
Algebraic Systems for DNA Origami Motivated
from Temperley-Lieb Algebras
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Abstract We initiate an algebraic approach to study DNA origami
structures by associating an element from a monoid to each structure.
We identify two types of basic building blocks and describe an DNA ori-
gami structure with their composition. These building blocks are taken
as generators of a monoid, called origami monoid, and, motivated by the
well studied Temperley-Lieb algebras, we identify a set of relations that
characterize the origami monoid. We also present several observations
about the Green’s relations for the origami monoid and study the rela-
tions to a cross product of Jones monoids that is a morphic image of an
origami monoid.
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1 Introduction

In the past few decades, bottom-up assemblies at the nano scale have introduced
new materials and molecular scaffoldings producing structures that have wide
ranging applications (eg. [6, 14]), even materials that seem to violate standard
chemistry behavior (eg. [12]). “DNA origami”, introduced by Rothemund [13] in
2006, significantly facilitated the construction of ∼ 100× 100nm 2D DNA nano-
structures. The method typically involves combining an M13 single-stranded
cyclic viral molecule called scaffold with 200-250 short staple strands to pro-
duce about 100nm diameter 2D shapes [13], and more recently also to produce
a variety of 3D constructs (e.g. [3]). Fig. 1 (left) shows a schematic of an ori-
gami structure, where the black thick line outlines a portion of the cyclic vector
plasmid outlining the shape, and the colored lines are schematics of the short
strands that keep the cyclic molecule folded in the shape. Because the chemical
construction of DNA origami is much easier than previous methods, this form
of DNA nanotechnology has become popular, with perhaps 300 laboratories in
the world today focusing on it.

Although numerous laboratories around the world are successful in achieving
various shapes with DNA origami, theoretical understanding and characteriza-
tions of these shapes is still lacking. With this paper we propose an algebraic
system to describe and investigate DNA origami structures. The staple strands
usually have 2-4 segments of about 8 bases joining 2-3 locations (folds) of the
scaffold. All cross-overs between two staple strands and between two neighboring
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folds of the scaffold are antiparallel. We divide the DNA origami structure to
local scaffold-staples interactions and to such local interactions we associate a
generator of a monoid which we call an origami monoid. The origami monoid
we present here is closely related to the Jones monoid [2,7] which is in fact con-
sidered as the quotient of the well studied Temperley-Lieb algebra [1]. We show
that a DNA origami structure can be described as an element of an origami
monoid (a word over the set of generators) and propose a set of rewriting rules
that are plausible for DNA segments to conform in DNA origami. The set of
rewriting rules in some sense describe the equivalence classes of the DNA ori-
gami structures. The number of generators of an origami monoid depends on the
number of parallel folds of the scaffold in the DNA origami. We show that a cross
product of two Jones monoids is a surjective image of an origami monoid, and
we study the structure of the origami monoids through the Greens relations. We
characterize the origami monoids for small number of scaffold folds and propose
several conjectures for the general origami monoids.

Fig. 1: (Left) A schematic figure of DNA origami structure with scaffold in
black and staples in color, (Right) Various shapes made by DNA origami, both
from [13]

2 Preliminaries

2.1 Temperley-Lieb algebra and Jones monoids

Temperley-Lieb algebras have been used in many fields, particularly in physics
and knot theory (see, for example, [1,2,8,9]). A generator of the algebra hi where
there are i − 1 strings to the left is depicted in Fig. 2(A) [8]. Multiplication of
two elements corresponds to concatenation of diagrams, placing the diagram
of the first element on top of the second. The relations of the algebra follow
the diagrams depicted in Fig. 2(B), (C) and (D) where δ is an element of a
ring. Here we use the monoid versions of Temperley-Lieb algebras, called Jones
monoids [2,9]. The Jones monoid is obtained by taking δ = 1. Thus we consider,
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for each n, the Jones monoid Jn generated by hi, i = 1, . . . , n− 1, and relations

(B) hihjhi = hi for |i−j| = 1, (C) hihi = hi (D) hihj = hjhi for |i−j| ≥ 1.

i

δ

(C) (D)(B)(A)

Fig. 2: The generators (A) and relations (B,C,D) of the Temperley-Lieb algebra

2.2 String rewriting system

An alphabet Σ is a non-empty finite set of symbols. A word over Σ is a finite
sequence of elements (symbols) from Σ and Σ∗ is the set of all words over Σ.
This set includes the empty string, the word containing no symbols, often written
as 1. A word u is called a factor of a word v if there exist words x and y, which
may be empty, such that v = xuy. Note that this is also sometimes referred to
as a subword.

A string rewriting system, (Σ,R) consists of an alphabet Σ and a set of
rewriting rules, R, which is a binary relation on Σ∗. An element (x, y) of R is
called a rewriting rule, and is written x→ y. We extend R to factors of words −→

R
,

where for any s, t ∈ Σ∗, s −→
R
t if there exist x, y, u, v ∈ Σ∗ such that s = uxv,

t = uyv, and x→ y. We also write s→ t for simplicity if no confusion arises.
If there is a sequence of words u = x1 → x2 → · · · → xn = v in a rewriting

system (Σ∗, R), we write u →∗ v. An element x ∈ Σ∗ is confluent if for all
y, z ∈ Σ∗ such that x→∗ y and x→∗ z, there exists w ∈ Σ∗ such that y →∗ w
and z →∗ w. If all words in Σ∗ are confluent, then (Σ∗, R) is called confluent.
In particular, if R is symmetric, then the system (Σ∗, R) is confluent.

2.3 Monoids and Green relations

A monoid is a pair (M, ·) where M is a set and · is an associative binary operation
on M that has an identity element 1. The set Σ∗ is a (free) monoid generated
by Σ with word concatenation as the binary operation, and the empty string as
the identity element. Presentations of monoids are defined from the free monoid
in a manner similar to presentations of groups.

For a monoid M , the principal left (resp. right) ideal generated by a ∈ M
is defined by Ma = {xa | x ∈ M} (resp. aM), and the principal two-sided
ideal s MaM . Green’s relations L , R, and J are defined for a, b ∈ M by
aL b if Ma = Mb, aRb if aM = bM and aJ b if MaM = MbM . Green’s H
relation is defined by aH b if aL b and aRb. Green’s D relation is defined by
aDb if there is c such that aL c and cRb. The equivalence classes of L are
called L -classes, and similarly for the other relations. In a finite monoid, D and
J coincide. The D-classes are represented in a matrix form called egg boxes,
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where the rows represent R-classes, columns L -classes, and each entry is a box
containing elements of H -classes. See [10] for more details.

Example 1. In [7], D-classes are obtained for Jones and related monoids. Here we
include an example of a D-class of J3, which has a class consisting of the identity
element and another class of (2 × 2)-matrix below, such that each element is a
box of an H -class: [

h1 h1h2
h2h1 h2

]
where rows {h1, h1h2}, {h2h1, h2}, are the R-classes and columns {h1, h2h1},
{h1h2, h2} are the L -classes in this D-class. In particular, we see that multiply-
ing h1 and h1h2 with hi to the right gives rise to the same right ideal.

3 Origami monoid On

3.1 Generators

Here we identify simple building blocks in DNA origami structures. With each
block type we associate a generator of a monoid and derive string rewriting sys-
tems to describe DNA structures. We have two motivations for our choices. (1)
In Fig. 1(left), one notices repeated patterns of simple building blocks whose
concatenation builds a larger structure. One type of these patterns is a cross-
over by the staple strands, and the other is a cross-over of the scaffold strand.
Thus, a natural approach to describe DNA origami structures symbolically is to
associate generators of an algebraic system to simple building blocks, and to take
multiplication in the system to be presented as concatenation of the blocks. (2)
In knot theory, a knot diagram is decomposed into basic building blocks of cross-
ings or tangles. For the Kauffman bracket version of the Jones polynomial [8],
for example, the Temperley-Lieb algebras, whose generators resemble building
blocks observed in Fig. 1(left), are used. The Temperley-Lieb algebras have been
extensively studied in physics and knot theory, so that algebraic structures of
their variants are also of interest, besides their relations to DNA origami.

For a positive integer n we define a monoid On, where n represents the
number of vertical double stranded DNA strands, that is, n is the number of
parallel folds of the scaffold. For the structure in Fig. 1, n = 6. The generators of
On are denoted by αi (anti-parallel staple strands cross-over) and βi (antiparallel
scaffold strand cross-over) for i = 1, . . . , n−1, as depicted in Fig. 3. The subscript
i represents the position of the left scaffold for αi and βi, respectively, by starting
at 1 from the leftmost scaffold strand fold and counting right (Fig. 4).

Because DNA is oriented 5′-3′ and the strands in the double stranded DNA
are oppositely oriented, we define an orientation within the generators. Because
parallel scaffold strands are obtained by folding of the scaffold, consecutive scaf-
fold strands run in alternating directions, while staple strands run in the opposite
direction to the scaffold, and by default we take that the first scaffold runs in an
upwards direction. In this way, the direction of the scaffold/staple strands for
any particular αi or βi depends entirely on the parity of i, as shown in Fig. 3.
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(a) αi, i odd (b) αi, i even (c) βi, i odd (d) βi, i even

Fig. 3: The generators identified

Fig. 4: α4 in the
context of a 6-fold
stranded structure.

Fig. 4 shows α4 as an example of the “full picture” of one of these generators.
For the sake of brevity, we neglect to draw the extra scaffold and staple strands
in most diagrams, but it may be helpful to imagine them when we describe
their concatenation. As in Fig. 4, parallel scaffolds in generators do not have
counterpart parallel staples.

3.2 Concatenation as a monoid operation

To justify modeling DNA origami structures by words in the generators we make
a correspondence between concatenations of generators αi, βi and concatenations
of DNA segments. For a natural number n ≥ 2, the set of generators of the
monoid On is the set Σn = {α1, α2, . . . , αn−1, β1, β2, . . . , βn−1}. For a product
of two generators xi and yj in Σn, we place the diagram of the first generator
above the second, lining up the scaffold strings of the two generators and then,
we connect each respective scaffold string. If the two generators are adjacent,
that is, if for indices i and j it holds |i−j| ≤ 1, then we also connect their staples
as described below. Otherwise, if |i − j| ≥ 2, no staple connection is performed
and the concatenation is finished.

We define a convention of connecting staples for adjacent generators, which
is motivated from the manner in which staples connect in Fig. 1. Note how
the staples of α-type protrude “outside” of the scaffold in Fig. 3. We refer to
these ends of a staple as an “extending staple-ends”, and all other staple ends as
“non-extending staple-ends”. We connect staples everywhere except when two
non-extending staple-ends would have to cross a scaffold to connect (recall that
the scaffold strands are connected first), as can be seen in Fig. 6 and Fig. 7.

Our choice of coloring staples in the figure is arbitrary, and we re-color staples
in the same color if they get connected when we concatenate generators. By ex-
hausting all possibilities, one can see that under our convention of connection,
the staples remain short by concatenation without joining more than three scaf-
fold folds. Note that concatenation of three or more generators is associative
because generators can be connected in an associative manner following the
rules described above.

3.3 Relations in On

The rewriting rules (i.e., the relations within the monoids) are motivated from
similarity between the DNA origami structures as seen in Fig. 1(left) and the
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Fig. 5: αiαi+1, i odd Fig. 6: αiβi, i odd Fig. 7: αiαi−1, i odd

diagrams of Temperley-Lieb algebras in Fig. 2. It is deemed that the relations of
Temperley-Lieb algebras simplify the DNA origami structure, and may be useful
for designing efficient and more solid structures by the rewriting rules proposed
below. The figures in this section are for justifying feasibility of corresponding
DNA structures, and to represent rewriting system diagrammatically.

Rewriting rules. For Σn = {α1, α2, . . . , αn−1, β1, β2, . . . , βn−1}, we establish
a set of rewriting rules that allows us simplification of the DNA structure de-
scription. Define a string rewriting system (Σn, R) as follows.

To ease the notation, we define bar on Σn by αi = βi and βi = αi, and
extend this operation to the free monoid by defining w for a word w by applying
bar to each letter of w. Let γ ∈ {α, β} and i ∈ {1, . . . , n− 1}, then we have:

(1) (Idempotency) γiγi → γi
(2) (Left TL relation) γiγi+1γi → γi
(3) (Right TL relation) γiγi−1γi → γi
(4) (Inter− commutation) γiγj → γjγi, for |i− j| ≥ 1
(5) (Intra− commutation) γiγj → γjγi, for |i− j| ≥ 2

The rules are extended to Σ∗n as described in Section 2.2.
The rewriting rules are inspired by Temperley-Lieb algebras, and they are

also reflected in the reality of the diagrams of DNA origami, as shown in Figs. 8
and 9. Specifically, a pattern in the left of Fig. 8 (a) has a small staple circle,
which is deemed to be simplified by the right side. Staple strands are holding
the scaffold in a certain position (obtained to the right of the arrow) and the
cyclic staple only reinforces the structure. The small circle of a scaffold in Fig. 8
(b) left cannot form in DNA origami, and therefore is simplified to the structure
on the right of the arrow.

Deriving additional rewriting rules by substitution. Since DNA origami
structure has no internal scaffold loops, rewriting rules similar to (1)–(5) can
be applied to concatenations of generators, that is, products of α’s and β’s. We
extend these rules to more general substitution rules for our specific case of
generators αi and βi by considering other γ’s, for instance γ = αβ. The com-
position diagrams show that such substitution rules describe the DNA origami
staples/scaffold structure in the way we proposed above (see Fig. 10), while
these new structures produce rules that cannot be derived from the listed ones
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(a) αiαi, i odd (b) βiβi, i odd

Fig. 8: Two examples of idempotency

(A) (B) (C)

Fig. 9: Examples of (A) TL relation, (B) Inter-commutation, and (C) Intra-
commutation

in (1)–(5). Therefore we consider rewriting rules for concatenations of generat-
ors α’s and β’s. Furthermore, we focus on concatenations of generators with the
same or ‘neighboring’ indexes because only for these generators the ends of the
staples can connect. However, αi and βj (i 6= j) can swap their places (by the
inter-communication rule (4)) and the factor αiβi+1, for example, of a word in
Σn can be substituted with a factor βi+1αi. Further, we observe that by setting
γ ∈ {αiβi, βiαi}, the idempotency rule (1) holds as seen in Fig. 10. Therefore
there are only four cases to consider: γ ∈ {αiβi, βiαi, αiβiαi, βiαiβi} and check
the plausibility of corresponding DNA diagrams.

First, consider γ ∈ {αβ, βα}, where γi indicates αiβi. Then substituting γ
into rewriting rules (1), (2), and (3) gives us new rewriting rules (1a), (2a), and
(3a). For example, (1a) consists of αiβiαiβi → αiβi and βiαiβiαi → βiαi. Note
that a provisional rewriting rule (5a) could easily be obtained by the rewriting
rule (5), so we do not consider it as a new rule. We also do not add rewriting
rule (4a) since it conflicts with the structure of the scaffold, as shown in Fig. 11.
Notice that the scaffold strand at the top left is connected to the second strand
only on the left side of the figure, and on the right hand side of the figure it is
connected from the strand three. Next we consider γ ∈ {αβα, βαβ}, which gives
us rewriting rules (1b), (2b) and (3b). Similarly as before, rules (4b) or (5b) are
not added, (4b) because of incompatible staple strands, and (5b) because it can
be derived from (5). In addition, (1b) can also be derived from (1) and (1a), so it
is not considered as a new rule. In the end, we are left with 10 unique rewriting
rules which we use to define the general rewriting rules and the monoids.

Definition 1. The origami monoid On is the monoid with a set of generators
Σn and relations generated by the rewriting rules (1) through (5), (1a), (2a),
(3a), (2b), (3b).
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Fig. 10: Substitution of αβ and βα (resp.)
into the first rewriting rule (i odd)

Fig. 11: Substitution of
γ = αβ into rewriting rule

(4) for i odd

4 Monoid structures of On

In this section, we present computational results on Green’s D-classes and com-
pare them to those for the Jones monoids obtained in [7]. For comparison, we
use the monoid epimorphism from On to the product Jn × Jn defined below.

Let Jn be the Jones monoid of degree n with generators hi, i = 1, . . . , n− 1.
We denote the submonoid of On generated by αs (resp. βs), by Oαn (resp. Oβn).
An equivalent description for Oαn is the set of all words consisting of only αs
(plus the empty word), and similarly for Oβn. Let Oαβn = [On \ (Oαn ∪ Oβn)] ∪ {1}.

Lemma 1. Oαβn is a submonoid of On.

Proof. The left and right hand sides of each rewriting rule show that rewriting
a word by these rules does not change the absence, or existence of at least one α
in the word, and similarly for β. Thus multiplication of two words in Oαβn does
not remove α’s or β’s from the product, hence the product remains in Oαβn .

Let pα : On → Jn be the epimorphism defined by ‘projections’ pα(αi) = hi
and pα(βi) = 1, for all i = 1, . . . , n − 1, and let pβ be defined similarly for βs.
Define p : On → Jn × Jn by p(x) = (pα(x), pβ(x)) for x ∈ On. Since the monoid
relations of On hold under p, we have the following.

Lemma 2. Oαn
∼= Oβn

∼= Jn.

Lemma 3. The map p : On → Jn × Jn is a surjective monoid morphism.

In particular, it follows that the order of On is at least |Jn|2.

4.1 Orders of origami monoids

For n = 2 we can determine the order of O2 as follows.

Lemma 4. Every non-empty word of O2 can be reduced by rewriting rules to
one of the following normal forms: α1, β1, α1β1, β1α1, α1β1α1, or β1α1β1.
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Proof. Since Σ2 = {α1, β1}, we list the words of length 3 or less exhaustively.
After applying rewriting rules to these words, they reduce to those words listed
in the statement.

Now consider a word w with length greater than 3. We show that w can be
reduced to a word with length 3 or less. If α1α1 or β1β1 are factors of w, we reduce
them to α1 or β1, respectively. Repeating this process, we may assume that w
is an alternating sequence of α1 and β1. Since α1β1 and β1α1 are idempotent,
w reduces to a word of length less than 4.

It is known that the elements of the Jones monoid Jn of degree n are in
bijection with the linear chord diagrams obtained from the arcs of the diagrams
representing them, and the total number of such chord diagrams is equal to the

Catalan number Cn =
1

n+ 1

(
2n
n

)
[2]. Thus the numbers of elements of Jn for

n = 2, . . . , 6 are 2, 5, 14, 42, 429, respectively. GAP computations show that
the number of non-identity elements in O3, O4, O5 and O6 are 44, 293, 2179,
19086 respectively. This sequence of integers is not listed in the OEIS [11] list of
sequences. We observe that the orders of origami monoids are much larger. In
fact it is not apparent from the definition whether they are all finite. Thus we
conjecture the following.

Conjecture 1. The order of On is finite for all n.

4.2 Green’s classes

We have the following observations for Green’s classes of On for general n.

Lemma 5. Let x ∈ Oαn, y ∈ Oαβn be nonempty words and let Dx and Dy be the
D-classes containing x and y, respectively. Then Dx 6= Dy.

Proof. By Lemma 1, if yL a, then a ∈ Oαβn , and if aRb, then b ∈ Oαβn . Thus we
cannot have yDx.

Corollary 1. The conclusion of Lemma 5 holds for x ∈ Oβn, y ∈ Oαβn and
x ∈ Oαn, y ∈ Oβn.

Remark 1. If On is finite, then each D-class of Jn × Jn is an image of a D-class
of On by p. It follows from the definition of p that every D-class of On maps
into a D-class of Jn, and by Lemma 1.4 Ch. 5 in [4] the map is also onto. We
conjecture that this D-class of On is unique. We show that this observation is
true for n ≤ 6.

4.3 Green’s classes for n ≤ 6

In this section we describe Green’s D-classes for n ≤ 6. We used GAP to de-
termine D-classes of origami monoids On for n ≤ 6, the structure is presented
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Fig. 12: D-classes of Jn (left) and On (right) for n = 3 (top left), n = 4 (bottom
left), and n = 5 (right)

in Figs. 12 and 13. Shaded squares represent H -classes which contain an idem-
potent. We note that for n ≤ 6, every H -class of On is singleton, so each square
in the figure represents precisely one element of On.

For n ≤ 6, since On is finite , the J and D relations coincide. A preorder
≤D is defined on On by a ≤D b if the two-sided principal ideal generated by
a is a subset of the two-sided principal ideal generated by b. This condition
is equivalent to the existence of x, y ∈ On such that xby = a. Since any two
elements of a D-class generated the same principal ideal, this preorder may be
extended to the set of D-classes of On such that D ≤D D′ if for a ∈ D and
b ∈ D′, a ≤D b. The lines between D-classes in the figures represent the lattice
structure of this preorder.

The relations between On and Jn described in Section 6.2 can be observed
in Fig. 12. We omit the D-class consisting of only the empty word from the
diagrams, which is maximal in the lattice of D-classes. For each n, 2 copies of
the D-classes of Jn can be found as the D-classes of Oαn and Oβn, respectively,
in the D-classes of On. As described in Remark 1, these correspond to the cross
product of one identity and one non-identity D-class of Jn. The other D-classes
are those of Oαβn , and correspond to the cross product of two non-identity D-
classes of Jn. Which pair of D-classes of Jn correspond to which D-class of On
can be better seen in Fig. 13.

In Fig. 13, we arrange the D-classes of O6 to better illustrate the relation
between the D-classes of Jn, although the same process may be applied to other
n. On the right, the lattice structure of the D-classes remains, applying left-to-
right as well as top-to-bottom. The D-classes along the top row and left column
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are the D-classes of Oα6 and O
β
6 respectively, as previously described isomorphic

to Jn. For any D-class of Oαβn , the D-classes which it maps onto are greater in
the lattice structure. Thus the grid of D-classes may be thought of as a table,
with the row and column of any entry determining the image of the D-class by
pα and pβ , respectively. Since rewriting relations are equivalent for α and β,
the D-classes are symmetric with respect to switching rows and columns. This
can be easily seen in the D-classes in the upper right and lower left corners.
However, the rows and columns of any D-class may be ordered arbitrarily, and
are automated by GAP, making the symmetry non-obvious for other D-classes.

 1

* * *

* *

* * *

* * *

* *

 3

* * * * * * * * *

* * * *

* * * * * * *

* * * * * * *

* * * * *

* * * * * *

* * * * * * * *

* * * * * *

* * * * *

 4

* * * * * * * * * * * *

* * * * * *

* * * * * * *

* * * * * * * *

* * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * *

* * * * * *

* * * * * *

* * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * *

* * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * *

* * * *

* * * * * *

* * * * * * *

* * * * * * * *

* * * *

* * * * * *

* * * * * * *

* * * * * * * *

* * * * * *

* * * * * *

 2

* * *

* *

* * *

* * *

* *

 5

* * * * * * * * *

* * * *

* * * * * * *

* * * * * * *

* * * * *

* * * * * *

* * * * * * * *

* * * * * *

* * * * *

 6

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

 10

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * *

* * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * *

 7

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * *

 8

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

 12

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

 9

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

 11

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * *

 13

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

 14

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

 15

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

Fig. 13: D-classes of O6 (left) and re-arranged and resized to fit the grid (right)

5 Concluding remarks

In this paper, motivated from similarity to Temperley-Lieb algebras, we intro-
duced an algebraic system that describes DNA origami structures. Generators
in this system are defined such that they mimic basic building blocks of DNA
origami. Following the structural properties of the DNA origami, we established
rewriting rules as well as monoids whose elements conform to the relations ob-
tained from these rules. To each DNA origami structure we can associate an
element from an appropriate monoid. For example, the structure in Fig. 1 cor-
responds to the element whose normal form is α1α3α5β2β4. We hope that such
representations of DNA origami may provide a tool for distinguishing constructs.

The monoids introduced here are generalizations of Temperley-Lieb algebras,
and we provide several conjectures with the goal of relating them to known
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monoids. For example, from our findings for n ≤ 6, we conjecture that On are
finite for all n, and H -classes are singletons. We also provide conjectures relating
to the D-classes of On and Jn under the morphism p. Specifically, we conjecture
that the D-classes of On are in one-to-one correspondence with the D-classes of
Jn × Jn.
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