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AN IDENTITY FOR VERTICALLY ALIGNED ENTRIES IN PASCAL’S

TRIANGLE

HEIDI GOODSON

Abstract. The classic way to write down Pascal’s triangle leads to entries in alternating
rows being vertically aligned. In this paper, we prove a linear dependence on vertically
aligned entries in Pascal’s triangle. Furthermore, we give an application of this dependence
to morphisms between hyperelliptic curves.

1. Introduction

We consider entries in the nth row of Pascal’s triangle, where n is any nonnegative integer.
It is well known that the ith entry in this row can be computed as

(

n
i

)

, where 0 ≤ i ≤ n.

For example, the 3rd entry in row 11 is
(

11
3

)

= 11·10·9
3!

= 165. Figure 1 shows rows 0 through
12 of Pascal’s triangle.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 136 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

Figure 1. Pascal’s triangle.

Notice that entries in alternating rows are vertically aligned. For example, in Figure 2
below we have circled the entries that are vertically aligned with the 3rd entry in the 11th
row. In Figure 3 we have circled the entries that are vertically aligned with the 6th entry in
the 12th row.

1

http://arxiv.org/abs/1901.08653v2


AN IDENTITY FOR VERTICALLY ALIGNED ENTRIES IN PASCAL’S TRIANGLE 2

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

1 9 36 84 126 136 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

Figure 2. Entries vertically aligned with the 3rd entry in the 11th row.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 136 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

Figure 3. Entries vertically aligned with the 6th entry in the 12th row.

We can describe these entries in the following way. Starting with the ith entry in the nth
row, i.e.

(

n
i

)

, the entries that are vertically aligned with this entry and above it are all of
the form

(

n− 2k

i− k

)

,

where 1 ≤ k ≤ i and k ≤ ⌊n
2
⌋.
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For example, when n = 11 and i = 3, the entries that are above
(

11
3

)

and vertically aligned
with it are

(

9

2

)

,

(

7

1

)

,

(

5

0

)

.

Observe that

(

11

3

)

− 11

(

9

2

)

+ 44

(

7

1

)

− 77

(

5

0

)

= 165− 11 · 36 + 44 · 7− 77 · 1 = 0.

When n = 12 and i = 6, we have

(

12

6

)

− 12

(

10

5

)

+ 54

(

8

4

)

− 112

(

6

3

)

+ 105

(

4

2

)

− 36

(

2

1

)

+ 2

(

0

0

)

= 924− 12 · 252 + 54 · 70− 112 · 20 + 105 · 6− 36 · 2 + 2 · 1

= 0.

In the next section, we prove a general formula for the linear dependence on vertically
aligned entries in Pascal’s triangle.

2. General Formula

Theorem 2.1. Let n be a nonnegative integer and 0 < i < n. Then

i
∑

k=0

(−1)k
n

n− k

(

n− k

k

)(

n− 2k

i− k

)

= 0.

Remark 1. Note that the k = 0 term is simply
(

n
i

)

. If i > n/2, there will be some values
of k for which n − 2k < i − k. For example, if n = 11 and i = 8, then k = 4 has
n− 2k = 3 < 4 = i− k. But recall that

(

m

r

)

= 0

whenever 0 ≤ m < r (see, for example, [3, Section 1.9]). Thus, terms for which 0 ≤ n−2k <
i− k do not contribute to the sum in Theorem 2.1.

If n − 2k < 0, then
(

n−2k
i−k

)

is no longer 0. However in this case, we have n < 2k, which

implies, n− k < k. Thus,
(

n−k
k

)

= 0 instead.
Hence, all terms for which i > n/2 do not contribute to the sum in Theorem 2.1.

Remark 2. The expressions n
n−k

(

n−k
k

)

that appear in Theorem 2.1 are referred to as the
Triangle of coefficients of Lucas (or Cardan) polynomials, denoted T (n, k), in the On-Line
Encyclopedia of Integer Sequences [1].

Proof of Theorem 2.1. The following proof starts with an identity attributed to E.H. Lock-
wood. For any n ≥ 1,

xn + yn =

⌊n/2⌋
∑

k=0

(−1)k
n

n− k

(

n− k

k

)

(xy)k(x+ y)n−2k

(see, for example, [3, Section 9.8]).
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We separate the k = 0 term from the summation to get

xn + yn = (x+ y)n +

⌊n/2⌋
∑

k=1

(−1)k
n

n− k

(

n− k

k

)

(xy)k(x+ y)n−2k. (1)

The Binomial Theorem tells us that

(x+ y)n =
n

∑

i=0

(

n

i

)

xn−iyi = xn + yn +
n−1
∑

i=1

(

n

i

)

xn−iyi (2)

Substituting Equation 2 into Equation 1 yields

xn + yn = xn + yn +
n−1
∑

i=1

(

n

i

)

xn−iyi +

⌊n/2⌋
∑

k=1

(−1)k
n

n− k

(

n− k

k

)

(xy)k(x+ y)n−2k.

Hence,
n−1
∑

i=1

(

n

i

)

xn−iyi +

⌊n/2⌋
∑

k=1

(−1)k
n

n− k

(

n− k

k

)

(xy)k(x+ y)n−2k = 0. (3)

Thus, when combining the two sums, the coefficient of each xn−iyi term must equal 0. We
expand the second summand in order to identify all terms of the form xn−iyi. The Binomial
Theorem tells us that, for each k,

(x+ y)n−2k =
n−2k
∑

j=0

(

n− 2k

j

)

xn−2k−jyj.

Hence,

(xy)k(x+ y)n−2k =
n−2k
∑

j=0

(

n− 2k

j

)

xn−k−jyj+k. (4)

The values of j that yield xn−iyi terms are j = i − k. Note that we must have k ≤ i, since
otherwise j ≤ 0. Thus, the coefficient of xn−iyi in Equation 4 is

i
∑

k=1

(

n− 2k

i− k

)

.

Hence, the sum of the coefficients of the xn−iyi terms in Equation 3 is

i
∑

k=0

(−1)k
n

n− k

(

n− k

k

)(

n− 2k

i− k

)

= 0,

where the k = 0 term is
(

n
i

)

, which comes from the first summation in Equation 3.
�

3. Application to Hyperelliptic Curves

In this section we give an application of the identity in Theorem 2.1. Work on this
application in [2, Section 5.1] is what led the author to discover the identity in Theorem 2.1.

Let C be the genus g hyperelliptic curve y2 = x2g+1 + x. The map

φ(x, y) =

(

x2 + 1

x
,
y

xa

)

,
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where a = g+1
2
, is a nonconstant morphism from C to some curve, denoted C ′. Note that

the curve C ′ will also be hyperelliptic. We initially define C ′ to be of the form

y2 = cdx
d + . . .+ cd−ix

d−i + . . .+ c0

and we will apply the transformation of variables given by φ to determine the coefficients cj .
Applying the transformation yields

( y

xa

)2

= cd

(

x2 + 1

x

)d

+ . . .+ cd−i

(

x2 + 1

x

)d−i

+ . . .+ c0

y2

xg+1
= cdx

−d(x2 + 1)d + . . .+ cd−ix
i−d(x2 + 1)d−i + . . .+ c0

y2 = cdx
g+1−d(x2 + 1)d + . . .+ cd−ix

g+1+i−d(x2 + 1)d−i + . . .+ c0x
g+1.

In order for φ to be a morphism from C to C ′, this last equation should, in fact, be the
equation for the curve C. Note that the degree of the expression in x will be g+1−d+2d =
g + 1 + d. Hence, we need cd = 1 and g + 1 + d = 2g + 1, so that d = g. We use this to
simplify the above equation to

y2 = x(x2 + 1)g + . . .+ cg−ix
1+i(x2 + 1)g−i + . . .+ c0x

g+1. (5)

In order to determine the coefficients ci, we need to expand the right-hand side of the
equation and match coefficients with those of C. We now work through two examples to
better understand what the coefficients of C ′ will be.

Example 3.1. Let g = 5, so that C is the hyperelliptic curve y2 = x11 + x. From our above

work, we know that the degree of C ′ will be 5. Consider the following terms from Equation

5: A1 = x(x2 + 1)5, A2 = x3(x2 + 1)3, and A3 = x5(x2 + 1)1. We expand each of these to

get

A1 = x(x10 + 5x8 + 10x6 + 10x4 + 5x2 + 1)

= x11 + 5x9 + 10x7 + 10x5 + 5x3 + x,

A2 = x3(x6 + 3x4 + 3x2 + 1)

= x9 + 3x7 + 3x5 + x3,

A3 = x5(x2 + 1)

= x7 + x5.

Note that A1−5A2+5A3 = x11+x. Hence, φ is a morphism from C to y2 = x5−5x3+5x.

Example 3.2. Now let g = 6, so that C is the hyperelliptic curve y2 = x13 + x. From

our above work, we know that the degree of C ′ will be 6. Consider the following terms from

Equation 5: B1 = x(x2 + 1)6, B2 = x3(x2 + 1)4, B3 = x5(x2 + 1)2, and B4 = x7(x2 + 1)0.
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We expand each of these to get

B1 = x(x12 + 6x10 + 15x8 + 2− x6 + 15x4 + 6x2 + 1)

= x13 + 6x11 + 15x9 + 2− x7 + 15x5 + 6x3 + x,

B2 = x3(x8 + 4x6 + 6x4 + 4x2 + 1)

= x11 + 4x9 + 6x7 + 4x5 + x3,

B3 = x5(x4 + 2x2 + 1)

= x9 + 2x7 + x5

B4 = x7.

One can easily show that B1−6B2+9B3−2B4 = x13+x, which tells us that φ is a morphism

from C to y2 = x6 − 6x4 + 9x2 − 2.

While working on [2, Section 5.1], the author determined (by hand) the curve C ′ for
g = 11. The coefficients she found were 1, 11, 44, 77, 55, and 11, with alternating signs (see
Table 1 below). The author entered this sequence of numbers into the On-line Encyclopedia
of Integer Sequences [1] and found that these numbers are the Triangle of coefficients of
Lucas (or Cardan) polynomials, T (n, k). The coefficients that appear in Examples 3.1 and
3.2 are also of the form T (n, k). As noted in Remark 2,

T (n, k) =
n

n− k

(

n− k

k

)

.

This leads us to the following theorems.

Theorem 3.3. Let C be the hyperelliptic curve y2 = x2g+1+x and let C ′ be the hyperelliptic

curve

y2 =

⌊g/2⌋
∑

k=0

(−1)k
g

g − k

(

g − k

k

)

xg−2k.

Then the map

φ(x, y) =

(

x2 + 1

x
,
y

xa

)

,

where a = g+1
2
, is a nonconstant morphism from C to C ′.

We can generalize Theorem 3.3. Let c ∈ Q∗ be constant and ζ be a primitive g-th root of
unity. In the following theorem we work over the field F = Q(ζ, c1/g).

Theorem 3.4. Let C be the hyperelliptic curve y2 = x2g+1+cx and let Ci be the hyperelliptic

curve

y2 =

⌊g/2⌋
∑

k=0

(−1)k
g

g − k

(

g − k

k

)

ζ ikck/gxg−2k

for i = 0, 1. Then the map

φi(x, y) =

(

x2 + ζ ic1/g

x
,
y

xa

)

,

where a = g+1
2
, is a nonconstant morphism from C to Ci.



AN IDENTITY FOR VERTICALLY ALIGNED ENTRIES IN PASCAL’S TRIANGLE 7

Since
g

g − k

(

g − k

k

)

=

[(

g − k

k

)

+

(

g − k − 1

k − 1

)]

(see, for example, [3, Section 9.9]), Theorem 3.4 also generalizes Lemma 5.1 in [2] because
we are no longer restricting g to be odd. The proofs of Theorems 3.3 and 3.4 are nearly
identical to the proof of Lemma 5.1 in [2], and so we omit them.

We now expand Example 3.1 to show how our work in this section relates to our work in
Theorem 2.1. Let n = g = 5, and k range from 0 to ⌊n/2⌋ = 2. We evaluate

(−1)k
n

n− k

(

n− k

k

)

for each of these values of k to get

k = 0 : (−1)0
5

5− 0

(

5− 0

0

)

= 1

k = 1 : (−1)1
5

5− 1

(

5− 1

1

)

= −5

k = 2 : (−1)2
5

5− 2

(

5− 2

2

)

= 5,

which are the coefficients in the equation for C ′, i.e. those of A1, A2, and A3, respectively.
These coefficients help us cancel certain powers of x in the expansion of Equation 5. For
example, in the sum A1 − 5A2 + 5A3, the coefficient of x5 is

0 = 10− 5 · 3 + 5 · 1

=

(

5

2

)

− 5

(

3

1

)

+ 5

(

1

0

)

=
5

5− 0

(

5− 0

0

)(

5

2

)

−
5

5− 1

(

5− 1

1

)(

3

1

)

+
5

5− 2

(

5− 2

2

)(

1

0

)

,

which matches the statement of Theorem 2.1 for n = 5 and i = 2.

3.1. Higher Genus Examples. Table 1 below gives Ci for values of g up to 11 and for
c = 1. Note that this table expands on the table that appears in [2, Section 5.1].

g curve Ci

5 y2 = x5 − 5ζ ix3 + 5ζ2ix
6 y2 = x6 − 6ζ ix4 + 9ζ2ix2 − 2ζ3i

7 y2 = x7 − 7ζ ix5 + 14ζ2ix3 − 7ζ3ix
8 y2 = x8 − 8ζ ix6 + 20ζ2ix4 − 16ζ3ix2 + 2ζ4i

9 y2 = x9 − 9ζ ix7 + 27ζ2ix5 − 30ζ3ix3 + 9ζ4ix
10 y2 = x10 − 10ζ ix8 + 35ζ2ix6 − 50ζ3ix4 + 25ζ4ix2 − 2ζ5i

11 y2 = x11 − 11ζ ix9 + 44ζ2ix7 − 77ζ3ix5 + 55ζ4ix3 − 11ζ5ix
Table 1.

Note that for all g, the coefficient of second term of the expression in x will always be −g
(times a power of ζ). The reason this is the case is that this coefficient corresponds to k = 1,
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and

(−1)k
g

g − k

(

g − k

k

)

= −
g

g − 1

(

g − 1

1

)

= −
g

g − 1
· (g − 1)

= −g.

Note that when g is even, the final term corresponds to k = g/2, which yields x0. We
compute the coefficient to be

(−1)k
g

g − k

(

g − k

k

)

= (−1)g/2
g

g − g/2

(

g − g/2

g/2

)

= (−1)g/2
g

g/2

(

g/2

g/2

)

= (−1)g/22.

Hence, when g is even, the final term of the expression in x will always be (−1)g/22 (times
a power of ζ).

On the other hand, when g is odd, the final term corresponds to k = (g − 1)/2, which
yields x1. We compute the coefficient to be

(−1)k
g

g − k

(

g − k

k

)

= (−1)(g−1)/2 g

g − (g − 1)/2

(

g − (g − 1)/2

(g − 1)/2

)

= (−1)(g−1)/2 g

(g + 1)/2

(

(g + 1)/2

(g − 1)/2

)

= (−1)(g−1)/2 g

(g + 1)/2

(

(g − 1)/2 + 1

(g − 1)/2

)

= (−1)(g−1)/2 g

(g + 1)/2
· ((g − 1)/2 + 1)

= (−1)(g−1)/2g.

Hence, when g is odd, the final term of the expression in x will always be (−1)(g−1)/2gx
(times a power of ζ).
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