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MOST PRINCIPAL PERMUTATION CLASSES HAVE

NONRATIONAL GENERATING FUNCTIONS

MIKLÓS BÓNA

Abstract. We prove that for any fixed n, and for most permutation
patterns q, the number Avn,ℓ(q) of q-avoiding permutations of length
n that consist of ℓ skew blocks is a monotone decreasing function of ℓ.
We then show that this implies that for most patterns q, the generating
function

∑
n≥0

Avn(q)z
n of the sequence Avn(q) of the numbers of q-

avoiding permutations is not rational.

1. Introduction

We say that a permutation p contains the pattern q = q1q2 · · · qk if there
is a k-element set of indices i1 < i2 < · · · < ik so that pir < pis if and
only if qr < qs. If p does not contain q, then we say that p avoids q. For
example, p = 3752416 contains q = 2413, as the first, second, fourth, and
seventh entries of p form the subsequence 3726, which is order-isomorphic to
q = 2413. A recent survey on permutation patterns can be found in [11] and
a book on the subject is [4]. Let Avn(q) be the number of permutations of
length n that avoid the pattern q. In general, it is very difficult to compute,
or even describe, the numbers Avn(q), or their sequence as n goes to infinity.
As far as the generating function Aq(z) =

∑
n≥0Avn(q)z

n goes, there are

known examples when it is algebraic, (when q is of length three, or when
q = 1342), and known examples when it is not algebraic (when q is the
monotone pattern 12 · · · k, where k is an even integer that is at least four).
The question whether Aq(z) is always differentiably finite was raised in 1996
by John Noonan and Doron Zeilberger, and is still open. See Chapter 6
of [10] for an introduction to the theory of differentiably finite generating
functions and their importance.

In this paper, we prove that for patterns q = q1q2 · · · qk, where k > 2 and
{q1, qk} 6= {1, k}, the generating function Aq(z) is never rational, and for
even for a few patterns for which {q1, qk} = {1, k}. It is plausible to think
that our result holds for the less than 1/[k(k−1)] of patterns of length k for
which we cannot prove it. On the other hand, the statement obviously fails
for the pattern q = 12, since for that q, we trivially have that Avn(q) = 1 for
all n, so Aq(z) = 1/(1−z). The set of permutations of any length that avoid
a given pattern q is often called a principal permutation class, explaining the
title of this paper. As rational functions are differentiably finite, this paper
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2 MIKLÓS BÓNA

excludes a small subset of differentiably finite power series from the set of
possible generating functions of principal permutation classes.

In proving the result described in the preceding paragraph, our main
tool will be a theorem that is interesting on its own right. We say that a
permutation p is skew indecomposable if it is not possible to cut p into two
parts so that each entry before the cut is larger than each entry after the
cut. For instance, p = 3142 is skew indecomposable, but r = 346512 is not
as we can cut it into two parts by cutting between entries 5 and 1, to obtain
3465|12.

If p is not skew indecomposable, then there is a unique way to cut p into
nonempty skew indecomposable strings s1, s2, · · · , sℓ of consecutive entries
so that each entry of si is larger than each entry of sj if i > j. We call these
strings si the skew blocks of p. For instance, p = 67|435|2|1 has four skew
blocks, while skew indecomposable permutations have one skew block.

The number of skew blocks of a permutation is of central importance
for this paper. For permutations with no restriction, it is easy to prove
that almost all permutations of length n are skew indecomposable. In this
paper, we consider a similar question for pattern avoiding permutations.
We prove that if q is a skew indecomposable pattern, and n is any fixed
positive integer, then the number Avn,ℓ(q) of q-avoiding permutations of
length n that consist of ℓ skew blocks is a monotone decreasing function
of ℓ. That is, as the number ℓ of skew blocks increases, the number of q-
avoiding permutations with ℓ skew blocks decreases. We will only need a
special case of these inequalities (the one relating to ℓ = 1 and ℓ = 2) to
prove our main result in Section 5.

2. Preliminaries

The following proposition shows that in order to prove our monotonicity
result announced in the introduction, it suffices to prove the relevant in-
equality for ℓ = 1. This proposition does not hold for patterns that are not
skew indecomposable. Recall that Avn,ℓ(q) denotes the number of q-avoiding
permutations of length n that consist of ℓ skew blocks.

Proposition 2.1. Let q be any skew indecomposable pattern. If, for all

positive integers n, the inequality

(1) Avn,2(q) ≤ Avn,1(q)

holds, then for all positive integers n, and all positive integers ℓ, the inequal-

ity

Avn,ℓ+1(q) ≤ Avn,ℓ(q)

holds.

Proof. Let Aℓ,q(z) =
∑

n≥1 Avn,ℓ(q)z
n be the ordinary generating function

of the sequence of the numbers Avn,ℓ(q). As q is skew indecomposable, a
permutation p with ℓ skew blocks is q-avoiding if and only if each of its skew
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blocks is q-avoiding. This implies that Aℓ,q(z) = A1,q(z)
ℓ, so, for all ℓ ≥ 2,

we have the equalities

Aℓ,q(z) = Aℓ−1,q(z) ·A1,q(z),

and
Aℓ+1,q(z) = Aℓ−1,q(z) · A2,q(z).

As the coefficient of each term in A1,q(z) is at least as large as the corre-
sponding coefficient of A2,q(z), and the coefficients of Aℓ−1,q(z), A1,q(z), and
A2,q(z) are all nonnegative, it follows from the way in which the product of
power series is computed that the coefficient of each term in Aℓ,q(z) is at
least as large as the corresponding coefficient of Aℓ+1,q(z). This proves our
claim. �

We will also need the following simple fact. If q = q1q2 · · · qk is a pattern,
let qrev denote its reverse qkqk−1 · · · q1, and let qc denote its complement
(k + 1 − q1)(k + 1 − q2) · · · (k + 1 − qk). For instance, if q = 25143, then
qrev = 34152, and qc = 41523. Recall that Avn(q) denotes the number of
permutations of length n that avoid q. It is then obvious that for all patterns
q, the equalities

(2) Avn(q) = Avn(q
rev) = Avn(q

c)

hold. These equalities, and similar others, will be useful for us because of
the following fact.

Proposition 2.2. Let q and q′ be two skew indecomposable patterns so that

the equality

(3) Avn(q) = Avn(q
′)

holds for all n ≥ 1. Then for all positive integers n, and for all positive

integers ℓ ≤ n, the equality

(4) Avn,ℓ(q) = Avn,ℓ(q
′)

holds.

In other words, if two skew indecomposable patterns are avoided by the
same number or permutations of length n for all n, (in this case they are
called Wilf-equivalent), then they are avoided by the same number of per-
mutations of the length n that have ℓ skew blocks.

Proof. Recall that Aq(z) =
∑

n≥0Avn(q)z
n. Then

Aq(z) =
∑

ℓ≥0

Aℓ,q(z) =
∑

ℓ≥0

Aℓ
1,q(z) =

1

1−A1,q(z)
,

where the second equality holds because q is skew indecomposable. (We
explained this in the proof of Proposition 2.1.)

Therefore,

(5) A1,q(z) = 1−
1

Aq(z)
,
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and similarly,

A1,q′(z) = 1−
1

Aq′(z)
.

Therefore, our conditions imply that A1,q(z) = A1,q′(z), and therefore,
for all ℓ, the equalities

Aℓ,q(z) = (A1,q(z))
ℓ = (A1,q′(z))

ℓ = Aℓ,q′(z)

hold. Equating coefficients of zn completes our proof. �

3. The pattern 132

The pattern 132 will be of particular importance to us because it enables
us to illustrate a method that we will later apply in a more general setting.
As a byproduct, we will prove a simple, but surprising result in Lemma 3.3.

Skew blocks of 132-avoiding permutations have a simple property that we
state and prove below.

Proposition 3.1. Let p ∈ Avn(132) have ℓ skew blocks, of sizes a1, a2, · · · , aℓ
when listed from the right. Then for 1 ≤ i ≤ ℓ, the rightmost entry of the

ith skew block from the right is a1 + a2 + · · ·+ aℓ.

Example 3.2. If p = 6758|4|123, then a1 = 3, a2 = 1, and a3 = 4, and
indeed, the rightmost skew block ends in a1 = 3, the second skew block

from the right ends in a1 + a2 = 4, and the leftmost skew block ends in

a1 + a2 + a3 = 8.

Proposition 3.1. We prove our statement for each skew block moving from

left to right. For the leftmost skew block, the statement claims that its
rightmost entry will be a1+a2+ · · ·+aℓ = n. Indeed, n is always a member
of the leftmost skew block (in any permutation of length n, regardless of
pattern avoidance), since it is the largest entry. On the other hand, in a
132-avoiding permutation, all entries on the left of n must be larger than all
entries on the right of n. Therefore n always ends the first (leftmost) skew
block.

In order to prove the statement for the second skew block from the left,
simply remove all entries weakly on the left of n from our permutation p.
We obtain a 132-avoiding permutation of length a1 + a2 + · · · + aℓ−1, and
then we can repeat the same argument for the leftmost skew block of this
permutation (that skew block was the second skew block of p). Then repeat
the same argument for each skew block. �

Next we show the interesting fact that when q = 132, then in (1), equality
holds if n > 1.

Lemma 3.3. Let n ≥ 2. Then the equality

Avn,2(132) = Avn,1(132)

holds.
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Proof. We define a map f : Avn,2(132) → Avn,1(132), and show that it is
a bijection. The special case of ℓ = 1 of Proposition 3.1 shows that a 132-
avoiding permutation is skew-indecomposable if and only if it ends in its
maximum entry.

Let p ∈ Avn,2(132), and let us define f(p) by moving the maximum entry
n of p into the last position of p. It follows from the characterization of
Avn,1(132) given above that f(p) ∈ Avn,1(132).

Note that Proposition 3.1 implies that if the rightmost skew block R of
p was of length a1, then the next-to-last entry of f(p) is a1. Therefore, if
w = w1w2 · · ·wn is a permutation in Avn,1(132), then we obtain f−1(w) by
moving its last entry n to the immediate left of the skew block R, that is,
in position n− a1. This always results in a 132-avoiding permutation, since
we placed n between two skew blocks, and the obtained permutation will
always have two skew blocks, namely R and the rest of f−1(w), ending in
n. So f has an inverse function, and hence it is a bijection. �

Example 3.4. If p = 534612, then f(p) = 534126.

Now Proposition 2.1 and Lemma 3.3, and the fact that 1 = Av1,1(132) >
Av1,2(132) = 0 together immediately imply the following.

Theorem 3.5. For all positive integers n, and all positive integers ℓ ≤ n−1,
the inequality

Avn,ℓ+1(132) ≤ Avn,ℓ(132)

holds.

Note that the fact that Av1,1(132) > Av1,2(132) implies that the inequal-
ity in Theorem 3.5 is strict unless ℓ = 1 and n > 1.

4. The case containing most patterns

In the last section, we discussed a map that took a permutation with
two skew blocks and moved its largest entry in its last position. For 132-
avoiding permutations, this led to a bijection between two sets in which we
were interested. In this section, we will replace 132 by a pattern q coming
from a very large set of patterns. Furthermore, instead of moving the largest
entry to the back, we will move the last entry of the first skew block to the
end of the whole permutation. (In the special case of q = 132, that entry
happens to be the largest entry as well.) We will be able to show that this
map is an injection from Avn,2(q) to Avn,1(q).

For the rest of this section, the pattern q is assumed to be skew indecom-

posable. Let us call a pattern q = q1q2 · · · qk good if there does not exist a
positive integer i ≤ k − 1 so that {qk−i, qk−i+1, · · · , qk−1} = {1, 2, · · · , i}.
That is, q is good if there is no proper segment immediately preceding its
last entry whose entries would be the smallest entries of q. For instance,
q = 132 and q = 3142 are good, but q = 1324 and q = 35124 are not,
because of the choices of i = 3 in the former, and i = 2 in the latter. In
particular, q is never good if qk = k, because then we can choose i = k − 1.
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Lemma 4.1. Let q be a good pattern. Then for all positive integers n, the
inequality

Avn,2(q) ≤ Avn,1(q)

holds.

Proof. We define a map g : Avn,2(q) → Avn,1(q), and show that it is an
injection.

Let p ∈ Avn,2(q). That means p has two skew blocks; let us call the
entries of the first skew block the big entries, and the entries of the second
skew block the small entries. Let us define g(p) by moving the rightmost big

entry x of p into the last position of p. The obtained permutation g(p) still
avoids q. Indeed, as p avoids q, the only way g(p) could possibly contain a
copy C of q would be if C contained the recently moved entry x that is at
the end of g(p). However, C could not consist entirely of big entries, since
then p would contain q as well. Therefore, C must start with a (possibly
empty) string of big entries, followed by a non-empty string of small entries,
and end by its maximal entry x, which is a large entry. This contradicts our
assumption that q is a good pattern.

Now we prove that g : Avn,2(q) → Avn,1(q) is an injection. Let p∗ be the
(partial) permutation we obtain from p when we remove x. The structure
of p∗ is as follows.

(1) The small entries of p form a skew block at the end, and
(2) the big entries of p can form

(a) zero skew blocks, if there was only one large entry in p, or
(b) one block, if the removal of x did not split the first skew block

of p into more blocks, or
(c) more than one block, if the removal of x did split the first skew

block of p into more blocks.
In each case, g(p) without its last entry will have one additional skew
block, namely the skew block of the small entries.

An example for the first case is p = 53124 and f(p) = 31245, an example
for the second case is p = 536412 and f(p) = 536124, and an example for
the last case is p = 6534712, and f(p) = 6534127. In each case, the pattern
q can be any skew indecomposable pattern that p avoids.

Let w = w1w2 · · ·wn be a permutation in Avn,1(q). Consider its segment
w∗ = w1w2 · · ·wn−1, and count how many skew blocks it has.

(a) If w∗ has one skew block, then g(p) = w implies that p has only one
large entry, the entry n, and that is in the first position of p. So we
obtain the unique permutation g−1(w) = p by placing the last entry
wn of w into the first position.

(b) If w∗ has two skew blocks, and the one on the right contains entries
larger than wn, then w does not have a preimage under g, since the
rightmost block of w∗ must coincide with the small entries of its
purported preimage, and those entries must be smaller than the big
entry wn = x. If w∗ has two skew blocks, and the one on the right
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consists of entries smaller than wn, then the unique permutation
g−1(w) = p is obtained by placing wn = x just in front of that block.
Indeed, this is the only way to assure that wn = x is the last entry
of the first block of g−1(w) = p.

(c) If w∗ has more than two skew blocks, then just in the previous case,
wn must be larger than all entries in the rightmost of those skew
blocks. Next, we claim that even in this case, the unique permutation
g−1(w) = p is obtained by placing wn immediately to the left of the
skew block of small entries.

Indeed, let us assume that wn = x is somewhere else. The struc-
ture of w is as follows.

w = B1|B2| · · · |Bt|S|x,

with t ≥ 2, where B1 is the first skew block of w, and S is the skew
block of the small entries of p.

Then in g−1(w), the entry x cannot be between Bi and Bi+1,
because then g−1(w) /∈ Avn,2(q). Indeed, either x is larger than
everything in Bi+1, and then there is at least one skew block on
the left of Bi+1, and Bi+1 is a skew block, and S is a skew block,
yielding that g−1(w) has at least three skew blocks, or x is smaller
than everything in Bi, and then similarly, Bi is a skew block, the
string starting with x and ending immediately before S is a union
of skew blocks, and S is a skew block, leading to at least three skew
blocks again.

It is also impossible that in g−1(w), the entry wn = x is at the
very front, because x is supposed to be the rightmost entry of the
first skew block of g−1(w), and the only way for the rightmost entry
of a skew block to be also the leftmost one is by that skew block
being of size 1. However, that would mean that g−1(w) = p starts
with its largest entry, so the rest of p, and therefore, w∗, has only
one skew block, and so we are in case (a), not case (c).

So we have seen that if w ∈ Avn,1(q), then w has at most one preimage
under g, proving that g : Avn,2(q) → Avn,1(q) is an injection, and hence
proving our lemma. �

Now we are going to extend the reach of Lemma 4.1 to other patterns.

Lemma 4.2. Let q = q1 · · · qk be a skew indecomposable pattern so that

q1 6= 1 or qk 6= k or both. The the inequality

Avn,2(q) ≤ Avn,1(q)

holds.

Proof. Let q = q1q2 · · · qk be a pattern that is not a good pattern and does
not end in its largest entry. That means that there exists an i < k − 1 so
that {qk−i, qk−i+1, · · · , qk−1} = {1, 2, · · · , i}, and qk = y 6= k. Therefore,
in the reverse qrev of q, the entry y 6= k is in the first position, and the
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entries in positions 2, 3, · · · , i+1 are the entries 1, 2, · · · , i in some order. In
particular, the entry 1 precedes the entry k, so qrev is skew indecomposable.
Furthermore, qrev is a good pattern, since again, the entry 1 precedes the
entry k, so all ending segments that contain 1 also contain k, so the only way
for qrev to be not good would be by ending in k. However, that would imply
that q starts in k, contradicting the assumption that q is indecomposable.

If q is a skew indecomposable pattern that is not good and ends in its
largest entry, but does not start in the entry 1, then the reverse complement
(qc)rev := qrc of q is a skew indecomposable pattern that does not end in its
largest entry. So, by the previous paragraph, either qrc or its reverse qc is a
good pattern. In either case, we finish our proof by applying Lemma 4.1 to
either qrc or to qc, and then applying Proposition 2.2 to conclude that our
statement holds for q as well. �

Lemma 4.2 does not cover patterns that start with their minimal element
and end with their largest element, like 1324. However, if q is such a pattern,
we can still prove the statement of Lemma 4.2 for q if q is Wilf-equivalent
to a pattern q′ that is covered by Lemma 4.2. Indeed, this is an immediate
consequence of Proposition 2.2. So, for instance, the statement of Lemma
4.2 also holds for all monotone patterns 12 · · · k, since it is well-known [1]
that 12 · · · k is Wilf-equivalent to the pattern 12 · · · (k − 2)k(k − 1).

The proof of the monotonicity result announced in the introduction is
now immediate.

Theorem 4.3. Let q = q1 · · · qk be a skew indecomposable pattern so that

at least one of the following conditions hold

(1) q1 6= 1, or
(2) qk 6= k, or
(3) q1 = 1 and qk = k, but q is Wilf-equivalent to a skew-indecomposable

pattern in which the first entry is not 1 or the last entry is not k.

Then the inequality

Avn,ℓ+1(q) ≤ Avn,ℓ(q)

holds for all nonnegative integers n and all positive integers ℓ.

Proof. Proposition 2.2 implies that we can assume that q does not start
with 1, or does not end in k. Then the proof of our claim is immediate from
Lemma 4.2 and Proposition 1. �

5. Why Aq(z) is not rational

We can now prove the result mentioned in the title of the paper.

Theorem 5.1. Let q = q1q2 · · · qk be a pattern so that either {1, k} 6=
{q1, qk}, or q is Wilf-equivalent to a pattern v = v1v2 · · · vk so that {1, k} 6=
{v1, vk} Then the generating function Aq(z) is not rational.
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Proof. First, note that we can assume that q is skew indecomposable. In-
deed, if q is not, then qrev is, and clearly, Aq(z) = Aqrev(z).

So let q be skew indecomposable, and let us assume that Aq(z) is rational.
Then by (5), the power series A1,q(z) is also rational. Let r > 0 be the
radius of convergence of A1,q(z). We know that r > 0, since we know [6] that
Avn,1(q) ≤ Avn(q) ≤ cnq for some constant cq. As the coefficients of A1,q(z)

are all nonnegative real numbers, it follows from Pringsheim’s theorem [5]
that the positive real number r is a singularity of A1,q(z). As A1,q(z) is
rational, r is a pole of A1,q(z), so limz→r A1,q(z) = ∞. Therefore, there
exists a positive real number z0 < r so that A1,q(z0) > 1. Therefore,

∑

n≥1

Avn,1(q)z
n
0 = A1,q(z0) < A1,q(z0)

2 = A2,q(z0) =
∑

n≥2

Avn,2(q)z
n
0 ,

contradicting the fact, proved in Theorem 4.3, that for each n, the coefficient
of zn in the leftmost powers series is at least as large as it is in the rightmost
power series. �

The elegant argument in the previous paragraph is due to Robin Pemantle
[9]. It shows that the square of a rational power series with nonnegative
coefficients and a positive convergence radius will have at least one coefficient
that is larger than the corresponding coefficient of the power series itself. A
significantly more complicated argument proves a stronger statement. The
interested reader should consult [2] for details.

6. Further directions

It goes without saying that it is an intriguing problem to prove Lemma 4.2
for the remaining patterns. Of course, Theorem 5.1 could possibly be proved
by other means, but numerical evidence seems to suggest that Theorem 5.1
will hold even for patterns that start with their minimum entry and end in
their largest entry. Interestingly, the shortest patterns for which we cannot
prove Theorem 5.1 are 1324 and 4231, which also happen to be the shortest
patterns for which no exact formula is known for Avn(q).

It is important to point out that our results do not hold at all for permu-
tation classes that are generated by more than one pattern. For instance,
let Avn(123, 132) denote the number of permutations of length n that avoid
both 123 and 132. It is then easy to prove that Avn(123, 132) = 2n−1, so
A123,132(z) = (1 − z)/(1 − 2z), a rational function. Note that in this case,
Avn,1(123, 132) = 1, since the only such permutation is (n−1)(n−2) · · · 1n,
while Avn,2(123, 132) = n− 1, so Lemma 4.2 does not hold.
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