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Abstract. We prove an explicit combinatorial formula for the expected number of faces of
the zero polytope of the homogeneous and isotropic Poisson hyperplane tessellation in Rd. The
expected f -vector is expressed through the coefficients of the polynomial

(1 + (d− 1)2x2)(1 + (d− 3)2x2)(1 + (d− 5)2x2) . . . .

Also, we compute explicitly the expected f -vector and the expected volume of the spherical
convex hull of n random points sampled uniformly and independently from the d-dimensional
half-sphere. In the case when n = d+ 2, we compute the probability that this spherical convex
hull is a spherical simplex, thus solving an analogue of the Sylvester four-point problem on the
half-sphere.

1. Main results

1.1. Poisson zero polytope. Poisson hyperplane processes and the corresponding random
tessellations of the Euclidean space by polytopes have been extensively studied in stochastic
geometry since the works of Miles [21, 18, 19, 20] and Matheron [14, 15, 16]; see Section 4.4 and
Chapter 10 of the book by Schneider and Weil [25] for more information and references. Poisson
hyperplane tessellations give rise to (at least) two natural random polytopes: the Poisson zero
polytope (defined as the a.s. unique polytope of the tessellation containing the origin) and the
typical Poisson polytope (defined essentially as a polytope picked uniformly at random from
the set of polytopes of the tessellation contained in some very large observation window). One
of the most interesting characteristics of a random polytope is its expected f -vector whose
k-th component is, by definition, the expected number of k-dimensional faces of the polytope.
While it is well known that the expected f -vector of the typical Poisson polytope coincides
with the f -vector of the cube of the same dimension (see, for example, Theorems 10.3.1 and
10.3.2 in [25]), a corresponding result for the zero polytope seems to be missing. In the present
paper we close this gap by providing an explicit formula for the expected f -vector of the zero
polytope of the isotropic and homogeneous Poisson hyperplane tessellation on Rd.

Let us recall the definitions of the Poisson hyperplane process and the Poisson zero polytope.
Denote by ‖·‖ and 〈·, ·〉 the Euclidean norm and the standard scalar product on Rd, respectively.
Let Sd−1 = {x ∈ Rd : ‖x‖ = 1} be the unit sphere in Rd. Let A(d, d− 1) be the Grassmannian
manifold of all affine hyperplanes in Rd. Every affine hyperplane H ∈ A(d, d − 1) can be
represented in the form

H = H(w, τ) := {x ∈ Rd : 〈x,w〉 = τ}
with some “direction” w ∈ Sd−1 and some (possibly negative) “distance” τ ∈ R. In fact,
H(w, τ) = H(−w,−τ), and every H ∈ A(d, d − 1) has exactly two such representations. A
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Figure 1.1. Left: The Poisson line tessellation in the plane, together with the
zero polygone. Right: The dual Poisson point process Π2,1 on R2 with intensity
‖x‖−3, together with its convex hull. The lines of the tessellation correspond to
the points of the Poisson process via projective duality.

homogeneous Poisson hyperplane process with intensity γ > 0 is a random, countable collection
of affine hyperplanes X = {H(Wi, Ti)}i∈Z, where

(a) {Ti}i∈Z are the arrivals of a homogeneous, intensity γ Poisson process on the real line;
(b) {Wi}i∈Z are independent, identically distributed random vectors with certain centrally

symmetric probability distribution µ on the unit sphere Sd−1;
(c) {Ti}i∈Z is independent of {Wi}i∈Z.

Equivalently, we can view the Poisson hyperplane process X as a Poisson point process on
A(d, d− 1) whose intensity measure Θ is given by

Θ(A) := γ

∫
Sd−1

(∫ +∞

−∞
1{H(w,τ)∈A}dτ

)
µ(dw),

for all Borel sets A ⊂ A(d, d − 1); see [25, Section 4.4]. In the present paper, we restrict our
attention to the isotropic case meaning that the direction measure µ is chosen to be the uniform
probability distribution on Sd−1. Without restriction of generality, we may choose γ := 1. It is
known that X consists of countably many random affine hyperplanes whose probability law is
invariant with respect to the natural action of the isometry group of Rd on the set of hyperplanes
A(d, d − 1). The hyperplanes of the Poisson hyperplane process X dissect Rd into countably
many polytopes; see the left panel of Figure 1.1 for a realization when d = 2. The Poisson zero
polytope or the Crofton polytope is the a.s. unique polytope of this tessellation that contains
the origin.

1.2. Statement of the main result. Given a polytope P , the number of its k-dimensional
faces is denoted by fk(P ), for k ∈ {0, 1, . . . , d}. For example, f0(P ) is the number of vertices,
f1(P ) is the number of edges, fd−1(P ) is the number of (d−1)-dimensional faces (called facets),
and fd(P ) = 1. The f -vector of the polytope P is defined by f(P ) := (f0(P ), . . . , fd−1(P )).
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The main result of the present paper is the following formula for the expected f -vector of the
Poisson zero polytope.

Theorem 1.1. Let Z(d) be the d-dimensional Poisson zero polytope, d ∈ N. For all ` ∈
{0, . . . , d} such that the codimension d− ` is even, we have

Ef`(Z(d)) =
πd−`

(d− `)!
A[d, d− l], (1.1)

where1

A[n, k] = [xk]
(

(1 + (n− 1)2x2)(1 + (n− 3)2x2)(1 + (n− 5)2x2) . . .
)

(1.2)

and [xk]Q(x) denotes the coefficient of xk in the polynomial Q(x).

A simple recursive algorithm computing the values of Ef`(Z(d)) without restriction on the
parity of d − ` will be provided in Section 1.6. At this place, let us only point out that the
values of Ef`(Z(d)) with odd d − ` are defined uniquely by the values with even d − ` (see
Theorem 1.1) and the Dehn-Sommerville relations. Indeed, the random polytope Z(d) is simple
with probability 1 (that is, each vertex of this polytope is adjacent to exactly d edges (and also
exactly d facets). Equivalently, the dual polytope of Z(d) (which will be described explicitly
in Section 1.5) is simplicial with probability 1, that is all of its facets (and, hence, all faces)
are simplices; see [7, Section 4.5] for a discussion of these classes of polytopes. For a simple
d-dimensional polytope P , the Dehn-Sommerville relations (see, e.g., [7, Section 9.2]) state that
for all ` ∈ {0, . . . , d} we have

f`(P ) =
∑̀
i=0

(−1)i
(
d− i
d− `

)
fi(P ). (1.3)

Applying this to P := Z(d) and taking the expectation, we arrive at the equations

Ef`(Z(d)) =
1

2

`−1∑
i=0

(−1)i
(
d− i
d− `

)
Efi(Z(d)), (1.4)

for all odd ` ∈ {1, . . . , d}. Let us show that these equations, together with Theorem 1.1,
determine Ef`(Z(d)) uniquely for every ` ∈ {0, . . . , d} irrespective of its parity.

Case 1: d is even. Then, the values of Ef`(Z(d)) with even ` are given by Theorem 1.1. For
odd `, relation (1.4) expresses Ef`(Z(d)) through the values Efi(Z(d)) with i < `.

Case 2: d is odd. Then, the values of Ef`(Z(d)) with odd ` are given by Theorem 1.1. Let ` be
even. Using (1.4) with ` replaced by `+ 1, we obtain

Ef`+1(Z
(d)) =

1

2

∑̀
i=0

(−1)i
(

d− i
d− `− 1

)
Efi(Z(d)),

for all even ` ∈ {0, . . . , d− 1}. Separating the term with i = `, we arrive at

Ef`(Z(d)) =
2

d− `
Ef`+1(Z

(d))− 1

d− `

`−1∑
i=0

(−1)i
(

d− i
d− `− 1

)
Efi(Z(d)). (1.5)

1By convention, the last factor in the product defining A[n, k] is 1 + x2 or 1 + 22x2 depending on whether n
is even or odd. The product has finitely many terms, and all terms are non-zero.
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This gives an expression for Ef`(Z(d)) in terms of Ef`+1(Z
(d)) (which is given by Theorem 1.1)

and Efi(Z(d)) with i < `.
In low dimensions, the expected f -vectors (as computed with the help of Mathematica) are

given in Table 1. The reader may observe that the values with even codimension d−` are “nice”
(rational multiples of powers of π2), whereas the values with odd d− ` are “ugly” (polynomials
in π2 with rational coefficients computed by means of Dehn-Sommerville relations).

1.3. Related results. It has been known [25, Theorem 10.4.9] that

Ef0(Z(d)) =
d!

2d
κ2d, (1.6)

where κd := πd/2/Γ(d
2

+ 1) is the volume of the d-dimensional unit ball. This also yields a

formula for Ef1(Z(d)) via the a.s. relation 2f1(Z
(d)) = df0(Z

(d)) that is valid for every simple
polytope. Finally, it has been known that

Efd−2(Z(d)) =
1

2

(
d+ 1

3

)
π2, (1.7)

see [12, Equation (1.15)], where it is explained how this can be derived from a result of [3]. All
these results are consistent with Theorem 1.1. It seems that no formulae for Efk(Z(d)) have
been known for k /∈ {0, 1, d− 2, d}. Asymptotic properties of expected f -vectors of the Poisson
zero polytope (and some more general random polytopes), as d→∞, have been studied in [8].
Some refinements of these results were obtained in [12, Section 1.7], and it should be possible
to obtain even more refined results using the exact formula stated in Theorem 1.1.

Let us also mention that the expected intrinsic volumes of the Poisson zero polytope can be
expressed through its expected face numbers [24, p. 693]. Thus, Theorem 1.1 also leads to an
explicit formula for the expected intrinsic volumes of Z(d).

1.4. Recurrence relations. The triangular array A[n, 2k] is the row-reverse of Entry A121408
and the unsigned version of Entry A182971 in [26], see Table 2 at the end of this paper for a
table of these numbers. The numbers A[n, 2k] can be expressed through the central factorial
numbers defined as the coefficients in the expansion of x[n] := x(x + n

2
− 1) . . . (x − n

2
+ 1). It

is easy to check that the numbers A[n, k] satisfy the recurrence relation

A[n+ 2, k]− A[n, k] = (n+ 1)2A[n, k − 2], (1.8)

see Lemma 2.5, below. In the proof of Theorem 1.1, an important role will be played by the
numbers

B{n, k} :=
1

(k − 1)!(n− k)!

∫ π

0

(sinx)k−1xn−kdx, k ∈ {1, . . . , n}, (1.9)

which will be shown to satisfy the “dual” relation

B{n, k − 2} −B{n, k} = (k − 1)2B{n+ 2, k}. (1.10)

Formally, these relations transform into each other under the substitution (n, k) 7→ (−k,−n).
These properties bear some similarity to the well-known properties of the Stirling numbers

[
n
k

]
and

{
n
k

}
:[

n+ 1

k

]
−
[

n

k − 1

]
= n

[
n

k

]
,

{
n+ 1

k

}
−
{

n

k − 1

}
= k

{
n

k

}
,

{
n

k

}
=

[
−k
−n

]
, (1.11)

which explains our notation. Using Theorem 1.1, we can write relation (1.8) as

k(k − 1)
(
Efn+2−k(Z

(n+2))− Efn−k(Z(n))
)

= π2(n+ 1)2Efn+2−k(Z
(n)) (1.12)
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for all n ∈ N and all even k ∈ {0, . . . , n}. The next proposition extends this to odd values of k
(for which the corresponding values of Efn−k(Z(n)) in Table 1 are “ugly”).

Proposition 1.2. Relation (1.12) holds for all n ∈ N and all k ∈ {0, . . . , n+ 1} irrespective of
the parity, provided we define Ef−1(Z(d)) := 0 in the case k = n+ 1.

1.5. Convex hulls on the half-sphere and Poisson processes with power-law intens-
ity. Let us restate Theorem 1.1 in terms of some random polytopes closely related to Z(d).
Let U1, . . . , Un be random points sampled uniformly and independently from the d-dimensional
upper half-sphere

Sd+ := {x = (x0, . . . , xd) ∈ Rd+1 : x0 ≥ 0, ‖x‖ = 1}.
The polyhedral convex cone generated by these points (also known as their positive hull) is
denoted by

Cn = pos(U1, . . . , Un) =

{
n∑
i=1

λiUi : λ1, . . . , λn ≥ 0

}
.

The random spherical polytope Cn ∩ Sd+ was first studied by Bárány, Hug, Reitzner and
Schneider in [3]. Among other results, these authors computed the expected facet number
Efd−1(Cn ∩ Sd+), the expected surface area and spherical mean width of Cn ∩ Sd+, and showed
that Ef0(Cn ∩ Sd+) converges to a finite limit expressed as a multiple integral. These studies
were continued in [11], where it was shown that Cn is closely related to convex hulls of certain
Poisson processes. Namely, let Πd,1 be the Poisson point process on Rd\{0} with intensity
‖x‖−d−1; see the right panel of Figure 1.1 for a realization when d = 2. The convex hull of
the atoms of this point process is denoted by conv Πd,1. Even though the number of atoms is
a.s. infinite (because they cluster at 0), this convex hull is a (random) polytope containing the
origin in its interior, with probability 1; see [11, Corollary 4.2]. It is known that

Ef`(Z(d)) = Efd−`−1(conv Πd,1) = lim
n→∞

Efd−`−1(Cn ∩ Sd+) (1.13)

for all ` ∈ {0, 1, . . . , d−1}. The second equality was obtained in [11, Theorem 2.4]. In particular,
the f -vector of Cn∩Sd+ converges, as n→∞, to a finite limit without any normalization, which
is in sharp contrast to what is known in the setting of random convex hulls in flat convex bodies,
where the f -vectors diverge to∞. The first equality in (1.13) follows from the observation made
in [12, Theorem 1.23] that Πd,1 is the dual polytope of Z(d). In fact, the polar hyperplanes of
the points of Πd,1, with respect to the unit sphere, form an isotropic and homogeneous Poisson
hyperplane tessellation with intensity γ = 1; see the proof of Theorem 1.23 in [12].

Combining (1.13) with Theorem 1.1 and putting k := d − ` − 1, we obtain the following
theorem identifying the limit in (1.13).

Theorem 1.3. For all d ∈ N and odd k ∈ {1, . . . , d− 1},

Efk(conv Πd,1) = lim
n→∞

Efk(Cn ∩ Sd+) =
πk+1

(k + 1)!
A[d, k + 1].

Previously, only the following two special cases of Theorem 1.3 were known with explicit
limits:

lim
n→∞

Efd−1(Cn ∩ Sd+) =
d!

2d
κ2d, lim

n→∞
Ef1(Cn ∩ Sd+) =

1

2

(
d+ 1

3

)
π2.

The first identity was established in [3, Theorem 3.1], while the second one can be found in [11,
Remark 2.5]. Via the duality between the polytopes Z(d) and conv Πd,1, these identities are
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equivalent to the corresponding properties of the Poisson zero polytope Z(d) stated in (1.6)
and (1.7).

In fact, we can even compute the complete expected f -vector of the spherical polytope Cn∩Sd+
for every finite n.

Theorem 1.4. For all d ∈ N, n ≥ d+ 1, and all odd k ∈ {1, . . . , d− 1}, we have

Efk(Cn ∩ Sd+) =
n!πk+1−n

(k + 1)!

∑
s=0,1,...
d−2s≥k+1

B{n, d− 2s}(d− 2s− 1)2A[d− 2s− 2, k − 1],

where A[n, k] and B{n, k} were defined in (1.2) and (1.9), respectively.

Similarly to the discussion of Section 1.2, the values of Efk(Cn ∩ Sd+) with even k can be
determined uniquely by using the Dehn-Sommerville relations. Indeed, the f -vector of the
spherical polytope Cn ∩ Sd+ coincides with the f -vector of the flat, d-dimensional polytope
Cn ∩ {x0 = 1}, which is simplicial with probability 1 and thus satisfies the Dehn-Sommerville
relations. A more efficient method to treat the even values of k will be described in Section 1.6.

It is interesting to compare Theorems 1.3 and 1.4 with the results of Cover and Efron [5]
(see also [9] for a recent work in this direction) who computed the expected f -vector of the
random polyhedral cone Dn := pos(V1, . . . , Vn) generated by n i.i.d. random vectors V1, . . . , Vn
with uniform distribution on the whole sphere Sd ⊂ Rd+1. They gave an explicit formula for
the conditional expectation E[fk(Dn ∩ Sd)|{Dn 6= Rd+1}] in terms of binomial coefficients and
proved that

lim
n→∞

E[fk(Dn ∩ Sd)|{Dn 6= Rd+1}] = 2k+1

(
d

k + 1

)
for all k ∈ {0, . . . , d−1}; see [5, Theorem 3’]. The number on the right-hand side is the number
of k-faces of the d-dimensional crosspolytope (as Cover and Efron [5, Section 4] observed in the
setting of the dual cones). The event {Dn 6= Rd+1} occurs iff there is a (random) half-space
containing the vectors V1, . . . , Vn, whereas in our Theorems 1.3 and 1.4 we condition on the
event that these vectors are in some fixed (deterministic) half-space. These very similar looking
types of conditioning lead to two completely different limits of the f -vector.

Let us now consider some special cases of Theorem 1.4. In the case k = d− 1, Bárány et al.
[3, Theorem 3.1] showed that

Efd−1(Cn ∩ Sd+) =

(
n

d

)
2ωd
ωd+1

∫ π

0

(sinx)d−1
(x
π

)n−d
dx (1.14)

with ωd+1 = 2π(d+1)/2/Γ(d+1
2

) being the surface measure of the d-dimensional unit sphere Sd ⊂
Rd+1. To see that this result is a special case of Theorem 1.4, let us first consider the case when
d is even. Taking k = d− 1 in Theorem 1.4 and observing that A[d− 2, d− 2] = (d− 3)!!2, we
obtain

Efd−1(Cn ∩ Sd+) =
n!πd−n

d!
(d− 1)!!2B{n, d} =

(
n

d

)
(d− 1)!!2

(d− 1)!

∫ π

0

(sinx)d−1
(x
π

)n−d
dx.

This is consistent with (1.14). Let now d ≥ 3 be odd. Then, we may take k = d − 2 in
Theorem 1.4 and use the relation fd−1(Cn ∩ Sd+) = 2

d
fd−2(Cn ∩ Sd+). Bearing in mind that
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A[d− 2, d− 3] = (d− 3)!!2, we arrive at

Efd−1(Cn ∩ Sd+) =
2

d
Efd−2(Cn ∩ Sd+) =

2

d

n!πd−1−n

(d− 1)!
(d− 1)!!2B{n, d}

=

(
n

d

)
2

π

(d− 1)!!2

(d− 1)!

∫ π

0

(sinx)d−1
(x
π

)n−d
dx,

which is consistent with (1.14) and completes its verification.
Another two special cases in which the expression in Theorem 1.4 can be considerably sim-

plified are given in the following

Proposition 1.5. For all odd k ∈ {1, . . . , d− 1}, we have(
d+ 2

k + 1

)
− Efk(Cd+2 ∩ Sd+) = πk−d−1

d+ 2

(k + 1)!
·
√
π Γ
(
d+2
2

)
Γ
(
d+3
2

) · (A[d+ 2, k + 1]− A[d, k + 1]),(
d+ 3

k + 1

)
− Efk(Cd+3 ∩ Sd+) = πk−d−1

d+ 3

(k + 1)!
·
√
π Γ
(
d+4
2

)
Γ
(
d+3
2

) · (A[d+ 2, k + 1]− A[d, k + 1]).

Let us also mention that taking k = 1 in Theorem 1.4 and observing that A[d, 0] = 1 for all
d ∈ N, we arrive at the following expression for the number of edges of Cn ∩ Sd+:

Ef1(Cn ∩ Sd+) =
1

2
n!π2−n

∑
s=0,1,...

m:=d−2s≥2

m− 1

(m− 2)!(n−m)!

∫ π

0

(sinx)m−1xn−mdx.

Let us finally observe that using the definition of B{n, k} it is not difficult2 to show that for
every fixed k ∈ N, we have

lim
n→∞

B{n, k}
πn/n!

= 1.

Inserting this into the formula from Theorem 1.4, using the recursive property of A[n, k]
(see (1.8)) and evaluating the telescope sum, one can easily re-derive Theorem 1.3.

1.6. Removing restrictions on parity. Most of the results stated above impose a restriction
on the parity of the parameter k; see Theorems 1.1, 1.3, 1.4 and Proposition 1.5. This is due
to the fact that A[n, k] was defined to be 0 if k is odd; see (1.2). It is natural to ask whether
the parity restrictions can be removed if we modify the definition of A[n, k] appropriately. One
way to do this is to turn Theorem 1.1 into a definition of A[n, k]. Let us agree, just for the
purpose of the rest of Section 1, to re-define A[n, k] as follows:

A[n, k] :=
k!

πk
Efn−k(Z(n)), (1.15)

for all n ∈ N and all k ∈ {0, . . . , n} irrespective of the parity. By Theorem 1.1, this is consistent
with the original definition of A[n, k] given in (1.2) if k is even, but gives a different (non-zero)
value if k is odd. It turns out that, with this new definition, the parity restrictions can be
removed in the remaining theorems.

Proposition 1.6. With the above convention on A[n, k], the formulae from Theorems 1.3, 1.4
and Proposition 1.5 continue to hold without restrictions on the parity of k ∈ {0, . . . , d− 1}.

2Make the change of variables x = π(1− y/n) in the integral
∫ π
0

(sinx)k−1xn−kdx.
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Remark 1.7. In particular, we claim that all these results apply to the case k = 0 upon replacing
(d − 2s − 1)2A[d − 2s − 2,−1] by A[d − 2s, 1] − A[d − 2s − 2, 1] in Theorem 1.4. Thus, the
formula of Theorem 1.4 takes the form

Ef0(Cn ∩ Sd+) = n!π1−n
∑

s=0,1,...
d−2s≥1

B{n, d− 2s}(A[d− 2s, 1]− A[d− 2s− 2, 1]),

where we put A[0, 1] := A[−1, 1] := 0.

The case k = 0 of Theorem 1.4 is especially interesting since it is related to the expected
spherical volume of Cn ∩ Sd+, or, which is the same up to a constant factor, the expected angle
of the cone Cn. Let α(Cn) be the angle of the cone Cn (normalized such that the full solid
angle is 1). Also, let σd denote the d-dimensional surface measure on the sphere Sd. Recall that
ωd+1 := σd(Sd) = 2π(d+1)/2/Γ(d+1

2
).

Theorem 1.8. For all d ∈ N and n ≥ d+ 1 we have

Eα(Cn) =
Eσd(Cn ∩ Sd+)

ωd+1

=
n!

2πn

∑
m∈{d+2,...,n+1}
m≡d (mod 2)

B{n+ 1,m}(A[m, 1]− A[m− 2, 1]).

The asymptotic rate of convergence of Eα(Cn) to 1/2 (the solid angle of the half-space), as
n→∞, was determined in [3, Theorem 7.1], where it was shown that

1

2
ωd+1 − Eσd(Cn ∩ Sd+) = C∗(d)n−1 +O(n−2), and lim

n→∞
Ef0(Cn ∩ Sd+) =

2C∗(d)

ωd+1

for certain constant C∗(d) expressed in [3, Equation (22)] as a multiple integral which is not
clear how to evaluate. Comparing the second formula with Theorem 1.3 (where, bearing in
mind Proposition 1.6, we take k = 0), we conclude that C∗(d) = πωd+1A[d, 1]/2.

The proof of Theorem 1.8 is based on an Efron-type identity (see (3.14), below) linking
the expected angle of Cn to Ef0(Cn+1 ∩ Sd+). More generally, Theorem 2.7 of [11] expresses
the so-called expected Grassmann angles of the cones Cn, n ∈ N, through their f -vectors.
Combining this result with Theorem 1.4, it is possible to obtain explicit expressions for the
expected Grassmann angles of Cn. Moreover, Theorem 2.8 of [11] gives asymptotic expressions
for the expected Grassmann angles, expected conic intrinsic volumes and expected conic mean
projection volumes of the random cone Cn, as n → ∞, in terms of certain constants Bk,d. By
combining our Theorem 1.3 with Theorem 2.4 of [11], we obtain the formula

Bk,d =
k!

2
lim
n→∞

Efk−1(Cn ∩ Sd+) =
πk

2
A[d, k],

for all k ∈ {1, . . . , d}. This turns all results of [11] that involve the constants Bk,d into explicit
formulae. We refrain from giving further details.

The next proposition provides a simple recursive algorithm for computing the numbers A[n, k]
and thus the expected f -vector of the Poisson zero polytope, without any restrictions on parity.
The values of A[n, k] for small n, computed by implementing this algorithm in Mathematica,
are given in Table 3.

Proposition 1.9. With convention (1.15), the triangular array A[n, k], where n ∈ N, k ∈
{0, . . . , n}, is uniquely determined by the following properties:

(i) A[n, 0] = 1 for all n ∈ N;
(ii) A[n, n] = 2−n(n!)2/Γ(n

2
+ 1)2 and A[n, n− 1] = π

2
A[n, n] for all n ∈ N;
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(iii) A[n, k] = A[n− 2, k] + (n− 1)2A[n− 2, k − 2] for all n ≥ 4 and k ∈ {2, . . . , n− 2};
(iv) A[n, 1] = 1

π
((−1)n−1 + 1 +

∑n
k=2(−1)k(πk/k!)A[n, k]) for all n ≥ 3.

Proof. Part (ii) is equivalent to the formula Ef0(Z(n)) = 2−nn!πn/Γ(n
2

+ 1)2 together with the

relation 2f1(Z
(n)) = nf0(Z

(n)). Both results were already mentioned in Section 1.3. Part (iii)
is just a restatement of Proposition 1.2 in terms of the A[n, k]’s, whereas Part (iv) follows
from the Euler relation

∑n
k=0(−1)kEfk(Z(n)) = 1. The fact that (i)-(iv) determine the A[n, k]’s

uniquely easily follows by induction over n. Indeed, (i) and (ii) determine A[1, k] and A[2, k] for
all admissible k’s, which is the base of induction. Assuming that the A[m, k]’s are determined
uniquely for all m ∈ {1, . . . , n − 1}, k ∈ {0, . . . ,m} with some n ≥ 3, we can use (i), (ii)
and (iii) to determine A[n, k] for all k ∈ {0, . . . , n}\{1}. Finally, (iv) determines A[n, 1],
thus completing the induction. Note that the Euler-type relation (iv) cannot be removed
without loosing uniqueness since the value A[3, 1] is not determined uniquely by the remaining
conditions. �

As we already know from (1.2), A[n, k] is an integer number for even k. It turns out that in
the case when k is odd, A[n, k] is a polynomial of π2, if n is even, and 1/π times a polynomial
of π2, if n is odd. This fact can easily be established by induction over n keeping in mind
Proposition 1.9. It remains an open problem to find a closed-form expression for the coefficients
of these polynomials.

1.7. Sylvester problem on the half-sphere. The classical Sylvester four point problem
asks for the probability that four random points chosen uniformly and independently from
some convex plane region have a convex hull which is a triangle. In the case when the region
is a disk (or, more generally, any ellipse), the answer is 35/(12π2). A d-dimensional version
of this problem was solved by Kingman [13] who computed explicitly the probability that the
convex hull of d+2 points chosen independently and uniformly from the d-dimensional ball is a
simplex with d+1 vertices. Let us study a similar problem on the half-sphere. Let U1, . . . , Ud+2

be random points sampled uniformly and independently from the upper half-sphere Sd+. We
ask for the probability P (d) that the spherical convex hull of these points, namely Cd+2 ∩ Sd+,
is a spherical simplex with d+ 1 vertices.

Theorem 1.10. For all d ∈ N we have

P (d) = π−(d+1) (d+ 2)

√
π Γ
(
d+2
2

)
Γ
(
d+3
2

) (A[d+ 2, 1]− A[d, 1]),

with the convention A[d, 1] := 1
π
Efd−1(Z(d)).

Proof. Since the number of vertices of the spherical polytope Cd+2 ∩ Sd+ is either d + 1 (with
probability P (d)) or d+ 2 (with probability 1− P (d)), we have

Ef0(Cd+2 ∩ Sd+) = (d+ 1)P (d) + (d+ 2)(1− P (d)) = (d+ 2)− P (d).

On the other hand, the first formula of Proposition 1.5 with k = 0 (bearing in mind Proposi-
tion 1.6) yields

(d+ 2)− Ef0(Cd+2 ∩ Sd+) = π−(d+1)(d+ 2)

√
π Γ
(
d+2
2

)
Γ
(
d+3
2

) · (A[d+ 2, 1]− A[d, 1]).

Resolving this w.r.t. P (d) we arrive at the required formula. �
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The first few values of P (d) are given in Table 5. For example, for four points on the
two-dimensional half-sphere S2

+, the probability that the convex hull is a spherical triangle is
P (2) = 24

π2 − 2 ≈ 0.4317.

2. Proof of Theorem 1.1

2.1. Beta’ polytopes. The proofs strongly rely on the results of the paper [12] whose notation
we follow. A random point X in Rd is said to have the beta distribution with parameter β > −1
if its density is given by

fd,β(x) = cd,β
(
1− ‖x‖2

)β
1{‖x‖<1}, x ∈ Rd, cd,β =

Γ
(
d
2

+ β + 1
)

π
d
2 Γ (β + 1)

. (2.1)

Similarly, X has beta’ distribution with parameter β > d/2 if its density has the form

f̃d,β(x) = c̃d,β
(
1 + ‖x‖2

)−β
, x ∈ Rd, c̃d,β =

Γ (β)

π
d
2 Γ
(
β − d

2

) . (2.2)

In order to conform with the notation of [12], we usually supply objects and quantities related
to the beta’ case with the tilde, even though we shall deal almost exclusively with the beta’
case here.

Let X1, X2, . . . be i.i.d. random points in Rd with density f̃d,β. The convex hull of X1, . . . , Xn

is called the beta’ polytope and denoted by P̃ β
n,d := [X1, . . . , Xn]. These random polytopes

were introduced in the works of Miles [22] and Ruben and Miles [23], and further studied
in [10, 6, 4, 11, 12]. In [12], expected values of various functionals of these polytopes (including
the f -vector as well as the internal and external angles) were expressed through quantities of
two sorts. The quantities of the first sort, denoted by Ĩn,k(α), are given by the explicit formula

Ĩn,k(α) =

∫ +π/2

−π/2
c̃1,αk+1

2
(cosx)αk−1

(∫ x

−π/2
c̃1,α+1

2
(cos y)α−1dy

)n−k
dx, (2.3)

see [12, Remark 1.17], and are closely related to the external angles of the beta’ polytopes;
see [12, Theorem 1.16]. The quantities of the second sort, denoted by J̃n,k(β), are defined as
follows. Let Z1, . . . , Zn be n independent random points in Rn−1 distributed according to the
density f̃n−1,β. Then, J̃n,k(β) is the expected internal angle of the simplex [Z1, . . . , Zn] at its

face [Z1, . . . , Zk], for k ∈ {1, . . . , n}. By definition, J̃n,n(β) = 1.
For the purposes of the present paper, it will be more convenient to work with the quantities

Ĩn,k(β) :=

(
n

k

)
Ĩn,k(β) and J̃n,k(β) :=

(
n

k

)
J̃n,k(β), k ∈ {1, . . . , n}.

Note that, by definition, J̃n,k(β) is the expected sum of internal angles at all k-vertex faces
[Zi1 , . . . , Zik ] of the beta’ simplex [Z1, . . . , Zn] ⊂ Rn−1 with n vertices. On the other hand,

Ĩn,k(2β−n+ 1) is the expected sum of external angles at all k-vertex faces of the same random
simplex; see [12, Theorem 1.16].

2.2. Expected internal angle sums. As explained in Section 1.5, to prove Theorem 1.1 it
suffices to show that for all d ∈ N and all odd k ∈ {1, . . . , d− 1}, we have

Efk(conv Πd,1) =
πk+1

(k + 1)!
A[d, k + 1], (2.4)
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where conv Πd,1 is the convex hull of the Poisson process Πd,1 defined in Section 1.5. The
numbers A[n, k] are defined by their generating function (1.2). The starting point of our proof
is the following explicit formula derived in [12, Theorem 1.21 and Section 1.5]:

Efk(conv Πd,1) =
∑

s=0,1,...
n:=d−2s≥k+1

2

n
πnc̃1,n+1

2
J̃n,k+1

(n
2

)
, (2.5)

for all k ∈ {0, . . . , d− 1}. The main contribution of the present paper is the evaluation of the

expected internal angle sums J̃n,k+1(n/2).

Proposition 2.1. For all even k ∈ {1, . . . , n}, the expected sum of internal angles at faces

with k vertices of the beta’ simplex P̃
n/2
n,n−1 ⊂ Rn−1 with n vertices and β = n/2 is given by

J̃n,k
(n

2

)
=
πk−n

k!
· n

2c̃1,n+1
2

· (n− 1)2A[n− 2, k − 2]. (2.6)

Proof of Theorem 1.1 given Proposition 2.1. Using (1.2), it is easy to check that A[n, k + 1]−
A[n− 2, k + 1] = (n− 1)2A[n− 2, k− 1]; see, e.g., Lemma 2.5. Replacing k by k + 1 and using
this relation, we can write (2.6) as

J̃n,k+1

(n
2

)
=

πk+1−n

(k + 1)!
· n

2c̃1,n+1
2

· (A[n, k + 1]− A[n− 2, k + 1]),

for all odd k ∈ {1, . . . , n− 1}.
We need to prove (2.4). Fix some odd k ∈ {1, . . . , d−1}. Plugging this formula for J̃n,k+1(n/2)

into (2.5), we obtain

Efk(conv Πd,1) =
∑

s=0,1,...
n:=d−2s≥k+1

πk+1

(k + 1)!
· (A[n, k + 1]− A[n− 2, k + 1]) =

πk+1

(k + 1)!
A[d, k + 1]

because the last term in the telescope sum, which is either −A[k − 1, k + 1] or −A[k, k + 1],
vanishes. This establishes (2.4). �

2.3. System of equations for expected internal angles. In the rest of the paper we prove
Proposition 2.1. As a first step, we shall provide a system of relations between the quantities
Ĩn,k(β) and J̃n,k(β) which leads to a recursive algorithm for computing J̃n,k(β).

Proposition 2.2. For every n ∈ {2, 3, . . .}, k ∈ {1, . . . , n− 1} and for every β > (n− 1)/2 we
have ∑

s=0,1,...
n−2s≥k

Ĩn,n−2s(2β − n+ 1)J̃n−2s,k(β − s) =
1

2

(
n

k

)
, (2.7)

∑
s=0,1,...

n−2s−1≥k

Ĩn,n−2s−1(2β − n+ 1)J̃n−2s−1,k
(
β − s− 1

2

)
=

1

2

(
n

k

)
. (2.8)

Proof. Given a d-dimensional polyhedral cone C, we denote by υ0(C), . . . , υd(C) its conic in-
trinsic volumes. For their definition and a review of their properties we refer to [2, 1] (whose
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notation we follow) and to [25, Section 6.5] (where slightly different notation is used). Here we
shall need only the Gauss-Bonnet relation [2, Equation (5.3)] which states that∑

s≥0
j:=d−2s≥0

υj(C) =
∑
s≥0

j:=d−2s−1≥0

υj(C) =
1

2

for every d-dimensional polyhedral cone C that is not a linear subspace.
Consider the (n−1)-dimensional beta’ simplex P̃ β

n,n−1 defined as the convex hull [X1, . . . , Xn]

of n independent random points X1, . . . , Xn having the probability density f̃n−1,β on Rn−1. The
tangent cone at its k-vertex face G = [X1, . . . , Xk] is defined as

T̃ βn,k := {v ∈ Rn−1 : there exists ε > 0 such that g0 + εv ∈ P̃ β
n,n−1},

where g0 is any point in the relative interior of G, for example g0 = (X1 + . . .+Xk)/k.
The expected conic intrinsic volumes of the tangent cone were computed in [12, Theorem 1.18]:

For all k ∈ {1, . . . , n− 1} and j ∈ {k − 1, . . . , n− 1} we have

Eυj(T̃ βn,k) =
1(
n
k

) Ĩn,j+1(2β − n+ 1)J̃j+1,k

(
β − n− 1− j

2

)
. (2.9)

For j /∈ {k − 1, . . . , n − 1} we have Eυj(T̃ βn,k) = 0. In particular, all intrinsic volumes with
j < k − 1 vanish, which is due to the fact that the lineality space of the tangent cone, defined
as the intersection of T̃ βn,k with −T̃ βn,k, coincides with the affine hull of G shifted to the origin
and has dimension k − 1.

Applying the Gauss-Bonnet relation to the tangent cone T̃ βn,k and taking the expectation, we
arrive at the required relation (2.7). �

In view of the interpretation of Ĩn,k(β) and J̃n,k(β) as expected sums of internal/external
angles, Relations (2.7) and (2.8) can be seen as a stochastic version of McMullen’s non-linear
angle-sum relations [17] in the setting of beta’ polytopes.

The above proposition leads to a recursive algorithm which can be used to compute the
quantities J̃n,k(β), both numerically and exactly. First, recall that J̃n,n(β) = 1 by definition.

Separating in (2.7) the term with s = 0 and noting that Ĩn,n(2β − n+ 1) = 1 by (2.3), we can
write

J̃n,k(β) =
1

2

(
n

k

)
−
∑

s=1,2,...
n−2s≥k

Ĩn,n−2s(2β − n+ 1)J̃n−2s,k(β − s)

for k ∈ {1, . . . , n − 1}. This gives an expression for J̃n,k(β) in terms of the quantities of the

form J̃`,k(α) with ` < n and the quantities of the form Ĩn,k(α) for which we have explicit

expression (2.3). Proceeding recursively, we can compute J̃n,k(β).
Using this algorithm together with (2.5) we computed exactly the expected vectors of the

Poisson zero polytopes in low dimensions; see Table 1. Then, we guessed the formula stated in
Theorem 1.1 by the method of trials and errors.

2.4. Uniqueness of the solution and reduction to a combinatorial identity. To prove
Proposition 2.1, we shall proceed as follows. First, we shall observe that the system of linear
equations (2.7), which is triangular with 1’s on the diagonal, determines the unknown quant-

ities J̃n,k(β) uniquely. This will be stated more precisely in the next proposition. Thus, in
order to prove Proposition 2.1, it suffices to check that equation (2.7) continues to hold if we
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replace J̃n,k(n/2) by their conjectured values given by the right-hand side of (2.6). This reduces
Proposition 2.1 to certain combinatorial identity which will be verified in Section 2.7.

First of all, we are interested in the particular case β = n/2 of the above setting, in which
case equation (2.7) simplifies to∑

s=0,1,...
n−2s≥k

Ĩn,n−2s(1)J̃n−2s,k
(n

2
− s
)

=
1

2

(
n

k

)
, (2.10)

for all n ∈ {2, 3, . . .}, k ∈ {1, . . . , n− 1}.

Proposition 2.3. Consider the following system of linear equations for the unknown quantities
vn,k, where n ∈ {2, 3, . . .} and k is an even number in {1, . . . , n}:∑

s=0,1,...
n−2s≥k

Ĩn,n−2s(1)vn−2s,k =
1

2

(
n

k

)
, for all n ∈ {2, 3, . . .}, k ∈ 2N, k < n, (2.11)

vn,n = 1, for all even n ∈ {2, 4, 6, . . .}. (2.12)

Then, the unique solution of this system is given by vn,k = J̃n,k(n/2), for all n ∈ {2, 3, . . .} and
all even k ∈ {1, . . . , n}.

Proof. Since vn,k = J̃n,k(n/2) is indeed a solution according to (2.10), it remains to show that
the solution is unique. This will be done by induction. For the base case n = 2, note that
the quantity v2,2 = 1 is determined uniquely by (2.12). Assume now that n ∈ {3, 4, . . .} and
that we have shown that the quantities vm,` are uniquely determined by (2.11), (2.12) for all
m ∈ {2, 3, . . . , n−1} and all even ` ∈ {1, . . . ,m}. We are going to show that vn,k are determined
uniquely for all even k ∈ {1, . . . , n}. If n is even and n = k, then vn,n = 1 by (2.12). So, let
k ∈ 2N be even with k < n. Then, separating the term with s = 0 in (2.11) and observing that

Ĩn,n(1) = 1, we can express vn,k through vm,`’s with m = n − 2s strictly smaller than n, thus
completing the induction. �

In view of the above, in order to prove Proposition 2.1, it suffices to check that for all
n ∈ {2, 3, . . .}, and all even k ∈ {1, . . . , n− 1}∑

s=0,1,...
n−2s≥k

(
Ĩn,n−2s(1) · π

k−n+2s

k!
· n− 2s

c̃1,n−2s+1
2

· (n− 2s− 1)2 · A[n− 2s− 2, k − 2]

)
=

(
n

k

)
. (2.13)

The rest of the paper is devoted to the proof of (2.13).

2.5. Definition of B{n, k}. For n ∈ N and k ∈ {1, . . . , n} introduce the numbers

B{n, k} :=
1

(k − 1)!(n− k)!

∫ π

0

(sinx)k−1xn−kdx. (2.14)

Note that B{n, 1} = πn/n!. The values of B{n, k} for small n and k are given in Table 4. Let
us extend this definition by putting

B{n, k} :=

{
πn/n!, for all n ∈ N, k = 0,

0, for all n ∈ N, k ∈ {n+ 1, n+ 2, . . .}.
(2.15)

The next lemma expresses Ĩn,k(1) through B{n, k}.
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Lemma 2.4. For all n ∈ N and k ∈ {1, . . . , n} we have

Ĩn,k(1) =

(
n

k

)
Ĩn,k(1) =

n!

k
c̃1, k+1

2
πk−nB{n, k}.

Proof. Using (2.3) with α = 1, the fact that c̃1,1 = 1/π (see (2.2)) and finally the variable
change x = ϕ− π

2
, we obtain

Ĩn,k(1) =

∫ +π/2

−π/2
c̃1, k+1

2
(cosx)k−1

(
x

π
+

1

2

)n−k
dx = c̃1, k+1

2
πk−n

∫ π

0

(sinϕ)k−1ϕn−kdϕ,

which proves the claim after recalling that Ĩn,k(1) =
(
n
k

)
Ĩn,k(1). �

In view of Lemma 2.4, we can rewrite (2.16) in the following form:∑
s=0,1,...
n−2s≥k

B{n, n− 2s}(n− 2s− 1)2A[n− 2s− 2, k − 2] =
πn−k

(n− k)!
, (2.16)

for all n ∈ {2, 3, . . .} and all even k ∈ {1, . . . , n− 1}.

2.6. Recurrence relations for A[n, k] and B{n, k}. First we establish recurrence relations
for A[n, k] and B{n, k}. These are similar to the relations satisfied by the Stirling numbers

[
n
k

]
and

{
n
k

}
; see (1.11).

Lemma 2.5. For all n ∈ N and all k ∈ Z we have

A[n+ 2, k]− A[n, k] = (n+ 1)2A[n, k − 2]. (2.17)

Proof. By definition of A[n, k], see (1.2), we have

A[n+ 2, k] = [xk]
(

(1 + (n+ 1)2x2)(1 + (n− 1)2x2)(1 + (n− 3)2x2) . . .
)
,

A[n, k] = [xk]
(

(1 + (n− 1)2x2)(1 + (n− 3)2x2)(1 + (n− 5)2x2) . . .
)
.

Subtracting these identities, we obtain

A[n+ 2, k]− A[n, k] = [xk]
(

(n+ 1)2x2(1 + (n− 1)2x2)(1 + (n− 3)2x2) . . .
)

= (n+ 1)2A[n, k − 2],

thus proving the claim. �

Recall that the numbers B{n, k} were defined in (2.14) and (2.15).

Lemma 2.6. For all n ∈ N and k ∈ {2, 3, . . .}, we have

B{n, k − 2} −B{n, k} = (k − 1)2B{n+ 2, k}. (2.18)

Proof. Case 1. Let first k ∈ {3, . . . , n}. Integrating by parts, we obtain

B{n, k} =
1

(k − 1)!(n− k)!

∫ π

0

(sinx)k−1d

(
xn−k+1

n− k + 1

)
= − 1

(k − 1)!(n− k + 1)!

∫ π

0

xn−k+1(k − 1)(sinx)k−2(cosx)dx.
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Applying partial integration for the second time, we arrive at

B{n, k} = − 1

(k − 2)!(n− k + 1)!

∫ π

0

(sinx)k−2(cosx)d

(
xn−k+2

n− k + 2

)
=

1

(k − 2)!(n− k + 2)!

∫ π

0

xn−k+2 d

dx

(
(sinx)k−2(cosx)

)
dx

=
1

(k − 2)!(n− k + 2)!

∫ π

0

xn−k+2
(

(k − 2)(sinx)k−3(cosx)2 − (sinx)k−1
)

dx.

Observe that we required k ≥ 3 because, for k = 2, the term xn−k+2(sinx)k−2(cosx) appearing
in the partial integration formula does not vanish at x = π.

Using the identity cos2 x = 1− sin2 x and simplifying, we arrive at

B{n, k} =
(k − 2)

(k − 2)!(n− k + 2)!

∫ π

0

xn−k+2(sinx)k−3dx

− (k − 1)

(k − 2)!(n− k + 2)!

∫ π

0

xn−k+2(sinx)k−1dx.

We now easily recognize that the first term on the right-hand side is B{n, k − 2}, whereas
the second term is (k − 1)2B{n + 2, k}. Thus, we proved that B{n, k} = B{n, k − 2} − (k −
1)2B{n+ 2, k} for k ∈ {3, . . . , n}.
Case 2. If k ≥ n+ 3, then all terms in (2.18) vanish by definition.

Case 3. If k = n+ 2 or k = n+ 1, then B{n, k} = 0 by definition and we need to verify that

B{n, n} = (n+ 1)2B{n+ 2, n+ 2} and B{n, n− 1} = n2B{n+ 2, n+ 1}
for all n ∈ N. The second identity holds for n = 1 since B{1, 0} = π = B{3, 2}, and we ignore
this case in the following. Recalling the definition of B{n, k} stated in (2.14), we can write
these identities as ∫ π

0

(sinx)n+1dx =
n

n+ 1

∫ π

0

(sinx)n−1dx, n ∈ N, (2.19)∫ π

0

x(sinx)ndx =
n− 1

n

∫ π

0

x(sinx)n−2dx, n ≥ 2. (2.20)

To verify (2.19), we use partial integration as follows:∫ π

0

(cos2 x)(sinx)n−1dx =
1

n

∫ π

0

(cosx)d(sinx)n =
1

n

∫ π

0

(sinx)(sinx)ndx.

Replacing cos2 x by 1− sin2 x on the left-hand side, we arrive at (2.19). To verify (2.20), write∫ π

0

x(cos2 x)(sinx)n−2dx =
1

n− 1

∫ π

0

(x cosx)d(sinx)n−1

=
1

n− 1

∫ π

0

(x sinx− cosx)(sinx)n−1dx =
1

n− 1

∫ π

0

x(sinx)ndx

because
∫ π
0

(cosx)(sinx)n−1dx = 0. Replacing cos2 x by 1 − sin2 x on the left-hand side, we
arrive at (2.20).

Case 4. Let k = 2. If n = 1, identity (2.18) takes the form B{1, 0} = B{3, 2}, which is true
because both terms are equal to π. In the case when n ≥ 2, we need to verify the identity
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πn/n! = B{n, 2}+B{n+ 2, 2}, or, after recalling (2.14) and multiplying by n!,

πn =

∫ π

0

(sinx)(n(n− 1)xn−2 + xn)dx, n ≥ 2.

This is an easy exercise in partial integration:∫ π

0

(sinx)n(n− 1)xn−2dx =

∫ π

0

n(sinx)dxn−1 = −
∫ π

0

n(cosx)xn−1dx = −
∫ π

0

(cosx)dxn

= −(cosx)xn
∣∣∣π
0
−
∫ π

0

(sinx)xndx = πn −
∫ π

0

(sinx)xndx.

�

2.7. The basic combinatorial identity. In the next lemma we prove (2.16), thereby com-
pleting the proof of Proposition 2.1 and Theorem 1.1.

Lemma 2.7. For all n ∈ N and all even k ∈ {1, 2, . . . , n− 1},∑
s=0,1,...
n−2s≥k

B{n, n− 2s}(n− 2s− 1)2A[n− 2s− 2, k − 2] =
πn−k

(n− k)!
. (2.21)

Remark 2.8. Another formula of the same type will be established in Lemma 3.1.

Proof of Lemma 2.7. We argue by induction, assuming the identity for some n and proving it
for n+ 2.

Base cases. We start by verifying the cases n = 3 and n = 4 (because for n = 1 and n = 2 the
set of admissible k’s is empty).

Case n = 3. Then, k = 2 and (2.21) turns into B{3, 3}22A[1, 0] = π, which is true because
A[1, 0] = 1 and B{3, 3} = π/4.

Case n = 4. Then, k = 2 and (2.21) turns into

B{4, 4}32A[2, 0] +B{4, 2}12A[0, 0] =
π2

2
,

which is true because A[2, 0] = A[0, 0] = 1, while B{4, 4} = 2/9 and B{4, 2} = π2/2− 2.

Induction assumption. Assume that identity (2.21) holds for some n ∈ {3, 4, . . .} and all even
k ∈ {1, . . . , n− 1}. By Lemma 2.5, we have

(n− 2s− 1)2A[n− 2s− 2, k − 2] = A[n− 2s, k]− A[n− 2s− 2, k],

so that we can write the induction assumption in the form∑
s=0,1,...
n−2s≥k

B{n, n− 2s}
(
A[n− 2s, k]− A[n− 2s− 2, k]

)
=

πn−k

(n− k)!

or, more conveniently,∑
s=0,1,...
n−2s≥k

B{n, n− 2s}A[n− 2s, k] =
πn−k

(n− k)!
+
∑

s=0,1,...
n−2s≥k

B{n, n− 2s}A[n− 2s− 2, k], (2.22)
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for all even k ∈ {1, . . . , n− 1}.
Induction step. We need to prove that identity (2.21) holds with n replaced by n+ 2, that is

S :=
∑

s=0,1,...
n+2−2s≥k

B{n+ 2, n+ 2− 2s}(n− 2s+ 1)2A[n− 2s, k − 2] =
πn+2−k

(n+ 2− k)!
, (2.23)

for all even k ∈ {1, . . . , n+ 1}. By Lemma 2.6, for all s such that n+ 2− 2s ≥ k ≥ 2 we have

(n− 2s+ 1)2B{n+ 2, n+ 2− 2s} = B{n, n− 2s} −B{n, n− 2s+ 2}.
Inserting this into the above definition S, we obtain

S =
∑

s=0,1,...
n+2−2s≥k

(B{n, n− 2s} −B{n, n− 2s+ 2})A[n− 2s, k − 2]

=
∑

s=0,1,...
n−2s≥k−2

B{n, n− 2s}A[n− 2s, k − 2]−
∑

s=0,1,...
n+2−2s≥k

B{n, n− 2s+ 2}A[n− 2s, k − 2].

Let first k 6= 2. To the first sum we apply the induction assumption (2.22) with k replaced by
k − 2 (which is an even number in the range {1, . . . , n− 1}):

S =
πn−(k−2)

(n− (k − 2))!
+

∑
s=0,1,...

n−2s≥k−2

B{n, n− 2s}A[n− 2s− 2, k − 2]

−
∑

s=0,1,...
n−2s≥k−2

B{n, n− 2s+ 2}A[n− 2s, k − 2].

Introducing the new summation index s′ := s− 1 in the second sum and leaving the first sum
unchanged, we obtain

S =
πn−(k−2)

(n− (k − 2))!
+

∑
s=0,1,...

n−2s≥k−2

B{n, n− 2s}A[n− 2s− 2, k − 2]

−
∑

s′=−1,0,...
n−2s′≥k

B{n, n− 2s′}A[n− 2s′ − 2, k − 2].

The sums on the right-hand side differ by just two terms corresponding to s′ = −1 (in the
second sum) and s such that n− 2s ∈ {k− 1, k− 2} (in the first sum). The term with s′ = −1
is B{n, n + 2}A[n, k − 2], which vanishes by definition. The term in the first sum for which
n− 2s ∈ {k− 1, k− 2} also vanishes because then n− 2s− 2 ∈ {k− 3, k− 4} and consequently
A[n− 2s− 2, k − 2] = 0. So, the sums cancel each other and we are left with

S =
πn+2−k

(n+ 2− k)!
,

which verifies (2.23). To complete the induction, it remains to check the case k = 2. Since
A[n− 2s, 0] = 1, we have

S =
∑

s=0,1,...
n−2s≥0

B{n, n− 2s} −
∑

s=0,1,...
n−2s≥0

B{n, n− 2s+ 2}.
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Again, the sums differ by just two terms. One of them is −B{n, n + 2} = 0. The other term
is B{n, 0} = πn/n! (if n is even) or B{n, 1} = πn/n! (if n is odd). In both cases, we have
S = πn/n!, which completes the induction. �

The proof of Theorem 1.1 is thus complete.

3. Further proofs

3.1. Proof of Proposition 1.2. We are going to show that for all n ∈ N and all m ∈
{1, . . . , n+ 1}, we have

m(m− 1)
(
Efn+2−m(Z(n+2))− Efn−m(Z(n))

)
= π2(n+ 1)2Efn+2−m(Z(n)). (3.1)

In the case when m = n+ 1 and with the convention Ef−1(Z(n)) = 0, the relation reduces to

nEf1(Z(n+2)) = π2(n+ 1)Ef1(Z(n)). (3.2)

This relation easily follows from the formula

Ef1(Z(n)) =
n

2
Ef0(Z(n)) =

n · n!πn

2n+1Γ(n
2

+ 1)2
. (3.3)

To settle the general case, we argue by induction. Assume that we established (3.1) for all
m ∈ {k + 1, . . . , n + 1} with some k ∈ {1, . . . , n}. We need to show that (3.1) holds with
m = k, that is

k(k − 1)
(
Efn+2−k(Z

(n+2))− Efn−k(Z(n))
)

= π2(n+ 1)2Efn+2−k(Z
(n)). (3.4)

It suffices to assume that k is odd because the even case has been settled in Section 1.4. Note
that (3.4) becomes trivial for k = 1 because both sides vanish. Let in the following k ≥ 3.

Case 1: n is even. Let us write the Dehn-Sommerville relation (1.4) in the form

Efn−j(Z(n)) =
1

2

n∑
m=j+1

(−1)m
(
m

j

)
Efn−m(Z(n)),

for all odd j ∈ {1, . . . , n−1}. Using this formula 3 times with j ∈ {k, k−2}, we can write (3.4)
in the following form:

k(k − 1)

(
n+2∑

m=k+1

(−1)m
(
m

k

)
Efn+2−m(Z(n+2))−

n∑
m=k+1

(−1)m
(
m

k

)
Efn−m(Z(n))

)

= π2(n+ 1)2
n∑

m=k−1

(−1)m
(

m

k − 2

)
Efn−m(Z(n)). (3.5)

Applying to the left-hand side induction assumption (3.1) and introducing on the right-hand
side the new summation index m′ := m+ 2, we write the above equation in the form

k(k − 1)

(
n∑

m=k+1

π2(n+ 1)2

m(m− 1)
(−1)m

(
m

k

)
Efn+2−m(Z(n))−

(
n+ 1

k

)
Ef1(Z(n+2))

+

(
n+ 2

k

)
Ef0(Z(n+2))

)
= π2(n+ 1)2

n+2∑
m′=k+1

(−1)m
′
(
m′ − 2

k − 2

)
Efn+2−m′(Z

(n)).
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Observing that k(k−1)
m(m−1)

(
m
k

)
=
(
m−2
k−2

)
and cancelling the sums over m,m′ ∈ {k, . . . , n}, we arrive

at

k(k − 1)

(
−
(
n+ 1

k

)
Ef1(Z(n+2)) +

(
n+ 2

k

)
Ef0(Z(n+2))

)
= π2(n+ 1)2

(
−
(
n− 1

k − 2

)
Ef1(Z(n)) +

(
n

k − 2

)
Ef0(Z(n))

)
.

The equality of terms involving Ef1(Z(n+2)) and Ef1(Z(n)) follows from (3.2), whereas the equal-
ity of terms involving Ef0(Z(n+2)) and Ef0(Z(n)) follows from the identity (n+2)Ef0(Z(n+2)) =
π2(n+ 1)Ef0(Z(n)) which, in turn, is a consequence of (3.3). This completes the proof of (3.4).

Case 2: n is odd. Let us write the Dehn-Sommerville relations (1.5) in the form

Efn−j(Z(n)) =
2

j
Efn−j+1(Z

(n)) +
1

j

n∑
m=j+1

(−1)m
(

m

j − 1

)
Efn−m(Z(n))

for all odd j ∈ {1, . . . , n}. Using this formula 3 times with j ∈ {k, k − 2}, we can write (3.4)
in the following form:

2(k − 1)
(
Efn+3−k(Z

(n+2))− Efn+1−k(Z
(n))
)

+ (k − 1)

(
n+2∑

m=k+1

(−1)m
(

m

k − 1

)
Efn+2−m(Z(n+2))−

n∑
m=k+1

(−1)m
(

m

k − 1

)
Efn−m(Z(n))

)

=
π2(n+ 1)2

k − 2

(
2Efn+3−k(Z

(n)) +
n∑

m=k−1

(−1)m
(

m

k − 3

)
Efn−m(Z(n))

)
.

Since k − 1 is even, we can use the result established in Section 1.4:

2(k − 1)(k − 2)
(
Efn+3−k(Z

(n+2))− Efn+1−k(Z
(n))
)

= 2π2(n+ 1)2Efn+3−k(Z
(n)).

In view of this, it remains to show that

(k − 1)(k − 2)

(
n+2∑

m=k+1

(−1)m
(

m

k − 1

)
Efn+2−m(Z(n+2))−

n∑
m=k+1

(−1)m
(

m

k − 1

)
Efn−m(Z(n))

)

= π2(n+ 1)2
n∑

m=k−1

(−1)m
(

m

k − 3

)
Efn−m(Z(n)).

The proof of this is analogous to the proof of (3.5). �

3.2. Proof of Theorem 1.4. As it was observed in [11], the f -vector of Cn ∩ Sd+ has the

same distribution as the f -vector of the beta’ polytope P̃
(d+1)/2
n,d . Indeed, the intersection of

the random cone Cn with the hyperplane {x0 = 1} (which is the tangent hyperplane to the

half-sphere Sd+ at its north pole) has the same distribution as the random polytope P̃
(d+1)/2
n,d ;

see [11, Proposition 2.2].

For the beta’ polytope P̃
(d+1)/2
n,d it was shown in [12, Theorem 1.14] that

Efk(P̃ (d+1)/2
n,d ) = 2

∑
s=0,1,...
d−2s≥k+1

Ĩn,d−2s(1)J̃d−2s,k+1

(
d

2
− s
)

(3.6)



20 ZAKHAR KABLUCHKO

for all k ∈ {0, . . . , d− 1}. By Lemma 2.4 and Proposition 2.1,

Ĩn,d−2s(1) =
n!

d− 2s
c̃1, d−2s+1

2
πd−2s−nB{n, d− 2s},

J̃d−2s,k+1

(
d

2
− s
)

=
πk+1−d+2s

(k + 1)!
· d− 2s

2c̃1, d−2s+1
2

· (d− 2s− 1)2A[d− 2s− 2, k − 1],

where for the second identity we bear in mind that k is assumed to be odd. Plugging these
values into (3.6), and performing numerous cancellations, we arrive at

Efk(P̃ (d+1)/2
n,d ) =

n!πk+1−n

(k + 1)!

∑
s=0,1,...
d−2s≥k+1

B{n, d− 2s}(d− 2s− 1)2A[d− 2s− 2, k − 1], (3.7)

for all odd k ∈ {1, . . . , d− 1}. This completes the proof of Theorem 1.4. �

3.3. A complementary combinatorial identity. As a consequence of Theorem 1.4, we shall
derive the following combinatorial identity complementing Lemma 2.7.

Lemma 3.1. For all n ∈ N and all even k ∈ {1, 2, . . . , n− 1},∑
s=0,1,...

n−2s≥k+1

B{n, n− 2s− 1}(n− 2s− 2)2A[n− 2s− 3, k − 2] =
πn−k

(n− k)!
. (3.8)

Proof. The beta’ polytope P̃
(d+1)/2
d+1,d is a d-dimensional simplex with probability 1, so that

fj

(
P̃

(d+1)/2
d+1,d

)
=

(
d+ 1

j + 1

)
, j = 0, . . . , d− 1.

Comparing this with (3.7) (where we take n = d + 1 and replace k by j), we arrive at the
identity(

n

j + 1

)
=
n!πj+1−n

(j + 1)!

∑
s=0,1,...

n−1−2s≥j+1

B{n, n− 2s− 1}(n− 2s− 2)2A[n− 2s− 3, j − 1],

for all odd j ∈ {1, . . . , n− 2}. After some cancellations, this yields∑
s=0,1,...

n−1−2s≥j+1

B{n, n− 2s− 1}(n− 2s− 2)2A[n− 2s− 3, j − 1] =
πn−j−1

(n− j − 1)!
,

for all odd j ∈ {1, . . . , n − 2}. Taking k = j + 1 (which is even), we arrive at the required
identity (3.8). �

3.4. Proof of Proposition 1.5. Let us prove the first identity. By Theorem 1.4 with n = d+2,
for all odd k ∈ {1, . . . , d− 1} we have

Efk(Cd+2 ∩ Sd+) =
(d+ 2)!πk−d−1

(k + 1)!

∑
s=0,1,...
d−2s≥k+1

B{d+ 2, d− 2s}(d− 2s− 1)2A[d− 2s− 2, k − 1].

Lemma 2.7 with n = d+ 2 and k replaced by the even number k + 1 states that∑
s=0,1,...

d+2−2s≥k+1

B{d+ 2, d+ 2− 2s}(d+ 2− 2s− 1)2A[d− 2s, k − 1] =
πd+1−k

(d+ 1− k)!
.
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Since the sums in the above two equations differ by just one term, we can write

Efk(Cd+2 ∩ Sd+) =
(d+ 2)!πk−d−1

(k + 1)!

(
πd+1−k

(d+ 1− k)!
−B{d+ 2, d+ 2}(d+ 1)2A[d, k − 1]

)
=

(
d+ 2

k + 1

)
− (d+ 2)!πk−d−1

(k + 1)!
B{d+ 2, d+ 2}(d+ 1)2A[d, k − 1]

=

(
d+ 2

k + 1

)
− (d+ 2)πk−d−1

(k + 1)!

√
π Γ
(
d+2
2

)
Γ
(
d+3
2

) (d+ 1)2A[d, k − 1]

upon using the formula

B{d+ 2, d+ 2} =
1

(d+ 1)!

∫ π

0

(sinx)d+1dx =
1

(d+ 1)!

√
π Γ
(
d+2
2

)
Γ
(
d+3
2

) .

To complete the proof of the first identity, recall that (d + 1)2A[d, k − 1] = A[d + 2, k + 1] −
A[d, k + 1] by Lemma 2.5.

The proof of the second identity is similar. By Theorem 1.4 with n = d + 3, for all odd
k ∈ {1, . . . , d− 1} we have

Efk(Cd+3 ∩ Sd+) =
(d+ 3)!πk−d−2

(k + 1)!

∑
s=0,1,...
d−2s≥k+1

B{d+ 3, d− 2s}(d− 2s− 1)2A[d− 2s− 2, k − 1].

Lemma 3.1 with n = d+ 3 and k replaced by the even number k + 1 states that∑
s=0,1,...

d+3−2s≥k+2

B{d+ 3, d+ 2− 2s}(d+ 1− 2s)2A[d− 2s, k − 1] =
πd+2−k

(d+ 2− k)!
.

Again, the sums in the above two equations differ by just one term, so that we can write

Efk(Cd+3 ∩ Sd+) =
(d+ 3)!πk−d−2

(k + 1)!

(
πd+2−k

(d+ 2− k)!
−B{d+ 3, d+ 2}(d+ 1)2A[d, k − 1]

)
=

(
d+ 3

k + 1

)
− (d+ 3)!πk−d−2

(k + 1)!
B{d+ 3, d+ 2}(d+ 1)2A[d, k − 1]

=

(
d+ 3

k + 1

)
− (d+ 3)πk−d−1

(k + 1)!

√
π Γ
(
d+4
2

)
Γ
(
d+3
2

) (d+ 1)2A[d, k − 1]

upon using the formula

B{d+ 3, d+ 2} =
1

(d+ 1)!

∫ π

0

(sinx)d+1xdx =
1

(d+ 1)!

π3/2 Γ
(
d+2
2

)
2Γ
(
d+3
2

) .

The proof of the second identity is completed by recalling that (d+1)2A[d, k−1] = A[d+2, k+
1]− A[d, k + 1]. �

3.5. Proof of Proposition 1.6. Define A[n, k] by (1.15). Let us first show that the formula

for the quantities J̃n,k(n2 ) stated in Proposition 2.1, namely

J̃n,k
(n

2

)
=
πk−n

k!
· n

2c̃1,n+1
2

· (A[n, k]− A[n− 2, k]), (3.9)

holds for all k ∈ {1, . . . , n} irrespective of the parity. Observe that we intentionally did not write
the expression in the brackets as (n−1)2A[n−2, k−2] in order to include the case k = 1. Also,
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we agree to define A[n, k] := 0 if k > n. Since the identity is known for even k, let k be odd.
The proof is essentially a repetition of the proof of Theorem 1.1 (given after Proposition 2.1) in
reversed order. Using the new definition of A[n, k] given in (1.15), recalling (1.13) and finally
applying (2.5), we obtain

πk

k!
A[n, k] = Efn−k(Z(n)) = Efk−1(conv Πn,1) =

∑
s=0,1,...

m:=n−2s≥k

2

m
πmc̃1,m+1

2
J̃m,k

(m
2

)
, (3.10)

for all k ∈ {1, . . . , n}. Replacing n by n− 2, we can write

πk

k!
A[n− 2, k] =

∑
s=0,1,...

m:=n−2−2s≥k

2

m
πmc̃1,m+1

2
J̃m,k

(m
2

)
, (3.11)

for all k ∈ {1, . . . , n−2}. Subtracting (3.10) and (3.11), we arrive at the required identity (3.9)
for all k ∈ {1, . . . , n − 2}. The remaining cases k = n and k = n − 1 can be verified directly

since J̃n,n(n/2) = 1 and J̃n,n−1(n/2) = n/2. The formulae for A[n, n] and A[n, n − 1] can be
found in Proposition 1.9 (ii).

Now, an easy inspection shows that the only ingredient in the proofs of Theorems 1.3 and 1.4
which depends on the parity of k is the formula for the quantities J̃n,k(n/2) which we have just
shown to hold without parity restrictions. (In fact, Theorem 1.3 does not require even this
formula). The same applies to Lemmas 2.7 and 3.1 (the former needs only the recurrence
relation for the A[n, k]’s in which the parity restriction was removed in Proposition 1.2), and,
consequently, to Proposition 1.5, if we write these lemmas in the form∑

s=0,1,...
n−2s≥k

B{n, n− 2s}(A[n− 2s, k]− A[n− 2s− 2, k]) =
πn−k

(n− k)!
, (3.12)

∑
s=0,1,...
n−2s≥k

B{n, n− 2s− 1}(A[n− 2s− 1, k]− A[n− 2s− 3, k]) =
πn−k

(n− k)!
(3.13)

for all n ∈ N and all k ∈ {1, 2, . . . , n − 1} regardless of the parity. We need only to verify the
induction base in the proof of Lemma 2.7, since it is different in the case of odd k.

Case n = 2. Then, k = 1, and the identity takes the form

B{2, 2}(A[2, 1]− A[0, 1]) = π,

which is true because B{2, 2} = 2 and A[2, 1] = π/2.

Case n = 3. Then, the only admissible odd value of k is k = 1 and the identity takes the form

B{3, 3}(A[3, 1]− A[1, 1]) +B{3, 1}(A[1, 1]− A[−1, 1]) =
π2

2
,

which is true because B{3, 3} = π/4, B{3, 1} = π3/6, A[3, 1]− A[1, 1] = 2π/3, A[1, 1] = 2/π.

It follows that all statements listed above, namely Theorems 1.3, 1.4, Lemmas 2.7, 3.1 and
Proposition 1.5, continue to hold without any parity restrictions on k. �
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3.6. Proof of Theorem 1.8. Recall that Cn+1 is defined as the positive hull of the points
U1, . . . , Un+1 that are independent and uniformly distributed on the half-sphere Sd+. For every
k ∈ {1, . . . , n+ 1}, the point Uk is not a vertex of Cn+1 ∩Sd+ if and only if it is contained in the
cone generated by the remaining points Ui, i ∈ {1, . . . , n+ 1}\{k}. Hence,

(n+ 1)− Ef0(Cn+1 ∩ Sd+) = (n+ 1)P[Un+1 ∈ pos(U1, . . . , Un)] = 2(n+ 1)Eα(Cn). (3.14)

This spherical Efron-type identity was obtained in [3, Equation (26)] and is a special case of
the more general identity proved in [11, Theorem 2.7]. It follows from (3.14) that

Eα(Cn) =
1

2

(
1− 1

n+ 1
Ef0(Cn+1 ∩ Sd+)

)
=

1

2

(
1− n!

πn

∑
s=0,1,...
d−2s≥1

B{n+ 1, d− 2s}(A[d− 2s, 1]− A[d− 2s− 2, 1])
)
, (3.15)

where in the second equality we applied Theorem 1.4 with k = 0 bearing in mind Remark 1.7.
Lemmas 2.7 and 3.1 in the general form given in (3.12), (3.13), with n replaced by n + 1 and
k = 1 state that

n!

πn

∑
m∈{1,...,n+1}
m6≡n (mod 2)

B{n+ 1,m}(A[m, 1]− A[m− 2, 1])

=
n!

πn

∑
m∈{1,...,n+1}
m≡n (mod 2)

B{n+ 1,m}(A[m, 1]− A[m− 2, 1] = 1.

Replacing the term 1 in (3.15) by one of the above sums depending on the parity of d, we can
write (3.15) in the form

Eα(Cn) =
n!

2πn

∑
m∈{d+2,...,n+1}
m≡d (mod 2)

B{n+ 1,m}(A[m, 1]− A[m− 2, 1]),

which completes the proof. �
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points on half-spheres and convex hulls of Poisson point processes, 2018. Preprint at
arXiv: 1801.08008.
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4. Tables

d Ef0(Z(d)), Ef1(Z(d)), . . . , Efd−1(Z(d))

1 2

2 π2

2
, π

2

2

3 4π2

3
, 2π2, 2

(
1 + π2

3

)
4 3π4

8
, 3π

4

4
, 5π2, 5π2 − 3π4

8

5 16π4

15
, 8π

4

3
, 4
9
π2 (15 + 4π2) , 10π2, 2 + 10π2

3
− 8π4

45

6 5π6

16
, 15π

6

16
, 259π

4

24
, 1
48

(1036π4 − 75π6) , 35π
2

2
, 1
48
π2 (840− 518π2 + 45π4)

7 32π6

35
, 16π

6

5
, 4
15
π4 (49 + 12π2) , 98π

4

3
, 4
45
π2 (210 + 245π2 − 12π4) , 28π2, 2 + 28π2

3
− 98π4

45
+ 16π6

105

8
35π8

128
, 35π

8

32
, 3229π

6

180
, 3229π

6

60
− 245π8

64
, 329π

4

4
, 329π

4

2
− 3229π6

36
+ 245π8

32
, 42π2,

42π2 − 329π4

4
+ 3229π6

60
− 595π8

128

9
256π8

315
, 128π

8

35
, 32
315
π6 (205 + 48π2) , 656π

6

9
, 364π

4

5
+ 656π6

9
− 256π8

75
, 182π4,

40π2 + 364π4

3
− 656π6

27
+ 512π8

315
, 60π2, 2 + 20π2 − 182π4

15
+ 656π6

189
− 128π8

525

10
63π10

256
, 315π

10

256
, 117469π

8

4480
,
π8(469876−33075π2)

4480
, 17281π

6

72
,
π6(1382480−704814π2+59535π4)

1920
, 1463π

4

4
,

1463π4

2
− 86405π6

72
+ 117469π8

160
− 16065π10

256
, 165π

2

2
, 165π

2

2
− 1463π4

4
+ 17281π6

24
− 1996973π8

4480
+ 9765π10

256

Table 1. Expected f -vector of the Poisson zero polytope in dimensions d ∈ {1, . . . , 10}
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A[n, k] k = 0 k = 2 k = 4 k = 6 k = 8 k = 10 k = 12 k = 14

n = 1 1 0 0 0 0 0 0 0

n = 2 1 1 0 0 0 0 0 0

n = 3 1 4 0 0 0 0 0 0

n = 4 1 10 9 0 0 0 0 0

n = 5 1 20 64 0 0 0 0 0

n = 6 1 35 259 225 0 0 0 0

n = 7 1 56 784 2304 0 0 0 0

n = 8 1 84 1974 12916 11025 0 0 0

n = 9 1 120 4368 52480 147456 0 0 0

n = 10 1 165 8778 172810 1057221 893025 0 0

n = 11 1 220 16368 489280 5395456 14745600 0 0

n = 12 1 286 28743 1234948 21967231 128816766 108056025 0

n = 13 1 364 48048 2846272 75851776 791691264 2123366400 0

n = 14 1 455 77077 6092515 230673443 3841278805 21878089479 18261468225

Table 2. The values of A[n, k] for n ∈ {1, . . . , 14} and even k ∈ {0, 2, 4, . . . , 14}.
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A[n, k] k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

n = 1 1 2
π

0 0 0 0

n = 2 1 π
2

1 0 0 0

n = 3 1 2
π

+ 2π
3

4 8
π

0 0

n = 4 1 5π − 3π3

8
10 9π

2
9 0

n = 5 1 2
π

+ 10π
3
− 8π3

45
20 40

π
+ 32π

3
64 128

π

n = 6 1 1
48
π (840− 518π2 + 45π4) 35 259π

2
− 75π3

8
259 225π

2

n = 7 1 2
π

+ 28π
3
− 98π3

45
+ 16π5

105
56 112

π
+ 392π

3
− 32π3

5
784 1568

π
+ 384π

n = 8 1 42π − 329π3

4
+ 3229π5

60
− 595π7

128
84 987π − 3229π3

6
+ 735π5

16
1974 6458π − 3675π3

8

Table 3. The values of A[n, k] for n ∈ {1, . . . , 8} and k ∈ {0, . . . , 5}. For odd
k, the values are defined by the convention from Section 1.6.
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B{n, k} k = 1 k = 2 k = 3 k = 4

n = 1 π 0 0 0

n = 2 π2

2
2 0 0

n = 3 π3

6
π π

4
0

n = 4 π4

24
1
2

(−4 + π2) π2

8
2
9

n = 5 π5

120
1
6
π (−6 + π2) 1

48
π (−3 + 2π2) π

9

n = 6 π6

720
1
24

(48− 12π2 + π4) 1
96
π2 (−3 + π2) 1

162
(−40 + 9π2)

n = 7 π7

5040
π − π3

6
+ π5

120
1

960
π (15− 10π2 + 2π4) 1

162
π (−20 + 3π2)

n = 8 π8

40320
−2 + π2

2
− π4

24
+ π6

720

π2(45−15π2+2π4)
5760

1456−360π2+27π4

5832

n = 9 π9

362880

π(−5040+840π2−42π4+π6)
5040

π(−315+210π2−42π4+4π6)
80640

π(3640−600π2+27π4)
29160

n = 10 π10

3628800
2− π2

2
+ π4

24
− π6

720
+ π8

40320

π2(−315+105π2−14π4+π6)
161280

−131200+32760π2−2700π4+81π6

524880

Table 4. The values of B{n, k} for n ∈ {1, . . . , 10} and k ∈ {1, . . . , 4}.
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d P (d)

1 1

2 −2 + 24
π2

3 5
π2 − 1

3

4 80
π4 + 6− 200

3π2

5 1
3

+ 105
8π4 − 35

8π2

6 −1568
3π4 + 896

5π6 − 34 + 29008
75π2

7 −3
5
− 49

2π4 + 105
4π6 + 49

6π2

8 27072
5π4 − 2304

π6 + 2304
7π8 + 310− 878288

245π2

9
5(3465−6930π2+6006π4−1804π6+128π8)

384π8

Table 5. The first few values of the probability P (d) defined in Section 1.7.

Zakhar Kabluchko: Institut für Mathematische Stochastik, Westfälische Wilhelms-Universität
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