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GOLDBACH’S LIKE CONJECTURES ARISING FROM ARITHMETIC

PROGRESSIONS WHOSE FIRST TWO TERMS ARE PRIMES

ROMEO MEŠTROVIĆ

ABSTRACT. For two odd primes p and q such that p < q, let A(p, q) := (ak)
∞

k=1
be

the arithmetic progression whose kth term is given by ak = (k − 1)(q − p) + p (i.e.,

with a1 = p and a2 = q). Here we conjecture that for every positive integer a > 1
there exist a positive integer n and two odd primes p and q such that a can be expressed

as a sum of the first 2n terms of the arithmetic progression A(p, q). Notice that in the

case of even a, this conjecture immediately follows from Goldbach’s conjecture. We

also propose the analogous conjecture for odd positive integers a > 1 as well as some

related Goldbach’s like conjectures arising from the previously mentioned arithmetic

progressions.

1. CONJECTURES ON ARITHMETIC PROGRESSIONS WHOSE FIRST TWO TERMS

ARE PRIMES

Let p and q be two primes such that p < q and let A(p, q) := (ak)
∞

k=1
be the arith-

metic progression whose kth term is given by

ak = (k − 1)(q − p) + p, k = 1, 2, . . .

In other words, A(p, q) is an arithmetic progression whose first two terms are p and q
(i.e., a1 = p and a2 = q). The sum Sn(p, q) = Sn of the first n terms of the progression

A(p, q) is equal to

(1) Sn(p, q) =
n

2
((n− 1)q − (n− 3)p).

From (1) we have that for all n = 1, 2, . . . and m = 0, 1, 2, . . . the sum Sn,m(p, q) :=∑n+m

i=m+1
ai of some n consecutive terms of progression A(p, q) is equal to

(2) Sn,m(p, q) := Sn+m(p, q)− Sm(p, q) =
n

2
((n+ 2m− 1)q − (n + 2m− 3)p).

We start with following example.

Example 1.1 (An extension of a Sylvester’s result). Here we examine positive integers

a which can be written as a sum Sn,m(2, 3) (given by (2) with p = 2 and q = 3) for

some n ≥ 2 and m ≥ 1. The sum of kth term and (k + 1)th term of the progression
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A(2, 3) = (k + 1)∞k=1
is equal to 2k + 3. Therefore, every odd integer greater than 3 is

a sum of some two consecutive terms of A(2, 3). Furthermore, by (2) we have

(3) Sn,m(2, 3) =
n+m∑

i=m+1

(i+ 1) =
n

2
(n+ 2m+ 3).

If a is an even positive integer which is not a power of 2, then a = (2d + 1)2u for

some positive integers d ≥ 1 and u ≥ 1. If 1 ≤ d ≤ 2u − 2 for such a a, we have

S2d+1,2u−d−2 = (2d + 1)2u = a. (If d = 0 then n = 1 and S1,m(2, 3) = m + 2 is

in fact the (m + 1)th term of A(2, 3)). Similarly, if d ≥ 2u + 1, then S2u+1,d−2u−1 =
(2d + 1)2u = a. This shows that each even positive integer a = (2d + 1)2u with

1 ≤ d ≤ 2u − 2 or d ≥ 2u + 1 can be expressed as a sum of at least two consecutive

terms of the arithmetic progression A(2, 3).
It remains to consider the cases when a is of the form 2u, (2u+1−1)2u or (2u+1+1)2u

with some positive integer u. If a = 2u, then by (3) the equality Sn,m(2, 3) = a is

equivalent to n(n + 2m + 3) = 2u+1, which is impossible in view of the fact that one

among numbers n and n+ 2m+ 3 is an odd integer.

If a = (2u+1 − 1)2u for a positive integer u, then the equality Sn,m(2, 3) = a is

equivalent to

n(n + 2m+ 3) = (2u+1 − 1)2u+1.

If 2u+1 − 1 is a composite number, then it can be written as a product 2u+1 − 1 = tv
with odd integers t ≥ 3 and v ≥ 3. Then the above equality holds for n = v ≥ 3
and m = (t(tv + 1)) − v − 3)/2 = ((t2 − 1)v + t − 3)/2 ≥ 12. If 2u+1 − 1 is a

prime number, then easily follows that the above equality holds only for n = 1 and

m = (2u+1 − 1)2u − 2.

Now consider the last case, i.e., when a = (2u+1 + 1)2u for a positive integer u.

Then the equality Sn,m(2, 3) = a is equivalent to

n(n+ 2m+ 3) = (2u+1 + 1)2u+1.

If 2u+1 + 1 is a composite number, then it can be written as a product 2u+1 + 1 = tv
with odd integers t ≥ 3 and v ≥ 3. Then the above equality holds for n = v ≥ 3
and m = (t(tv − 1)) − v − 3)/2 = ((t2 − 1)v − t − 3)/2 ≥ 9. If 2u+1 + 1 is a

prime number, then easily follows that the above equality holds only for n = 1 and

m = (2u+1 + 1)2u − 2.

In view ot the above considerations, we have shown that every integer a ≥ 4 is

equal to Sn,m(2, 3) for some integers n ≥ 2 and m ≥ 1 in all the cases excluding the

following ones:

1) a is not a power of 2;

2) a is not of the form (2u+1 − 1)2u, where 2u+1 − 1 is a prime number and

3) a is not of the form (2u+1 + 1)2u, where 2u+1 + 1 is a prime number.

Remark 1.2. Notice that if a = 2u(2u+1 + 1) for an integer u ≥ 1, then a =
∑

2u+1

i=1
i,

while if a = 2u(2u+1 − 1) for an integer u ≥ 1, then a =
∑

2u+1
−1

i=1
i. These two
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identities together with Example 1.1 imply the well known fact that every integer a > 1
which is not a power of 2, is a sum of two or more consecutive integers (see, e.g.,

Dickson’s History [1, 1, Ch. III, p. 139], where this result was attributed to Sylvester).

Remark 1.3. Note that it is well known (see, e.g., [4, Subsections 2.2 and 2.3]) that

in order to the so-called a Mersenne number Mu+1 := 2u+1 − 1 to be prime, u + 1
must itself be prime. A Mersenne number which is prime is called Mersenne prime

(this is Sloane’s sequence A000668 in [6] corresponding to indices given by Sloane’s

sequence A000043). Moreover, it is easy to show that in order to 2u+1+1 to be prime,

u + 1 must be a power of 2. Such numbers are in fact Fermat numbers Fs := 22
s

+ 1
(s = 0, 1, 2, . . .; this is Sloane’s sequence A000215 in [6]). Fermat conjectured in 1650

that every Fermat number is prime and Eisenstein proposed as a problem in 1844 the

proof that there are an infinite number of Fermat primes (i.e., Fermat numbers which

are primes) (see [5, p. 88]). However, the only known Fermat primes are F0 = 3,

F1 = 5, F2 = 17, F3 = 257 and F4 = 65537 (Sloane’s sequence A019434 in [6]). For

more information on classical and alternative approaches to the Mersenne and Fermat

numbers, see [3].

Note that the conclusion at the end of Example 1.1 immediately yields the following

interesting assertion.

Proposition 1.4. The following two statements are equivalent:

(i) There are infinitely many Fermat primes or there are infinitely many Mersenne

primes;
(ii) The set {Sn,m(2, 3) : n = 2, 3, . . . ;m = 1, 2, . . .} omits infinitely many positive

integer values which are not powers of 2.

Example 1.5. For the progression A(3, 5) = (2k+1)∞k=1
we have Sn,m(3, 5) = 2(2m+

4). From this it can be easily seen that a positive integer a ≥ 8 is equal to some sum

Sn,m(3, 5) with n ≥ 2 if and only if a is divisible by 4 or a is an odd composite integer

greater than 14 which is not a square of a prime.

More generally, if q = p + 2, then Sn,m(p, q) = n(n + 2m + p − 1). From this it

follows that a positive integer a is equal to some sum Sn,m(3, 5) with n ≥ 2 if and only

if a = 4s with s ≥ (p+ 1)/2 or a is an odd composite integer which can be expressed

as a product n = ab with odd integers a and b such that a ≥ 3 and b ≥ a+ p− 1.

From Examples 1.1 and 1.5 it follows that every integer greater than 10 can be

expressed as a sum of two or more consecutive terms of the progression A(2, 3) or

A(3, 5). Accordingly, it can be of interest to consider a problem of representation of a

positive integer as a sum of two or more first consecutive integers in some progression

A(p, q). Notice that

S2(p, q) = p+ q,

and even Goldbach’s conjecture states that every even positive integer greater than 2
can be expressed as a sum of two primes. This famous conjecture was proposed on 7

June 1742 by the German mathematician Christian Goldbach in a letter to Leonhard
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Euler [2] (cf. [1]). This conjecture has been shown to hold for all integers less than

4× 1018, but remains unproven despite considerable effort.

In view of the above equality, this conjecture is equivalent with the following set

equality:

{S2(p, q) : p and q are odd primes} = {2n : n ∈ N \ {1, 2}}.

This fact suggests the investigations of the values of Sn(p, q) given by (1). Namely, for

each positive integer n, we will consider the values

(4) S2n(p, q) = n((2n− 1)q − (2n− 3)p),

where p and q are odd primes.

Using some heuristic arguments and computational results, we propose the follow-

ing “weak even Goldbach conjecture”.

Conjecture 1.6 (“weak even Goldbach conjecture”). For each even positive integer

a greater than 2 there exist a positive integer n and odd primes p and q such that

a = S2n(p, q); or equivalently, that

(5) a = n((2n− 1)q − (2n− 3)p).

Clearly, the following conjecture is stronger than Conjecture 1.6.

Conjecture 1.7. For any positive integer n > 1 there exist odd primes p and q such

that

(6) (2n− 1)q − (2n− 3)p = 2.

Note that the equality (6) can be written as

q = p−
2(p− 1)

2n− 1
,

whence it follows that p = 2k(2n − 1) + 1 and q = 2k(2n − 3) + 1 for a positive

integer k. Hence, Conjecture 1.7 is equivalent to the following one.

Conjecture 1.7’. For any integer n > 1 there exists a positive integer k such that both

numbers p = 2k(2n− 1) + 1 and q = 2k(2n− 3) + 1 are primes.

If p and q are odd primes, then from the expression (1) we see that Sn(p, q) is odd if

and only if n is even. The following conjecture is the odd analogue of Conjecture 1.6.

Conjecture 1.8 (“weak odd Goldbach conjecture”). For each odd positive integer a
greater than 2 there exist a positive integer n and odd primes p and q such that a =
S2n+1(p, q); or equivalently, that

(7) a = (2n+ 1)(nq − (n− 1)p).

Clearly, the following conjecture is stronger than Conjecture 1.8.

Conjecture 1.9. For any positive integer n > 1 there exist odd primes p and q such

that

(8) nq − (n− 1)p = 1.
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From the equality (8) we have

q = p−
p− 1

n
,

whence we conclude that p = nk+1 and q = (n−1)k+1 for a positive integer k. This

together with the fact that k = p− q is even shows that Conjecture 1.9 is equivalent to

the following one.

Conjecture 1.9’. For any integer n > 1 there exists a positive integer k such that both

numbers p = 2kn+ 1 and q = 2k(n− 1) + 1 are primes.

Finally, notice that Conjectures 1.6 and 1.8 can be joined into the following conjec-

ture.

Conjecture 1.10 (“weak Goldbach conjecture”). Conjectures 1.6 and 1.8 are true if

and only if the following statement holds true:
For each positive integer a greater than 2 there exist a positive integer n and odd

primes p and q such that

(9) a =
n

2
((n− 1)q − (n− 3)p).
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