows cross.
(4) Both TTHH and HHTT types of pairs of arrows nest.
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Then the collection F̂ of families of saturated faces satisfies:

F (F̂ , x, y, z) = 1

1 + z
· (C(yz(z + 1)) + z)

+D

(
z

1− yz(z + 1) · C(yz(z + 1))
,

z

1− yz(z + 1) · C(yz(z + 1))
, x

)

· xz(z + 1− yz(z + 1) · C(yz(z + 1)))2

(1 + z)(1 + z · C(yz(z + 1))) · (1− yz(z + 1) · C(yz(z + 1)))4
.

Proof. The proof is similar to the proof of Proposition 7.3 in many details. We will highlight the
substantial differences. First we show the following equality:

F (F̂ , x, y, z) = 1

1 + z
· (C(yz(z + 1)) + z)(7.5)

+
∑

a,b≥0

xza+b+1Da,b(x) ·
1

1 + z((C(yz(z + 1)) + z)/(z + 1)− 1)

·


1 +

∑

i≥1

(yz(z + 1) · C(yz(z + 1)))i

1 + z
·
((

i+ a+ 1

a+ 1

)
z +

(
i+ a

a

))


·


1 +

∑

j≥1

(yz(z + 1) · C(yz(z + 1)))j

1 + z
·
((

j + b+ 1

b+ 1

)
z +

(
j + b

b

))
 .

Just as in equation (7.4), the term 1
1+z

· (C(yz(z + 1)) + z) is contributed by the faces containing
backward arrows only. The second sum is contributed by faces that contain forward arrows as well;
these forward arrows are incident to a+1 tails and b+1 heads. The total contribution of the forward
arrows is xza+b+1Da,b(x). For the precise count of the contribution of the backward arrows, we use the
fact that no pair of backward arrows crosses. We call a saturated face {(i1, j1), (i2, j2), . . . , (ik, jk)} of
backward arrows connected if it is empty or the arrow (max(i1, i2, . . . , ik),min(j1, j2, . . . , jk)) belongs
to the set. Clearly each saturated face of backward arrows is uniquely the disjoint union of maximal

connected sets. Introducing Ĝ as the collection of families of connected saturated sets of backward
arrows, we have the equality

1 + z · (F (F̂ , 0, y, z) − 1) =
∑

k≥0

F (Ĝ, 0, y, z)k · zk =
1

1− z · F (Ĝ, 0, y, z)
where k stands for the number of maximal connected sets. Indeed, for k = 0 the empty set is saturated
and connected. For all nonempty saturated sets, the first component contributes an unnecessary
additional factor of z on the right-hand side. Substituting (6.4) yields

1 + z ·
(

1

1 + z
· (C(yz(z + 1)) + z)− 1

)
=

1

1− z · F (Ĝ, 0, y, z)
.(7.6)

We partition the backward arrows of a saturated face into three classes. The first class is formed
by all backward arrows whose head is weakly to the left of the head of some forward arrow. Since
HTTH type of pairs of arrow cross, the tail of such a backward arrow is to the right of all backward
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arrows. The same condition on the HTTH type of pairs of arrows also guarantees that to the left of
any tail of a forward arrow we can only have a head of a backward arrow belonging to the first class.
Since HTHT type of pairs do not nest, the tail of a backward arrow in the first class is between the
heads and tails of all forward arrows. All such backward arrows form a connected component: they
all contain or arch over the rightmost tail of a forward arrow, and any backward arrow that does not
contain or arch over this rightmost tail has its head to the right of all backward arrows in the first
class. The same reasoning also shows that all heads of backward arrows in the first class are to the
left of the tails of these arrows. Introducing i as the number of heads of backward arrows in the first
class, the contribution of all backward arrows in the first class is


1 +

∑

i≥1

(yz(z + 1) · C(yz(z + 1)))i

1 + z
·
((

i+ a+ 1

a+ 1

)
z +

(
i+ a

a

))
 · (1− zF (Ĝ, 0, y, z)).

Just as in the proof of Proposition 7.3, each summand in the first factor of the above is the total weight
of all saturated faces of backward arrows in which i heads are followed by a tail in the left-to-right

order, and the factor of 1 − zF (Ĝ, 0, y, z) represents dividing by 1/(1 − zF (Ĝ, 0, y, z)), i.e., removing
the contribution of the additional connected components. Hence the above expression represents the
total weight of connected saturated faces.

The second class is formed by all backward arrows whose head is weakly to the right of the head of
some forward arrow. A completely analogous reasoning shows that the total weight of these arrows is


1 +

∑

j≥1

(yz(z + 1) · C(yz(z + 1)))j

1 + z
·
((

j + b+ 1

b+ 1

)
z +

(
j + b

b

))
 · (1− zF (Ĝ, 0, y, z)).

The remaining arrows form the third class: the heads and tails of these arrows are to the right to the
tails of the arrows in the first class and to the left of the heads of the arrows in the second class. They
contribute a factor of

1 + z · (F (F̂ , 0, y, z) − 1) = 1 + z ·
(

1

1 + z
· (C(yz(z + 1)) + z)− 1

)
.

Equation (7.5) is now a consequence of (7.6). The algebraic manipulations used to derive the statement
from (7.5) are very similar to the proof of Proposition 7.3, and are therefore omitted. �

Proof of Theorem 7.1. We begin with the proof of (7.1). We have proved three variants of this for-
mula in Propositions 7.2, 7.3 and 7.4. It remains to show that the three generating functions in these
propositions are equal to the generating function in equation (7.1). This is straightforward by expand-
ing D(u, v, x) using equation (6.10) and that the Catalan generating function satisfies the quadratic
relation C(u) = 1 + u · C(u)2, especially in the form 1/(1 − u · C(u)) = C(u). Equation (7.2) follows
now from equation (7.1) by applying the involution △ 7−→ △∗ and Lemmas 3.3 and 6.1. �
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By combining Theorem 7.1 and Lemma 6.4 it is possible to give the generating function of all faces.
We now explicitly count the facets using Corollary 6.6 and equation (7.1). Since

F
(
F̂ , x

w
,
y

w
,wz

)
=
C(yz(wz + 1)) + wz

1 + wz
+

xz · (1 + wzC(yz(wz + 1))) · C(yz(wz + 1))2

(1 + wz)(1 − 2C(yz(wz + 1))xz − C(yz(wz + 1))2xwz2)
,

we obtain that the facet generating function is given by

∑

n≥0

n∑

i=0

f(△n, i, n − i)xiyn−izn = C(yz) +
xz · C(yz)2

1− 2xzC(yz)
(7.7)

= C(yz) +
∑

i≥1

2i−1 · (xz)i · C(yz)i+1.

Theorem 7.5. Let △n be a uniform flag triangulation of the boundary ∂Pn of the Legendre polytope
belonging to the Simion class satisfying the property that THTH type of pairs of arrows nest and
HTHT type of arrows do not nest. Then for i ≥ 1, the number of facets of △n consisting of i forward
arrows and n− i backward arrows is given by

f(△n, i, n − i) = 2i−1 · (i+ 1) · (2n − i)!

(n− i)! · (n+ 1)!
.(7.8)

The number of facets of the triangulation △n consisting of no forward arrows and n backward arrows
is given by the Catalan number Cn.

Proof. Observe that the coefficient of ynzn in equation (7.7) is the nth Catalan number Cn. For i ≥ 1,
the coefficient of xiyn−izn = (xz)i · (yz)n−i is 2i−1 times the coefficient of (yz)n−i in C(yz)i+1, which

is 2i−1 · i+1
2n−i+1 ·

(2n−i+1
n+1

)
by an identity due to Catalan [4]. �

Remark 7.6. The formula (7.8) given in Theorem 7.5 may be restated as

f(△n, i, n − i) = 2i−1 · C(n, n− i)(7.9)

where the numbers

C(n, k) =
(n+ k)! · (n− k + 1)

k! · (n+ 1)!

are the entries in the Catalan triangle. See OEIS sequence A009766 [15].

We end with two observations. First, it is amusing how the expression in (7.8) is off by a factor of
1/2 in the case when i = 0. Second, when △n is the Simion type B associahedron triangulation of the
boundary of the Legendre polytope, it is possible to give a more constructive proof of Theorem 7.5 by
analyzing the tree structure of the digraphs corresponding to facets.

8. Face enumeration in the revlex class

In this section we study the revlex class, that is, the class containing the revlex pulling triangulation.
Our first result is similar to equations (7.3), (7.4) and (7.5), and it is perfectly suitable to compute the
face numbers with a prescribed number of forward and backward arrows. Unfortunately, it does not
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seem feasible to produce a closed form formula without infinite sums, that is similar to Propositions 7.2,
7.3 and 7.4.

Theorem 8.1. Let F be a family of uniform flag triangulations defined by a set of rules that contains
the following rules:

(1) Both THTH and HTHT types of pairs of arrows nest.
(2) Both HTTH and THHT types of pairs of arrows cross.

Then the collection F̂ of families of saturated faces satisfies

F (F̂ , x, y, z) = 1 +
∑

a,b≥0

(x ·Da,b(x) + y ·Da,b(y)) · za+b+1(8.1)

+ xy ·
∑

a′,b′,a′′,b′′≥0

Da′,b′(x) ·Da′′,b′′(y) · za
′+b′+a′′+b′′+2 · C(a′, b′, a′′, b′′, z)

where

C(a′, b′, a′′, b′′, z) =

(
a′ + b′′ + 2

a′ + 1

)
·
(
a′′ + b′ + 2

b′ + 1

)
· z(8.2)

+

(
a′ + b′′ + 1

b′′

)
·
(
a′′ + b′ + 1

b′

)
+

(
a′ + b′′ + 1

a′

)
·
(
a′′ + b′ + 1

a′′

)
.

Proof. By Proposition 6.12 the first three terms on the right-hand side of (8.1) are the total weights
of all faces that do not contain arrows in both directions. The last sum is the total weight of all
faces containing arrows in both directions: forward arrows on a′ + 1 tails and b′ + 1 heads and
backward arrows on a′′ +1 tails and b′′ +1 heads. Again, by Proposition 6.12 the subfaces of forward
and backward arrows, respectively, contribute factors of xDa′,b′(x)z

a′+b′+1 and yDa′′,b′′(y)z
a′′+b′′+1

respectively. We may collect the contribution of all faces that contain only forward or only backward
arrows by identifying a′ and a′′ with a, and b′ and b′′ with b. For the remaining faces there is an
additional factor of z when the set of endpoints of forward arrows is disjoint from the set of endpoints
of backward arrows. By Proposition 3.7 THHT and HTTH type of pairs of arrows cross. As a
consequence, heads of backward arrows are to the left of the heads of forward arrows, and tails of
backward arrows are to the right of the tails of the backward arrows. These conditions also ensure
that the set of endpoints of the backward arrows cannot have two or more nodes in common with the
set of endpoints of the forward arrows. The first term factor C(a′, b′, a′′, b′′, z) accounts for the number
of ways we may line up a′ + 1 tails of forward arrows with b′′ + 1 heads of backward arrows on one
side and, independently, a′′ + 1 tails of backward arrows with b′ + 1 heads of forward arrows on the
other side. The remaining terms correspond to the cases when the forward arrows and the backward
arrows share one head or one tail, respectively. �

We obtain a more compact expression using the proof of Theorem 8.1 by introducing the following
generating function.
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Definition 8.2. Let F̂ = (F̂0, F̂1, . . .) be a collection of families of arrows such that for each n the

family F̂n consists of saturated subsets of Vn. We define the node-enriched exponential generating

function of F̂ as follows:

(1) The empty set (if it belongs to F̂0) contributes a factor of 1.

(2) Each nonempty σ ∈ F̂n contributes a term

xiyj · ua+1 · vb+1

(a+ 1)! · (b+ 1)!
· tn,

where i is the number of forward arrows, j is the number of backward arrows, a + 1 is the
number of nodes that are left ends of arrows and b + 1 is the number of nodes that are right
ends of arrows.

It should be noted that the numbers a + 1 and b + 1 respectively count the left and right ends of
arrows and not their heads or tails: a left end is the tail of a forward arrow or the head of a backward
arrow. A common tail of a forward and a backward arrow is counted twice: once as a left end and once
as a right end. It is easy to derive from the requirements on the THHT and HTTH type of pairs of
arrows that for the triangulations in the revlex class, there is at most one node that is simultaneously
the left end and the right end of some arrow.

The node-enriched exponential generating function of the saturated faces in a triangulation in the
revlex class has a compact expression in terms of the following exponential generating function of the
Delannoy polynomials:

(8.3) D̃(u, v, x) =
∑

a,b≥0

Da,b(x) · ua+1 · vb+1

(a+ 1)! · (b+ 1)!
.

Theorem 8.3. Let F be a family of uniform flag triangulations defined by a set of rules that contains
the following rules:

(1) Both THTH and HTHT types of pairs of arrows nest.
(2) Both HTTH and THHT types of pairs of arrows cross.

Then the node-enriched exponential generating function of the collection F̂ of families of saturated
faces is given by

1 +
1

z
· D̃(uz, vz, x) +

1

z
· D̃(vz, uz, y) +

1

z
· D̃(uz, vz, x) · D̃(vz, uz, y)

+
1

z2
· ∂
∂u
D̃(uz, vz, x) · ∂

∂v
D̃(vz, uz, y) +

1

z2
· ∂
∂v
D̃(uz, vz, x) · ∂

∂u
D̃(vz, uz, y).

Proof. The proof is essentially the same as that of Theorem 8.1 and omitted. �

Theorem 8.3 motivates computing D̃(u, v, x) explicitly.
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Theorem 8.4. The exponential generating function D̃(u, v, x) is given by

D̃(u, v, x) =
∑

k≥0

(uv · (x2 + x))k

k!2
· ψk+1(ux) · ψk+1(vx)

where ψk+1(z) =
dk

dzk

(
ez−1
z

)
.

Proof. We use the identity

Da,b(x) =
∑

k

(
a

k

)
·
(
b

k

)
· (x2 + x)k · xa+b−2k.

Here k counts the total number of NE steps and “northwest corners” (i.e., N steps immediately

followed by E steps) in a Delannoy path from (0, 0) to (a, b). There are
(
a
k

)(
b
k

)
ways to select the

positions of these steps and corners in the plane, and each such place contributes a factor of x2 +x as
the weight of a N step followed by an E step is x2, whereas the weight of a NE step is x. Using the

above expression for Da,b(x), the definition of D̃(u, v, x) may be rearranged as follows:

D̃(u, v, x) =
∑

k≥0

(uv · (x2 + x))k

k!2
·
∑

a,b≥k

(ux)a−k

(a− k)!
· (vx)

b−k

(b− k)!
· 1

a+ 1
· 1

b+ 1
.

The statement follows after noticing that

ψk+1(z) =
∑

n≥0

1

n+ k + 1
· z

n

n!

which can easily be shown by induction on k. �

Remark 8.5. It is a direct consequence of Theorems 8.3 and 8.4 that

∂

∂u

∂

∂v
D̃(u, v, x) = exp(x · (u+ v)) · I0

(
2
√

(x2 + x) · uv
)

where I0(z) is the modified Bessel function of the first kind.

Remark 8.6. It can be shown by induction that

ψk(z) =

(∑k−1
i=0 (−1)i · (k−1)!

(k−1−i)! · zk−1−i
)
· ez + (−1)k · (k − 1)!

zk
.

We conclude this section by counting the facets using Corollary 6.6.

Theorem 8.7. Let △n be a uniform flag triangulation of the boundary ∂Pn of the Legendre polytope
that belongs to the revlex class. For 1 ≤ k ≤ n−1, the number of facets consisting of k forward arrows
and n− k backward arrows, that is, f(△n, k, n − k), is given by

k∑

i=1

n−k∑

j=1

(
k − 1

i− 1

)
·
(
n− k − 1

j − 1

)
·
[(
n− k + i− j

i

)
·
(
k − i+ j

j

)
+

(
n− k + i− j

i− 1

)
·
(
k − i+ j

j − 1

)]
.

The number of facets with n forward arrows and no backward arrows; and the number of facets with
no forward arrows and n backward arrows are both equal to 2n−1.
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Proof. Inspecting (8.1) we see that the total degree of x and y is strictly less than the degree of z,
except for the contributions, in which the following rules are observed:

(1) In the expansion of Da′,b′(x) only the contribution of those Delannoy paths are kept which
contain no NE steps. Hence, to compute the contribution of the facets only, we must replace

each appearance of Da′,b′(x) in (8.1) with
(
a′+b′

a′

)
· xa′+b′ .

(2) Similarly, we must replace each appearance of Da′′,b′′(y) in (8.1) with
(
a′′+b′′

a′′

)
· ya′′+b′′ .

(3) Only the z-free part of the factor C(a′, b′, a′′, b′′, z) contributes to the calculation of the con-
tribution of the facets.

Therefore we obtain

F
(
F̂ , x

w
,
y

w
,wz

)∣∣∣w=0 = 1 +
∑

a′,b′≥0

(
a′ + b′

a′

)
· (xz)a′+b′+1 +

∑

a′′,b′′≥0

(
a′′ + b′′

a′′

)
· (yz)a′′+b′′+1

(8.4)

+
∑

a′,b′≥0
a′′,b′′≥0

C0(a
′, b′, a′′, b′′) ·

(
a′ + b′

a′

)
· (xz)a′+b′+1 ·

(
a′′ + b′′

a′′

)
· (yz)a′′+b′′+1

where

C0(a
′, b′, a′′, b′′) =

(
a′ + b′′ + 1

b′′

)
·
(
a′′ + b′ + 1

b′

)
+

(
a′ + b′′ + 1

a′

)
·
(
a′′ + b′ + 1

a′′

)
.

The contribution of all facets consisting of forward arrows only is
∑

a′,b′≥0

(
a′+b′

a′

)
· (xz)a′+b′+1 on the

right-hand side of (8.4). The part of the statement regarding these facets is a direct consequence of
the binomial theorem. Similarly, the part of the statement on facets consisting entirely of backward
arrows follows from inspecting the next sum on the right-hand side of (8.4). The contribution of all
other facets is collected in the last sum. The contribution of all facets consisting of k forward and
n− k backward arrows is the sum of all terms satisfying a′ + b′ + 1 = k and a′′ + b′′ + 1 = n− k. The
statement now follows after substituting i = a′ + 1 and j = a′′ + 1. �

9. Face enumeration in the lex class

We now turn our attention to face enumeration in the lex class, consisting of the four triangulations
studied in Subsection 4.1. Among them are the lexicographic pulling triangulation. So far, the lex
class and revlex class have been similar to each other; see Propositions 3.6 and 3.7, Subsections 4.1
and 4.2. In this section this similarity breaks down. This section differs from the previous ones in
the simplicity and uniformity of its main result. As the attentive reader might suspect, there is also
a purely combinatorial way to prove it. For space considerations, we will present this combinatorial
proof in an upcoming paper [12], and here we depend on the tools developed in Section 6.

Theorem 9.1. Let △n be a uniform flag triangulation of the boundary ∂Pn of the Legendre polytope
in the lex class, that is, △n satisfies the rules:
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(1) Both THTH and HTHT types of pairs of arrows do not nest.
(2) Both THHT and HTTH types of pairs of arrows do not cross.

Then the number of (k − 1)-dimensional faces in the triangulation △n consisting of i forward arrows
and k − i backward arrows is given by

f(△n, i, k − i) =
fk−1(△n)

k + 1
=

1

k + 1
·
(
n+ k

k

)
·
(
n

k

)
.

Furthermore, this quantity is independent of the parameter i.

We begin with a lemma about Catalan numbers. For a subset S of the integers, call a run a maximal
interval in S.

Lemma 9.2. For k a nonnegative integer, let i be an integer satisfying 0 ≤ i ≤ k. Then the kth
Catalan number is given by the sum of products

Ck =
∑

S⊆[k]
|S|=i

∏

R run in S
or in [k]− S

C|R|.(9.1)

Note that when i = 0 or i = k, the lemma does not give anything new. When i = 1 or i = k − 1,
the lemma yields the classical recursion for the Catalan numbers.

Proof of Lemma 9.2. Recall that C(x) =
∑

k≥0Ck · xk is the generating function for the Catalan

numbers, which satisfies the quadratic relation C(x) = 1 + x · C(x)2. Let f(x) be C(x) without the
constant term, that is, f(x) = C(x)− 1. Multiply the right-hand side of (9.1) with xiyk−i and notice

that xiyk−i =
∏

R run in S x
|R| · ∏R run in [k]− S y

|R|. Sum over all i and k such that 0 ≤ i ≤ k. The

resulting generating function is given by
∑

k≥0
0≤i≤k

∑

S⊆[k]
|S|=i

∏

R run in S
or in [k]− S

C|R| · xiyk−i = 1 +
f(x)

1− f(y)f(x)
+

f(y)

1− f(x)f(y)
+ 2 · f(x)f(y)

1− f(x)f(y)
(9.2)

=
(1 + f(x)) · (1 + f(y))

1− f(x)f(y)
.(9.3)

Note that the constant term 1 in (9.2) corresponds to k = 0, the second term to subsets S ⊆ [k] with
1, k ∈ S, the third to subsets S ⊆ [k] with 1, k 6∈ S, and finally, the fourth term to subsets S such that
|S ∩ {1, k}| = 1. Next observe that

(1− f(x)f(y)) · (x · C(x)− y · C(y)) = (x− y) · C(x) · C(y),(9.4)

by expanding the product on the left-hand side of (9.4) and simplifying using the quadratic relation
C(x) = 1 + x · C(x)2 four times. Using (9.4) the generating function in (9.3) simplifies to

x · C(x)− y · C(y)

x− y
=

∑

k≥0

∑

0≤i≤k

Ck · xiyk−i,
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Figure 8. A forest with 6 forward arrows and 3 backward arrows on 12 nodes, counted
by the term G3(z) · z−1 ·G2(z) · 1 ·G3(z) · z−1 ·G1(z) in the proof of Proposition 9.4.

which is the generating function for the left-hand side of (9.1). �

Remark 9.3. Lemma 9.2 is equivalent to the following statement about lattice paths from the origin
to (2n, 0) taking up steps (1, 1) and down steps (1,−1). For such a lattice path p, considered as a
piecewise linear function, let b(p) be 1/2 times the sum of the lengths of the intervals where the lattice
path is below the x-axis. Then for an integer 0 ≤ i ≤ n, the number of lattice paths p such that
b(p) = i is given by the Catalan number Cn.

Observe that Corollary 6.9 applies to the case when we only have backward arrows or only forward
arrows. Now we turn our attention to the case when we have both forward and backward arrows.

Proposition 9.4. Consider digraphs such that both THTH and HTHT types of pairs of arrows do
not nest and both THHT and HTTH types of pairs of arrows do not cross. The sum over all forests F
consisting of i forward arrows, k − i backward arrows and no isolated nodes, where k ≥ 1, is

∑

F

z#nodes of F = Ck · zk+1 · (z + 1)k−1.

Proof. Given that we have k undirected arrows, pick a subset S of them. Let S be the set of the
forward arrows, and let the complement be the backward arrows. Hence the generating function can
be expressed as

∑

F

z#nodes of F =
∑

S⊆[k]
|S|=i

(1 + z−1)r(S)−1 ·
∏

R run in S
or in [k]− S

G|R|(z),

where r(S) is the sum of the number of runs in the subset S and the number of runs in the complement
subset [k]− S and G|R|(z) is the polynomial appearing in equation (6.6). The factor 1 + z−1 appears
since when we switch the direction of the arrows either the node set is disjoint, yielding the factor 1,
or they share an a vertex, yielding the factor z−1; see Figure 8. Expanding G|R|(z) using Corollary 6.9
we have ∑

F

z#nodes of F =
∑

S⊆[k]
|S|=i

z−r(S)+1 · (z + 1)r(S)−1 ·
∏

R run in S
or in [k]− S

C|R| · z|R|+1 · (z + 1)|R|−1

= zk+1 · (z + 1)k−1 ·
∑

S⊆[k]
|S|=i

∏

R run in S
or in [k]− S

C|R|,

where we used
∑

R |R| = k. Now by Lemma 9.2 the result follows. �
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Proof of Theorem 9.1. Observe that the enumeration in Proposition 9.4 is independent of i, that is,
the distribution is uniform. Inserting isolated vertices will not change this fact. Since the total number
of k-dimensional faces is given by fk−1(△n) =

(
n+k
k

)
·
(
n
k

)
, the number of faces with exactly i forward

arrows is fk−1(△n)/(k + 1). �

10. Concluding Remarks

The result of Oh and Yoo [17, Theorem 5.4] characterizing triangulations of products of simplices
is deep but not very direct. It is a straightforward exercise, left to the reader, to show that most
of the fifteen uniform flag triangulations of the boundary ∂Pn of the Legendre polytope are pulling
triangulations. Since all pulling triangulations of ∂Pn are flag, it suffices to come up with a pulling
order that satisfies the given flag conditions. Three of the fifteen uniform flag triangulations do not
seem to arise in such an easy manner: the triangulation in the lex class, where both TTHH and
HHTT types of pairs of arrows nest, the triangulation in the revlex class where both TTHH and
HHTT types of pairs of arrows cross, and the triangulation (up to taking the dual) in the type c
subclass of the Simion class. The geometry of these three triangulations is worth a closer look.

All triangulations of the boundary of the Legendre polytope discussed in this paper have the same
face numbers. Setting the variables x and y equal in our results yields many equalities linking the Le-
gendre polynomials, the Catalan numbers, the Delannoy numbers and their weighted generalizations.
Exploring these identities, relating them to known results, and proving them combinatorially are all
subjects of future investigation.

Stanley gives a condition for a lattice polytope so that the f -vector of a triangulation of the polytope
would be independent of the triangulation; see [20, Example 2.4 and Corollary 2.7] or [11, Theorem 2.6].
Is there an extension of this condition to explain the invariance of the refined face count, as displayed
in Theorems 7.1, 8.1 and 9.1? For instance, the condition “if an arrow is forward or backward” can be
replaced with the more geometric condition “if the inner product between the vector (1, 2, . . . , n+ 1)
and the lattice point v is positive or negative”.
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[2] F. Ardila, M. Beck, S. Hoşten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices,
SIAM J. Discrete Math. 25 (2011), 360–378.



CLASSIFICATION OF UNIFORM FLAG TRIANGULATIONS OF THE LEGENDRE POLYTOPE 41

[3] C. Banderier and S. Schwer, Why Delannoy numbers?, J. Statist. Plan. Inference 135 (2005), 40–54.
[4] E. Catalan, Sur les nombres de Segner, Rend. Circ. Mat. Palermo 1 (1887), 190–201.
[5] C. Ceballos, A. Padrol and C. Sarmiento, Dyck path triangulations and extendability, J. Combin. Theory

Ser. A 131 (2015), 187–208.
[6] C. Ceballos, A. Padrol and C. Sarmiento, Geometry of ν-Tamari lattices in types A and B, Sém. Lothar.

Combin. 78B (2017), Art. 68, 12 pp.
[7] P. Cellini and M. Marietti, Root polytopes and Abelian ideals, J. Algebr. Comb. 2014 (39), 607–645.
[8] S. Cho, Polytopes of roots of type An, Bull. Austral. Math. Soc. 59 (1999), 391–402.
[9] R. Cori and G. Hetyei, Counting genus one partitions and permutations, Sém. Lothar. Combin. 70 (2013), Art.

B70e, 29 pp.
[10] J. A. de Loera, J. Rambau and F. Santos, “Triangulations: Structures for Algorithms and Applications,”

Algorithms Comput. Math. vol. 25, Springer-Verlag, Berlin, 2010.
[11] R. Ehrenborg, G. Hetyei and M. Readdy, Simion’s type B associahedron is a pulling triangulation of the

Legendre polytope, Discrete Comput. Geom. 60 (2018), 98–114.
[12] R. Ehrenborg, G. Hetyei and M. Readdy, Very pure monoids and Catalan combinatorics, in preparation.
[13] I. M. Gelfand, M. I. Graev and A. Postnikov, Combinatorics of hypergeometric functions associated with

positive roots, in Arnold-Gelfand Mathematical Seminars: Geometry and Singularity Theory, Birkhäuser, Boston,
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