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GOLDBACH’S LIKE CONJECTURES ARISING FROM ARITHMETIC
PROGRESSIONS WHOSE FIRST TWO TERMS ARE PRIMES

ROMEO MESTROVIC

ABSTRACT. For two odd primes p and ¢ such that p < ¢, let A(p, ¢) := (ax)3, be
the arithmetic progression whose kth term is given by ar, = (k — 1)(¢ — p) + p (i.e.,
with a3 = p and ay = ¢). Here we conjecture that for every positive integer a > 1
there exist a positive integer n and two odd primes p and ¢ such that a can be expressed
as a sum of the first 2n terms of the arithmetic progression A(p, ¢). Notice that in the
case of even a, this conjecture immediately follows from Goldbach’s conjecture. We
also propose the analogous conjecture for odd positive integers a > 1 as well as some
related Goldbach’s like conjectures arising from the previously mentioned arithmetic
progressions.

1. CONJECTURES ON ARITHMETIC PROGRESSIONS WHOSE FIRST TWO TERMS
ARE PRIMES

Let p and ¢ be two primes such that p < ¢ and let A(p, q) := (ax)52; be the arith-
metic progression whose kth term is given by

ar=(k—1)(g—p)+p, k=12,...

In other words, A(p, q) is an arithmetic progression whose first two terms are p and ¢
(i.e., a3 = pand as = ¢). The sum S,,(p, q) = S,, of the first n terms of the progression
A(p, q) is equal to

1) Su(p.4) = 5((n = g = (n— 3)p).

From (1) we have that foralln = 1,2,...and m = 0,1,2,... the sum S, ,,(p, q) :=
Z?:JFWT .1 a; of some n consecutive terms of progression A(p, ¢) is equal to

(2)  Sum(P, @) = Snim(P: @) — Sm(p,q) = g((n +2m —1)g — (n + 2m — 3)p).

We start with following example.

Example 1.1 (An extension of a Sylvester’s result). Here we examine positive integers
a which can be written as a sum S,, ,,,(2, 3) (given by (2) with p = 2 and ¢ = 3) for
some n > 2 and m > 1. The sum of kth term and (k + 1)th term of the progression
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A(2,3) = (k+ 1)52, is equal to 2k + 3. Therefore, every odd integer greater than 3 is
a sum of some two consecutive terms of A(2, 3). Furthermore, by (2) we have

n+m

(3) Sum(2,3)= 3 (i+1)= g(n+2m—l—3).

i=m+1

If a is an even positive integer which is not a power of 2, then a = (2d + 1)2* for
some positive integers d > land v > 1. If 1 < d < 2% — 2 for such a a, we have
Sodr12t—dg—2 = (2d +1)2* = a. If d = 0 thenn = 1 and 51,,(2,3) = m + 2 is
in fact the (m + 1)th term of A(2,3)). Similarly, if d > 2% 4 1, then Sou+1 4 9u_q =
(2d 4+ 1)2* = a. This shows that each even positive integer a = (2d + 1)2* with
1 <d<2"—2ord > 2"+ 1 can be expressed as a sum of at least two consecutive
terms of the arithmetic progression A(2, 3).

It remains to consider the cases when a is of the form 2%, (241 —1)2% or (21 41)2v
with some positive integer u. If a = 2%, then by (3) the equality S,,,,(2,3) = a is
equivalent to n(n + 2m + 3) = 2“1, which is impossible in view of the fact that one
among numbers n and n + 2m + 3 is an odd integer.

If a = (2“T' — 1)2% for a positive integer u, then the equality S, ,,(2,3) = a is
equivalent to

n(n +2m +3) = (2“t — 1)2v+,

If 241 — 1 is a composite number, then it can be written as a product 24" — 1 = tv
with odd integers ¢ > 3 and v > 3. Then the above equality holds for n = v > 3
andm = (t(tv+ 1)) —v—-3)/2 = (> - Do+t —-3)/2 > 12. If2*"! —1lisa
prime number, then easily follows that the above equality holds only for n = 1 and
m = (24Tt —1)2% — 2.

Now consider the last case, i.e., when a = (2“1 + 1)2“ for a positive integer wu.
Then the equality S, ,,(2, 3) = a is equivalent to

n(n +2m +3) = (2“7 + 1)2v+,

If 241 + 1 is a composite number, then it can be written as a product 2“1 + 1 = tv
with odd integers ¢ > 3 and v > 3. Then the above equality holds for n = v > 3
andm = (t(tv — 1)) —v—=3)/2 = (* —1)v—-t—-3)/2 > 9. If2“" + 1isa
prime number, then easily follows that the above equality holds only for n = 1 and
m = (24Tt +1)2% — 2.

In view ot the above considerations, we have shown that every integer a > 4 is
equal to S, (2, 3) for some integers n > 2 and m > 1 in all the cases excluding the
following ones:

1) a is not a power of 2;

2) a is not of the form (2“1 — 1)2%, where 2“"! — 1 is a prime number and

3) a is not of the form (2“7 + 1)2%, where 2“! + 1 is a prime number.

Remark 1.2. Notice that if @ = 2*(2“*! 4 1) for an integer u > 1, then a = Zle i,

while if ¢ = 2%(2*™! — 1) for an integer u > 1, then a = 2?:1_1 i. These two
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identities together with Example 1.1 imply the well known fact that every integer a > 1
which is not a power of 2, is a sum of two or more consecutive integers (see, e.g.,
Dickson’s History [1,, 1, Ch. III, p. 139], where this result was attributed to Sylvester).

Remark 1.3. Note that it is well known (see, e.g., [4, Subsections 2.2 and 2.3]) that
in order to the so-called a Mersenne number M, ., := 2*** — 1 to be prime, u + 1
must itself be prime. A Mersenne number which is prime is called Mersenne prime
(this is Sloane’s sequence A000668 in [6] corresponding to indices given by Sloane’s
sequence A000043). Moreover, it is easy to show that in order to 2“*! + 1 to be prime,
u + 1 must be a power of 2. Such numbers are in fact Fermat numbers F, := 2% + 1
(s =10,1,2,...; thisis Sloane’s sequence A000215 in [6]). Fermat conjectured in 1650
that every Fermat number is prime and Eisenstein proposed as a problem in 1844 the
proof that there are an infinite number of Fermat primes (i.e., Fermat numbers which
are primes) (see [S, p. 88]). However, the only known Fermat primes are Fy = 3,
Fy =5, F, =17, F53 = 257 and F; = 65537 (Sloane’s sequence A019434 in [6]). For
more information on classical and alternative approaches to the Mersenne and Fermat
numbers, see [3]].

Note that the conclusion at the end of Example 1.1 immediately yields the following
interesting assertion.

Proposition 1.4. The following two statements are equivalent:

(1) There are infinitely many Fermat primes or there are infinitely many Mersenne
primes;

(1) The set {Sn.m(2,3) : n=2,3,...;m = 1,2,...} omits infinitely many positive
integer values which are not powers of 2.

Example 1.5. For the progression A(3,5) = (2k+1);2, we have S, ,,,(3,5) = 2(2m+
4). From this it can be easily seen that a positive integer a > 8 is equal to some sum
Sn.m(3,5) with n > 2 if and only if a is divisible by 4 or a is an odd composite integer
greater than 14 which is not a square of a prime.

More generally, if ¢ = p + 2, then S,,,,(p,q¢) = n(n + 2m + p — 1). From this it
follows that a positive integer a is equal to some sum S,, ,,,(3, 5) with n > 2 if and only
if a = 4s with s > (p + 1)/2 or a is an odd composite integer which can be expressed
as a product n = ab with odd integers a and b such thata > 3and b > a +p — 1.

From Examples 1.1 and 1.5 it follows that every integer greater than 10 can be
expressed as a sum of two or more consecutive terms of the progression A(2,3) or
A(3,5). Accordingly, it can be of interest to consider a problem of representation of a
positive integer as a sum of two or more first consecutive integers in some progression
A(p, q). Notice that

Sa(p.q) =p+q,

and even Goldbach’s conjecture states that every even positive integer greater than 2
can be expressed as a sum of two primes. This famous conjecture was proposed on 7
June 1742 by the German mathematician Christian Goldbach in a letter to Leonhard
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Euler [2] (cf. [1]). This conjecture has been shown to hold for all integers less than
4 x 10'®, but remains unproven despite considerable effort.
In view of the above equality, this conjecture is equivalent with the following set
equality:
{S2(p,q) : p and ¢ are odd primes} = {2n: n € N\ {1,2}}.
This fact suggests the investigations of the values of .S,,(p, ¢) given by (1). Namely, for
each positive integer n, we will consider the values

(4) Son(p,q) = n((2n — 1)g — (2n — 3)p),
where p and ¢ are odd primes.

Using some heuristic arguments and computational results, we propose the follow-
ing “weak even Goldbach conjecture”.

Conjecture 1.6 (“weak even Goldbach conjecture”). For each even positive integer
a greater than 2 there exist a positive integer n and odd primes p and q such that
a = San(p, q); or equivalently, that

(5) a=n((2n—1)g— (2n — 3)p).
Clearly, the following conjecture is stronger than Conjecture 1.6.

Conjecture 1.7. For any positive integer n > 1 there exist odd primes p and q such

that
(6) (2n—1)g—(2n—3)p =2.
Note that the equality (6) can be written as
_ o 2p—1)
q=0p 2n - 1 )

whence it follows that p = 2k(2n — 1) + 1 and ¢ = 2k(2n — 3) + 1 for a positive
integer k. Hence, Conjecture 1.7 is equivalent to the following one.

Conjecture 1.7°. For any integer n > 1 there exists a positive integer k such that both
numbers p = 2k(2n — 1) + 1 and g = 2k(2n — 3) + 1 are primes.

If p and ¢ are odd primes, then from the expression (1) we see that .S, (p, ¢) is odd if
and only if n is even. The following conjecture is the odd analogue of Conjecture 1.6.

Conjecture 1.8 (“weak odd Goldbach conjecture”). For each odd positive integer a
greater than 2 there exist a positive integer n and odd primes p and q such that a =
Son+1(p, q); or equivalently, that

(7) a=2n+1)(ng— (n—1)p).
Clearly, the following conjecture is stronger than Conjecture 1.8.

Conjecture 1.9. For any positive integer n > 1 there exist odd primes p and q such
that

(8) ng—(n—1p=1
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From the equality (8) we have

p—1
q=p— )
n

whence we conclude that p = nk+1 and ¢ = (n—1)k+1 for a positive integer k. This
together with the fact that £ = p — ¢ is even shows that Conjecture 1.9 is equivalent to
the following one.

Conjecture 1.9°. For any integer n > 1 there exists a positive integer k such that both
numbers p = 2kn + 1 and q = 2k(n — 1) + 1 are primes.

Finally, notice that Conjectures 1.6 and 1.8 can be joined into the following conjec-
ture.

Conjecture 1.10 (“weak Goldbach conjecture”). Conjectures 1.6 and 1.8 are true if
and only if the following statement holds true:

For each positive integer a greater than 2 there exist a positive integer n and odd
primes p and q such that

(9) a=5((n—1)g—(n—3)p).
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