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9 SOME IDENTITIES INVOLVING SECOND KIND STIRLING

NUMBERS OF TYPES B AND D

ELI BAGNO, RICCARDO BIAGIOLI AND DAVID GARBER

Abstract. Using Reiner’s definition of Stirling numbers of the second kind
in types B and D, we generalize two well-known identities concerning the
classical Stirling numbers of the second kind. The first identity relates them
with Eulerian numbers and the second identity interprets them as entries in a
transition matrix between the elements of two standard bases of the polyno-
mial ring R[x]. Finally, we generalize these identities to the group of colored
permutations Gm,n.

1. Introduction

The Stirling number of the second kind, denoted S(n, k), is defined as the number
of partitions of the set [n] := {1, . . . , n} into k non-empty subsets (see [19, page
81]). Stirling numbers of the second kind arise in a variety of problems in enumer-
ative combinatorics; they have many combinatorial interpretations, and have been
generalized in various contexts and in different ways.

In the geometric theory of Coxeter groups they appear as follows. For any finite
Coxeter group W , there is a corresponding hyperplane arrangement W , whose
elements are the reflecting hyperplanes of W . Associated with W , there is the set
of all the intersections of these hyperplanes, ordered by reverse inclusion, called the
intersection lattice, and denoted L(W) (see e.g. [6, 18]). It is well-known that in the
Coxeter group of type A, L(An) is isomorphic to the lattice of the set partitions of
[n]. By this identification, the subspaces of dimension n−k are counted by S(n, k).
In this geometric context, Stirling numbers of the second kind are usually called
Whitney numbers (see [20, 22] for more details).

For Coxeter groups of types B and D, Zaslavsky [22] gave a description of L(Bn)
and L(Dn) by using the general theory of signed graphs. Then, Reiner [15] gave a
different combinatorial representation of L(Bn) and L(Dn) in terms of new types
of set partitions, called Bn- and Dn-partitions. We call the number of Bn- (resp.
Dn-) partitions with k pairs of nonzero blocks the Stirling number of the second
kind of type B (resp. type D).

The posets of Bn- and Dn-partitions, as well as their isomorphic intersection
lattices, have been studied in several papers [4, 5, 6, 9, 10, 20], from algebraic,
topological and combinatorial points of view. However, to our knowledge, two
famous identities concerning the classical Stirling numbers of the second kind (see
e.g. Bona [7, Theorems 1.8 and 1.17]) have not been generalized to types B and
D in a combinatorial way: the first identity relates the Stirling numbers to the
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Eulerian numbers, and the second one formulates a change of bases in R[x], both
will be described below.

The original definition of the Eulerian numbers was given by Euler in an analytic
context [11, §13]. Later, they began to appear in combinatorial problems, as the
Eulerian number A(n, k) counts the number of permutations in the symmetric group
Sn having k − 1 descents, where a descent of σ ∈ Sn is an element of the descent
set of σ, defined by :

Des(σ) := {i ∈ [n− 1] | σ(i) > σ(i + 1)}. (1)

We denote by des(σ) := |Des(σ)| the descent number.

The first above-mentioned identity relating Stirling numbers of the second kind
and Eulerian numbers is the following one, see e.g. [7, Theorem 1.17]:

Theorem 1.1. For all non-negative integers n ≥ r, we have

S(n, r) =
1

r!

r
∑

k=0

A(n, k)

(

n− k

r − k

)

. (2)

The second identity arises when one expresses the standard basis of the polyno-
mial ring R[x] as a linear combination of the basis consisting of the falling factorials
(see e.g. the survey of Boyadzhiev [8]):

Theorem 1.2. Let x ∈ R and let n ∈ N. Then we have

xn =

n
∑

k=0

S(n, k)[x]k, (3)

where [x]k := x(x−1) · · · (x−k+1) is the falling factorial of degree k and [x]0 := 1.

There are some known proofs for the last identity. A combinatorial one, realizing
xn as the number of functions from the set {1, . . . , n} to the set {1, . . . , x} (for a
positive integer x), is presented in [19, Eqn. (1.94d)]. The first geometric proof is
due to Knop [12].

In this paper, we use Stirling numbers of the second kind of types B and D, in
order to generalize the identities stated in Equations (2) and (3). Theorems 4.1 and
4.2 below are generalizations of the first identity for types B and D: they will be
proven by providing explicit procedures to construct ordered set partitions starting
from the elements of the corresponding Coxeter groups.

Theorems 5.1 and 5.4 generalize the second identity. We present here a geo-
metric approach, suggested to us by Reiner [16], which is based on some geometric
characterizations of the intersection lattices of types B and D. Moreover, we show
how to generalize these two classical identities to the colored permutations group
Gm,n.

The rest of the paper is organized as follows. Sections 2 and 3 present the known
generalizations of the Eulerian numbers and the set partitions, respectively, to the
Coxeter groups of types B and D. In Sections 4 and 5, we state our generalizations
of the two identities and prove them. Finally, in Section 6, we present some possible
extensions of the main results.
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2. Eulerian numbers of types B and D

We start with some notations. For n ∈ N, we set [±n] := {±1, . . . ,±n}. For a
subset B ⊆ [±n], we denote by −B the set obtained by negating all the elements
of B, and by ±B we denote the unordered pair of sets B,−B.

Let (W,S) be a Coxeter system. As usual, denote by ℓ(w) the length of w ∈ W ,
which is the minimal integer k satisfying w = s1 · · · sk with si ∈ S. The (right)
descent set of w ∈ W is defined to be

Des(w) := {s ∈ S | ℓ(ws) < ℓ(w)}.

A combinatorial characterization of Des(w) in type A is given by Equation (1)
above. Now we recall analogous descriptions in types B and D.

We denote by Bn the group of all bijections β of the set [±n] onto itself such
that

β(−i) = −β(i)

for all i ∈ [±n], with composition as the group operation. This group is usually
known as the group of signed permutations on [n]. If β ∈ Bn, then we write
β = [β(1), . . . , β(n)] and we call this the window notation of β.

As a set of generators for Bn we take SB :=
{

sB0 , s
B
1 , . . . , s

B
n−1

}

where for i ∈
[n− 1]

sBi := [1, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] and sB0 := [−1, 2, . . . , n].

It is well-known that (Bn, SB) is a Coxeter system of type B (see e.g. [3, §8.1]).
The following characterization of the (right) descent set of β ∈ Bn is well-known
[3].

Proposition 2.1. Let β ∈ Bn. Then

DesB(β) = {i ∈ [0, n− 1] | β(i) > β(i + 1)},

where β(0) := 0 (we use the usual order on the integers). In particular, 0 ∈ DesB(β)
is a descent if and only if β(1) < 0. We set desB(β) := |DesB(β)|.

For all non-negative integers n ≥ k, we set

AB(n, k) := |{β ∈ Bn | desB(β) = k}|, (4)

and we call them the Eulerian numbers of type B.
Note that in our context AB(n, k) counts permutations in Bn having k descents

rather than k − 1, like in type A, since this produces nicer formulas.

We denote by Dn the subgroup of Bn consisting of all the signed permutations
having an even number of negative entries in their window notation. It is usually
called the even-signed permutation group. As a set of generators for Dn we take
SD :=

{

sD0 , sD1 , . . . , sDn−1

}

where for i ∈ [n− 1]:

sDi := sBi and sD0 := [−2,−1, 3, . . . , n].

It is well-known that (Dn, SD) is a Coxeter system of type D, and there is a direct
combinatorial way to compute the (right) descent set of γ ∈ Dn (see e.g. [3, §8.2]):

Proposition 2.2. Let γ ∈ Dn. Then

DesD(γ) = {i ∈ [0, n− 1] | γ(i) > γ(i+ 1)},
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where γ(0) := −γ(2). In particular, 0 ∈ DesD(γ) if and only if
γ(1) + γ(2) < 0. We set desD(γ) := |DesD(γ)|.

For all non-negative integers n ≥ k, we set:

AD(n, k) := |{γ ∈ Dn | desD(γ) = k}|, (5)

and we call them the Eulerian numbers of type D.

For example, if γ = [1,−3, 4,−5,−2,−6], then:

DesD(γ) = {0, 1, 3, 5}, but DesB(γ) = {1, 3, 5}.

3. Set partitions of types B and D

In this section, we introduce the concepts of set partitions of types B and D as
defined by Reiner [15].

As mentioned above, we denote by L(W) the intersection lattice corresponding
to the Coxeter hyperplane arrangement W of a finite Coxeter group W . We will
focus only on the hyperplane arrangements of types A, B and D. In terms of the
coordinate functions x1, . . . , xn in R

n, they can be defined as follows:

An := { {xi = xj} | 1 ≤ i < j ≤ n},

Bn := { {xi = ±xj} | 1 ≤ i < j ≤ n} ∪ { {xi = 0} | 1 ≤ i ≤ n},

Dn := { {xi = ±xj} | 1 ≤ i < j ≤ n}.

It is well-known that in type A, the intersection lattice L(An) is isomorphic to
the lattice of set partitions of [n].

In type B, let us consider the following element of L(B9):

{x1 = −x3 = x6 = x8 = x9, x2 = x4 = 0, x5 = −x7}.

It can be easily presented as the following set partition of [±9]:

{{1,−3, 6, 8,−9}, {−1, 3,−6,−8, 9}, {2,−2, 4,−4}, {5,−7}, {−5, 7}}.

This probably was Reiner’s motivation to define the set partitions of type B, as
follows:

Definition 3.1. A Bn-partition is a set partition of [±n] into blocks such that the
following conditions are satisfied:

• There exists at most one block satisfying −C = C, called the zero-block. It
is a subset of [±n] of the form {±i | i ∈ S} for some S ⊆ [n].

• If C appears as a block in the partition, then −C also appears in that
partition.

A similar definition holds for set partitions of type D:

Definition 3.2. A Dn-partition is a Bn-partition such that the zero-block, if exists,
contains at least two positive elements.

We denote by SB(n, r) (resp. SD(n, r)) the number of Bn- (resp.
Dn-) partitions having exactly r pairs of nonzero blocks. These numbers are called
Stirling numbers (of the second kind) of type B (resp. type D). They correspond,
respectively, to the sequences oeis.org/A039755 and oeis.org/A039760 in the OEIS.
Tables 1 and 2 record these numbers for small values of n and r.

We now define the concept of an ordered set partition:
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n/r 0 1 2 3 4 5 6

0 1
1 1 1
2 1 4 1
3 1 13 9 1
4 1 40 58 16 1
5 1 121 330 170 25 1
6 1 364 1771 1520 395 36 1

Table 1. Stirling numbers SB(n, r) of the second kind of type B.

n/r 0 1 2 3 4 5 6

0 1
1 0 1
2 1 2 1
3 1 7 6 1
4 1 24 34 12 1
5 1 81 190 110 20 1
6 1 268 1051 920 275 30 1

Table 2. Stirling numbers SD(n, r) of the second kind of type D.

Definition 3.3. A Bn-partition (or Dn-partition) is ordered if the set of blocks is
totally ordered and the following conditions are satisfied:

• If the zero-block exists, then it appears as the first block.
• For each block C which is not the zero-block, the blocks C and −C are
adjacent.

Example 3.4. The following partitions

P1 = {{±3},±{−2, 1},±{−4, 5}},

P2 = {±{1},±{2},±{−4, 3}},

P3 = [{±1,±3}, {−2}, {2}, {−4, 5}, {−5, 4}] ,

are respectively, a B5-partition which is not a D5-partition, a D4-partition with no
zero-block, and an ordered D5-partition having a zero-block.

4. Connections between Stirling and Eulerian numbers of types B
and D

In this section, we present two generalizations of Theorem 1.1 for Coxeter groups
of types B and D.

Theorem 4.1. For all non-negative integers n ≥ r, we have:

SB(n, r) =
1

2rr!

r
∑

k=0

AB(n, k)

(

n− k

r − k

)

.
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Theorem 4.2. For all non-negative integers n ≥ r, with n 6= 1, we have:

SD(n, r) =
1

2rr!

[

r
∑

k=0

AD(n, k)

(

n− k

r − k

)

+ n · 2n−1(r − 1)! · S(n− 1, r − 1)

]

,

where S(n− 1, r − 1) is the usual Stirling number of the second kind.

Now, by inverting these formulas, similarly to the known equality in type A,
mentioned in [7, Corollary 1.18]:

A(n, k) =

k
∑

r=1

(−1)k−r · r! · S(n, r) ·

(

n− r

k − r

)

, (6)

we get the following expressions for the Eulerian numbers of type B (resp. type D)
in terms of the Stirling numbers of type B (resp. type D):

Corollary 4.3. For all non-negative integers n ≥ k, we have:

AB(n, k) =

k
∑

r=0

(−1)k−r · 2rr! · SB(n, r) ·

(

n− r

k − r

)

.

Corollary 4.4. For all non-negative integers n ≥ k, with n 6= 1, we have:

AD(n, k) =

[

k
∑

r=0

(−1)k−r
· 2rr! · SD(n, r) ·

(

n− r

k − r

)]

− n · 2n−1
·A(n− 1, k − 1).

4.1. Proof for type B. The proofs in this and in the next subsections use ar-
guments similar to Bona’s proof for the corresponding identity for type A, see [7,
Theorem 1.17].

Proof of Theorem 4.1. We have to prove the following equality:

2rr!SB(n, r) =

r
∑

k=0

AB(n, k)

(

n− k

r − k

)

.

The number 2rr!SB(n, r) in the left-hand side is the number of ordered Bn-
partitions having r pairs of nonzero blocks. Now, let us show that the right-hand
side counts the same set of partitions in a different way.

Let β ∈ Bn be a signed permutation with desB(β) = k, written in its window
notation. We start by adding a separator after each descent of β and after β(n).
If 0 ∈ DesB(β), this means that a separator is added before β(1). If r > k, we
add extra r − k artificial separators in some of the n− k empty spots, where by a
spot we mean a gap between two consecutive entries of β or the gap before the first
entry β(1). This splits β into a set of r blocks, where the block Ci is defined as the
set of entries between the ith and the (i+ 1)th separators for 1 ≤ i ≤ r. Now, this
set of blocks is transformed into the ordered Bn-partition with r pairs of nonzero
blocks:

[C0, C1,−C1, . . . , Cr,−Cr],

where the (optional) zero-block C0 equals to {±β(1), . . . ,±β(j)} if the first sepa-
rator is after β(j), for j ≥ 1, and it does not exist if the first separator is before
β(1).

For example, if β = [−2, 3, 5, 1,−4] ∈ B5, then after adding the separators
induced by descents, we get the sequence [ | −2, 3, 5 | 1 | −4 | ], which is transformed
into the ordered partition [{−2, 3, 5}, {2,−3,−5}, {1}, {−1}, {−4}, {4}]. On the
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other hand, if β′ = [2, 3, 5,−1,−4] ∈ B5, then after adding the separators induced
by the descents, we have β′ = [ 2, 3, 5 | − 1 | − 4 | ], which gives rise to the ordered
partition [{±2,±3,±5}, {−1}, {1}, {−4}, {4}], with a zero-block, and two nonzero
blocks.

There are exactly
(

n−k
r−k

)

ordered Bn-partitions obtained from β in this way.
From now on, we refer to this process of creating Bn-partitions starting from a
single signed permutation β, as the B-procedure.

It is easy to see that the B-procedure applied to different signed permutations
produces disjoint sets of ordered Bn-partitions; therefore, one can create in this way
∑r

k=0 AB(n, k)
(

n−k
r−k

)

distinct ordered Bn-partitions with r pairs of nonzero blocks.

Let us show that any ordered Bn-partition λ = [C0, C1,−C1, . . . , Cr,−Cr], can
be obtained through the B-procedure. If λ contains a zero-block C0, then put the
positive elements of C0 in increasing order at the beginning of a sequence S, and
add a separator after them. Then, order increasingly the elements in each of the
blocks C1, . . . , Cr, and write them sequentially in S (after the first separator if
exists), by adding a separator after the last entry coming from each block. Reading
the formed sequence S from the left to the right, one obtains the window notation
of a signed permutation β. Note that the number of descents in β is smaller than
or equal to r, since the elements in each block are ordered increasingly. Now, it is
clear that λ can be obtained by applying the B-procedure to β, where the artificial
separators are easily recovered. �

Example 4.5. The signed permutation

β = [ 1, 4 | −5,−3, 2 | ] ∈ B5

has 2 as a descent. It produces the following ordered B5-partition with one pair of
nonzero blocks

[{±1,±4}, {−5,−3, 2}, {5, 3,−2}],

and exactly
(

4
1

)

ordered B5-partitions with two pairs of nonzero blocks, namely:

[{1, 4}, {−1,−4}, {−5,−3, 2}, {5, 3,−2}],

[{±1}, {4}, {−4}, {−5,−3, 2}, {5, 3,−2}],

[{±1,±4}, {−5}, {5}, {−3, 2}, {3,−2}],

[{±1,±4}, {−5,−3}, {5, 3}, {2}, {−2}],

obtained by placing one artificial separator before entries 1, 2, 4 and 5, respectively.
The other ordered partitions coming from β with more blocks are obtained similarly.

Conversely, let

λ = [{±1,±4}, {5}, {−5}, {−3, 2}, {3,−2}]

be an ordered B5-partition. The corresponding signed permutation with the added
separators is β = [ 1, 4 ‖ 5 | − 3, 2 | ] ∈ B5. Note that although C1 = {5} is a
separate block, there is no descent between 4 and 5, meaning that λ is obtained by
adding an artificial separator in the spot between these two entries, denoted ‖.

4.2. Proof for type D. The proof of Theorem 4.2 is a bit more tricky. The basic
idea is the same as before: obtaining the whole set of ordered Dn-partitions with
r pairs of nonzero blocks from elements in Dn with at most r descents. We will
use the B-procedure presented in the previous subsection, with the addition of an
extra step, to take care of the special structure of the Dn-partitions. First of all,



8 ELI BAGNO, RICCARDO BIAGIOLI AND DAVID GARBER

we recall that we might have DesD(γ) 6= DesB(γ) for γ ∈ Dn, see an example at
the end of Section 2.

Let γ ∈ Dn be such that desD(γ) = k. We start by adding the separators
after the D-descents of γ and the artificial ones in case that k < r. Using the B-
procedure, we transform γ, equipped with the set of separators, into a Bn-partition.
The result is also aDn-partition, except in the case when there is a separator (either
induced by a D-descent or by an artificial addition) between γ(1) and γ(2), but
not before γ(1). In fact, in this case, we obtain an ordered Bn-partition with a
zero-block containing exactly one pair of elements, which is not a Dn-partition.

Hence, only in this case, we slightly modify the algorithm as follows. First we
toggle the sign of γ(1) and move the separator from after γ(1) to before it. We
call this action the switch operation. Then, we transform this new sequence of
entries and separators into a Dn-partition by applying the B-procedure. We refer
to this process of associating a permutation γ ∈ Dn with the obtained set of ordered
Dn-partitions, as the D-procedure.

Before proving that this procedure indeed creates ordered Dn-partitions, we give
an example of an element γ ∈ Dn, for which the application of the switch operation
is required.

Example 4.6. Let γ = [ −1 ‖ 3, 4 | −2 | −6,−5 | ] ∈ D6 be a permutation equipped
with the separators induced by the D-descents and one artificial separator added
after position 1. The B-procedure, applied to γ, results in an illegal ordered D6-
partition, since the zero-block B0 = {±1} consists of only one pair. Toggling the
sign of γ(1), and moving the artificial separator before position 1, we obtain:

γ′ = [ ‖ 1, 3, 4 | −2 | −6,−5 | ] ∈ B6 \D6,

that is transformed into the ordered D6-partition:

[{1, 3, 4}, {−1,−3,−4}, {−2}, {2}, {−6,−5}, {6, 5}].

As in type B, it is easy to see that by applying the D-procedure to all the
permutations in Dn, we obtain disjoint sets of ordered Dn-partitions, though, in
this case we do not obtain all of them. The next lemma specifies exactly which Dn-
partitions are not reached:

Lemma 4.7. The ordered Dn-partitions with r pairs of nonzero blocks, which can-
not be obtained by the D-procedure are exactly those of the form

λ = [C1 = {∗},−C1 = −{∗}, C2,−C2, . . . , Cr,−Cr], (7)

where ∗ stands for a single element of [±n], and such that the total number of
negative entries in the blocks C1 = {∗}, C2, . . . , Cr is odd.

Proof. First of all, we remark that when the D-procedure is applied to a permuta-
tion (equipped with separators) without the use of the switch operation, it produces
ordered Dn-partitions [C0, C1,−C1, . . . , Cr,−Cr] with an even number of negative
entries in the union C1 ∪ C2 ∪ · · · ∪ Cr. Let us call an ordered Dn-partition even
(resp. odd) if it satisfies (resp. does not satisfy) the latter condition.

In contrast, if the switch operation is applied, only odd partitions of the form
[C1,−C1, . . . , Cr,−Cr] without a zero-block are obtained, and the first block C1

contains at least the two entries γ(1) and γ(2).
From this it follows that the partitions in (7) cannot be reached.
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Let us show, that all other ordered Dn-partitions can be obtained using the
D-procedure.

Let λ = [C0, C1,−C1, . . . , Cr,−Cr] be an orderedDn-partition with a non-empty
zero-block C0. We look for the preimage γ ∈ Dn of λ. Since the switch operation
on a permutation γ ∈ Dn produces Dn-partitions without a zero-block, in our case
the switch operation has not been applied to γ.

We start by defining a sequence S as follows: we first put the positive entries
of C0 in their natural increasing order as the first elements of S, followed by a
separator. If λ is odd, we change the sign of the first entry of S to be negative.
Now, as described in the proof of Theorem 4.1, we complete S by concatenating
the r sequences composed by the elements of the blocks C1, . . . , Cr, where in each
block the elements are ordered increasingly and followed by a separator. We now
consider the obtained sequence S as a permutation γ ∈ Dn. Note that 0 /∈ DesD(γ),
since by construction |γ(1)| < γ(2) and so γ(1) + γ(2) > 0. Moreover, it is clear
that applying the D-procedure to γ yields the partition λ.

Now assume that λ = [C1,−C1, . . . , Cr,−Cr] is an ordered Dn-partition without
a zero-block.

If λ is even, it is easy to see that the above construction without the initial step
of reordering C0, produces γ ∈ Dn which is the preimage of λ.

Finally, if λ is odd and is not listed in Equation (7) it means that the first block
C1 has at least two elements, and that the switch operation is necessary (due to
the parity). As before, we define a sequence S by reordering increasingly all the
blocks Ci. Since C1 has at least two elements, we have that S(1) < S(2). Since
the partition is odd with no zero-block, we have applied a switch operation on its
preimage. Therefore, the sign of S(1) is negative. Now consider S as a permutation
γ ∈ Dn. It is easy to see that the obtained permutation γ ∈ Dn is indeed the
preimage of λ. �

We give now two examples of the reverse procedure: both examples are ordered
odd D5-partitions, but one has a zero-block, while the other has no zero-block, so
the latter requires the switch operation.

Example 4.8. (a) Let

λ1 = [C0 = {±1,±4}, {3}, {−3}, {−5, 2}, {5,−2}]

be an ordered odd D5-partition with a zero-block C0 which is odd since we have
one negative sign in {3} ∪ {−5, 2}. For recovering its preimage γ1 ∈ D5, we choose
the negative sign for the smallest positive entry in the zero-block, which is 1. After
inserting the other positive entry of C0 and a separator, we insert the other blocks,
where each block is ordered increasingly followed by a separator, to obtain the
permutation:

γ1 = [ −1, 4 | 3 | − 5, 2 | ] ∈ D5,

which is the preimage of the partition λ1 using the D-procedure.

(b) Let

λ2 = [{−4, 3}, {4,−3}, {2}, {−2}, {−5,−1}, {5, 1}]

be an ordered odd D5-partition without a zero-block. Hence, it is created by the
switch operation. First, by the standard reverse procedure, we get the element:

γ′

2 = [ | − 4, 3 | 2 | − 5,−1 | ] ∈ B5 \D5.
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Then, after performing the toggling of the sign of the first digit, we obtain:

γ2 = [ 4 | 3 | 2 | −5,−1 ] ∈ D5,

that is the permutation from which the partition λ2 is obtained. Note that in this
case, artificial separators are not needed.

We can now complete the proof of Theorem 4.2.

Proof of Theorem 4.2. The equation in the statement of the theorem is equivalent
to the following:

2rr!SD(n, r) =
r

∑

k=0

AD(n, k)

(

n− k

r − k

)

+ n · 2n−1(r − 1)! · S(n− 1, r − 1).

The left-hand side of the above equation counts the number of ordered Dn-
partitions with r pairs of nonzero blocks. The right-hand side counts the same set
of partitions divided in two categories: those coming from the D-procedure, that
are induced by permutations counted in AD(n, k), and those that are not, which
are listed in Lemma 4.7. It is easy to see that the latter can be enumerated in the
following way: first choose the absolute value of the unique element in C1 = {∗},
which can be done in n ways. Then, choose and order the r − 1 remaining blocks,
which can be done in (r− 1)! ·S(n− 1, r− 1) ways. Finally, choose the sign of each
entry in the blocks C1, C2, . . . , Cr, in such a way that an odd number of entries will
be signed, and this can be done in 2n−1 ways. This completes the proof. �

5. Falling factorials for Coxeter groups
of types B and D

In this section, we present generalizations of Theorem 1.2 for Coxeter groups of
types B and D and provide combinatorial proofs for them.

5.1. Type B. The following theorem is a natural generalization of Theorem 1.2 for
the Stirling numbers of type B, and it is a particular case of an identity appearing
in Bala [2], where the numbers SB(n, k) correspond to the sequence denoted there
by S(2,0,1). Bala uses generating functions techniques for proving this identity.

Theorem 5.1 (Bala). Let x ∈ R and let n ∈ N. Then we have

xn =
n
∑

k=0

SB(n, k)[x]
B
k , (8)

where [x]Bk := (x− 1)(x− 3) · · · (x− 2k + 1) and [x]B0 := 1.

A combinatorial interpretation of SB(n, k) using the model of k-attacking rooks

was given by Remmel and Wachs [17] (specifically, this is S0,2
n,k(1, 1) in their nota-

tion). More information on the rook interpretation of this and other factorization
theorems can be found in Miceli and Remmel [13].

Here we provide a kind of a geometric proof, suggested to us by Reiner, which
is related to a method used by Blass and Sagan [6] to compute the characteristic
polynomial of the poset L(Bn).

Proof. Being a polynomial identity, it is sufficient to prove it only for odd integers
x = 2m+ 1 where m ∈ N.
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The left-hand side of Equation (8) counts the number of lattice points in the n-
dimensional cube {−m,−m+1, . . . ,−1, 0, 1, . . . ,m}n. We show that the right-hand
side of Equation (8) counts the same set of points using the maximal intersection
subsets of hyperplanes the points lay on.

More precisely, let λ = {C0,±C1, . . . ,±Ck} be a Bn-partition with k pairs of
nonzero blocks, with 0 ≤ k ≤ n. We associate to this partition the set of lattice
points of the form (x1, . . . , xn), where xj = 0 for all j ∈ C0, and xj1 = xj2 6= 0
(resp. xj1 = −xj2 6= 0) whenever j1, j2 (resp. j1,−j2) belong to the same block Ci

(resp. −Ci).
For the first pair of nonzero blocks ±C1 of the set partition λ, if j1 ∈ C1 ∪−C1

then there are x− 1 possibilities (excluding the value 0) to choose the value of xj1 .
For the second pair of blocks ±C2 of the partition λ, we have x − 3 possibilities
(excluding the value 0 and the value xj1 chosen for ±C1 and its negative). We
continue in this way until we get x− (2k− 3) possibilities for the last pair of blocks
±Ck.

In particular, for k = 0, λ consists of only the zero-block {±1, . . . ,±n}, and is
associated with the single lattice point (0, . . . , 0); for k = n, the only Bn-partition
having n pairs of nonzero blocks is

{±{1}, . . . ,±{n}}

which corresponds to the lattice points (x1, . . . , xn) such that xi 6= ±xj 6= 0 for all
i 6= j. Note that these are the (x − 1)(x − 3) · · · (x − (2n − 1)) lattice points that
do not lie on any hyperplane. �

Example 5.2. Let n = 2 and m = 3, so we have that x = 2m+1 = 7. The lattice
([−3, 3]× [−3, 3]) ∩ Z

2 is presented in Figure 1.

2 3

1

2

3

−1

−2

−3

1−2 −1−3 0

Figure 1. Lattice points for type B

For k = 0, we have exactly one B2-partition λ0 consisting only of the zero-block:
λ0 = {{±1,±2}}. The corresponding subspace is {x1 = x2 = 0}, which counts
only the lattice point (0, 0).

For k = 1, we have four B2-partitions, two of them contain a zero-block:

λ1 = {{±1},±{2}}; λ2 = {{±2},±{1}},

and two of them do not:

λ3 = {±{1, 2}}; λ4 = {±{1,−2}}.
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The partitions λ1 and λ2 correspond to the axes x1 = 0 and x2 = 0, respectively.
The second pair λ3 and λ4 corresponds to the diagonals x1 = x2 and x1 = −x2

respectively. Each of these hyperplanes contains 6 lattice points (since the origin is
excluded).

For k = 2, the single B2-partition:

λ5 = {±{1},±{2}}

corresponds to the set of lattice points (x1, x2) with x1 6= ±x2 6= 0, which are those
not lying on any hyperplane.

Remark 5.3. Note that Blass and Sagan [6, Theorem 2.1] show that, when x is an
odd number, the cardinality of the set of lattice points not lying on any hyperplane
is counted by the characteristic polynomial χ(Bn, x) of the lattice L(Bn).

5.2. Type D. The falling factorial in type D is defined as follows: (see [6])

[x]Dk :=







1, k = 0;
(x− 1)(x− 3) · · · (x − (2k − 1)), 1 ≤ k < n;
(x− 1)(x− 3) · · · (x − (2n− 3))(x− (n− 1)), k = n.

We have found no generalization of Equation (3) for type D in the literature, so
we supply one here.

Theorem 5.4. For all n ∈ N and x ∈ R:

xn =

n
∑

k=0

SD(n, k)[x]Dk + n
(

(x− 1)n−1 − [x]Dn−1

)

. (9)

Proof. For Dn-partitions having 0 ≤ k < n pairs of nonzero blocks the proof goes
verbatim as in type B, so let k = n.

In this case, we have only one possible Dn-partition having n pairs of nonzero
blocks: {±{1}, . . . ,±{n}}. We associate this Dn-partition with the lattice points of
the form (x1, . . . , xn) such that xi 6= ±xj for i 6= j, having at most one appearance
of the value 0. Note that the points with exactly one appearance of 0 cannot be
obtained by any Dn-partition having k < n blocks, since the zero-block cannot
consist of exactly one pair. If 0 does appear, then we have to place it in one of the
n coordinates and then we are left with (x− 1)(x− 3) · · · (x− (2n− 3)) possibilities
for the rest, while if 0 does not exist, then we have (x− 1)(x− 3) · · · (x− (2n− 1))
possibilities. These two values sum up to a total of

[x]Dn = (x− 1)(x− 3) · · · (x − (2n− 3))(x− (n− 1)).

As in type B, this number is equal to the evaluation of the characteristic polynomial
χ(Dn, x) of L(Dn), where x is odd.

Note that during the above process of collecting lattice points of the n-dimensional
cube, the points containing exactly one appearance of 0 and at least two nonzero
coordinates are assigned the same absolute value are not counted, since the zero-
block (if exists) must contain at least two elements. This phenomenon happens
when n > 2, and the number of such points is n((x − 1)n−1 − [x]Dn−1). This con-
cludes the proof. �

Example 5.5. As in the previous example, let n = 2 and m = 3, so we have:
x = 2m+ 1 = 7. The lattice ([−3, 3]× [−3, 3]) ∩ Z

2 is presented in Figure 2.
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2 3

1

2

3

−1

−2

−3

1−2 −1−3 0

Figure 2. Lattice points for type D

For k = 0, as in type B we have exactly one D2-partition λ0 = {{±1,±2}} which
counts only the lattice point (0, 0). For k = 1, we have only two D2-partitions:
{±{1, 2}} and {±{1,−2}}, which correspond, as in the previous example, to the
diagonals x1 = x2 and x1 = −x2 (without the origin), respectively

For k = 2, as before, there is a single Dn-partition with two pairs of nonzero
blocks: λ = {±{1},±{2}}. The lattice points corresponding to this set partition
are those with different values in their coordinates, i.e. x1 6= x2, but in the case of
type D (in contrast to type B) the value 0 can also appear. In the figure, these are
all the lattice points which do not lie on the diagonals.

Note that in the case n = 2 the second term in Equation (9) is 0 and hence does
not count any missing lattice points, since we have already counted all the points.
The missing points start to appear from n = 3, as presented in the next example.

Example 5.6. Let n = m = 3, so that x = 2m + 1 = 7. The lattice points
which are not counted have the form (x1, x2, x3), such that exactly one of their
coordinates is 0 and the other two share the same absolute value, e.g. the lattice
points (0, 2, 2) and (0, 2,−2) are not counted. In this case, the number of such
missing lattice points (which is the first summand in the right-hand side of Equation
(9)) is: 3 · 62 − 3 · 6 · 4 = 36.

6. Some generalizations

In this section, we present some generalizations and variants related to our main
results in some different directions. In Section 6.1, we start with a short introduction
to the colored permutations group and we generalize Theorems 4.1 and 5.1 to this
case. In Section 6.2, we provide a version of Theorem 4.1 for the flag descent
parameter in type B.

6.1. The colored permutations group.

Definition 6.1. Let m and n be positive integers. The group of colored permuta-
tions of n digits with m colors is the wreath product

Gm,n = Zm ≀ Sn = Z
n
m ⋊ Sn,

consisting of all the pairs (~z, τ), where ~z is an n-tuple of integers between 0 and
m− 1 and τ ∈ Sn.
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A convenient way to look at Gm,n is to consider the alphabet

Σ :=
{

1, . . . , n, 1[1], . . . , n[1], . . . , 1[m−1], . . . , n[m−1]
}

,

as the set [n] colored by the colors 0, . . . ,m − 1. Then, an element of Gm,n is a
bijection π : Σ → Σ satisfying the following condition:

if π(i[α]) = j[β], then π(i[α+1]) = j[β+1],

where the exponent [·] is computed modulo m. The elements of Gm,n are usually
called colored permutations.

In particular, G1,n = Sn is the symmetric group, while G2,n = Bn is the group
of signed permutations.

Definition 6.2. The color order on Σ is defined to be

1[m−1] ≺ · · · ≺ n[m−1] ≺ · · · ≺ 1[1] ≺ 2[1] ≺ · · · ≺ n[1] ≺ 1 ≺ · · · ≺ n.

Definition 6.3. Let π ∈ Gm,n. Assume that π(1) = a
[z1]
1 . We define

desG(π) := desA(π) + ε(π),

where
desA(π) := |{i ∈ [n− 1] | π(i) ≻ π(i+ 1)}|, (10)

where ‘≻’ refers to the color order, and

ε(π) :=

{

1, if z1 6≡ 0 mod m;
0, if z1 ≡ 0 mod m.

(11)

For example, if π = [3, 1̄, ¯̄2] ∈ G3,3, we have desG(π) = 2 + 0 = 2. Note that for
m = 1, desG = des and for m = 2, desG = desB.

Moreover, we define the Eulerian number of type Gm,n to be:

Am(n, k) := |{π ∈ Gm,n | desG(π) = k}|.

Let C ⊆ Σ. Denote C [t] = {x[i+t] | x[i] ∈ C}.

Definition 6.4. A Gm,n-partition is a set partition of Σ into blocks such that the
following conditions are satisfied:

• There exists at most one block satisfying C [1] = C. This block will be
called the zero-block.

• If C appears as a block in the partition, then C [1] also appears in that
partition.

Two blocks C1 and C2 will be called equivalent if there is a natural number t ∈ N

such that C1 = C
[t]
2 .

The number of Gm,n-partitions with r non-equivalent nonzero blocks is denoted
by Sm(n, r).

For example, the following is a G3,4− partition:

{{1, 1̄, ¯̄1, 2, 2̄, ¯̄2}, {3, 4̄}, {3̄, ¯̄4}, {¯̄3, 4}},

with a zero-block: {1, 1̄, ¯̄1, 2, 2̄, ¯̄2}.
We define now the concept of an ordered Gm,n-partition:

Definition 6.5. A Gm,n-partition is ordered if the set of blocks is totally ordered
and the following conditions are satisfied:

• If the zero-block exists, then it appears as the first block.
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• For each nonzero block C, the blocks C [i] for 1 ≤ i ≤ m− 1 appear consec-
utively right after C, i.e. C,C [1], C [2], . . . , C [m−1].

The generalization of Theorem 1.1 in this setting is as follows.

Theorem 6.6. For all positive integers n,m and r, we have:

Sm(n, r) =
1

mrr!

r
∑

k=0

Am(n, k)

(

n− k

r − k

)

.

The proof is similar to that of Theorem 4.1, so it is omitted.

In order to generalize Theorem 1.2, we define the falling factorial of type Gm,n

as follows: (see Equation 15 in [2])

[x]mk :=

{

1, k = 0;
(x− 1)(x− 1−m) · · · (x− 1− (k − 1)m), 1 ≤ k ≤ n.

We have:

Theorem 6.7. Let x ∈ R and n ∈ N. Then we have:

xn =

n
∑

k=0

Sm(n, k)[x]mk .

We present here the idea of the proof.

Sketch of the proof. Divide the unit circle S1 in the plane into m parts according
to the mth roots of unity: 1, ρm, ρ2m, . . . , ρm−1

m , see Figure 3, where m = 3 and the
roots are represented by small bullets. This divides the circle into m arcs. Now,
in each arc, locate t points in equal distances from each other (see Figure 3 where
t = 5 and the points are represented by small lines). Including the point (1, 0), we
get x = mt+ 1 points on the unit circle.

Consider now the n-dimensional torus (S1)n = S1 × · · · × S1 with xn lattice
points on it. The same arguments we presented in the proof of Theorem 5.1 will
apply now to Theorem 6.7, when we interpret the Gm,n-partitions as intersections
of subsets of hyperplanes in Gm,n, where by Gm,n we mean the following generalized
hyperplane arrangement for the colored permutations group:

Gm,n := { {xi = ρkmxj} | 1 ≤ i < j ≤ n, 0 ≤ k < m}

∪ { {xi = 0} | 1 ≤ i ≤ n},

See e.g. [14, p. 244]. �

6.2. The flag descent parameter for the Coxeter group of type B. Another
possibility to generalize these results is to consider the flag descent statistics defined
on group of signed permutations. Such parameters produce, in this context, similar
expressions of those presented in the previous sections, but less elegant. As an
example, we show here only one of these possible extensions.

This is a different generalization of Theorem 4.1 by using the flag-descent number
fdes, that is defined in [1] for a signed permutation β ∈ Bn:

fdes(β) := 2 · desA(β) + ε(β).

where desA(β) is defined as in Equation (10), and ε(β) as in Equation (11).

We denote by A∗

B(n, k) the number of permutations β ∈ Bn satisfying fdes(β) =
k − 1, and by S∗

B(n, r) the number of Bn-partitions having exactly r blocks. Here,
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ρ0
3

= 1

1

2

3

45

ρ1
3

ρ1
3
· 1

ρ1
3
· 2

ρ1
3
· 3

ρ1
3
· 4

ρ1
3
· 5

ρ2
3

ρ2
3
· 1 ρ2

3
· 2

ρ2
3
· 3

ρ2
3
· 4

ρ2
3
· 5

Figure 3. The 16 lattice points on S1, representing the first co-
ordinate for m = 3 and t = 5.

differently from SB(n, r), every block counts: the zero-block is counted once, and
any pair ±Ci is counted twice.

These two new parameters satisfy the identity stated below:

Theorem 6.8. For all nonnegative integers n, r where n ≥ r, we have:

2⌊
r

2⌋
⌊ r

2

⌋

! S∗

B(n, r) =

r
∑

k=1

A∗

B(n, k)

(

n−
⌈

k
2

⌉

⌊

r−k
2

⌋

)

.

The proof uses arguments similar to those in the proof of Theorem 4.1, and is
therefore omitted.
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