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Abstract. We show that the digraph of a nondeterministic finite au-
tomaton witnessing the automatic complexity of a word can always be
taken to be planar. In the case of total transition functions studied by
Shallit and Wang, planarity can fail.

Let sq(n) be the number of binary words x of length n having nondeter-
ministic automatic complexity AN (x) = q. We show that sq is eventually
constant for each q and that the eventual constant value of sq is com-
putable.
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1 Introduction

Automatic complexity, introduced by Shallit and Wang [7], is an automata-
based and length-conditional analogue of Sipser’s CD complexity [8] which is
in turn a computable analogue of the noncomputable Kolmogorov complexity.
The nondeterministic case was taken up by Hyde and Kjos-Hanssen [3], who
gave a table of the number of words of length n of a given complexity q for
n ≤ 23. The numbers in the table suggested (see Table 2) that the number
may be eventually constant for each fixed q. Here we establish that that is the
case (Theorem 9), and show that the limit is computable (in exponential time).
Moreover, we narrow down the possible automata that are needed to witness
nondeterministic automatic complexity: they must have planar digraphs, in fact
their digraphs are trees of cycles in a certain sense.

We recall our basic notion.

Definition 1 ([7]) The nondeterministic automatic complexity AN (x) of
a word x is the minimal number of states of a nondeterministic finite automaton
M (without ε-transitions) accepting x such that there is only one accepting path
in M of length |x|.
? This work was partially supported by a grant from the Simons Foundation (#315188

to Bjørn Kjos-Hanssen). We are indebted to Jeff Shallit and Malik Younsi for helpful
comments.
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2 Automatic complexity as chains of trees of lumps

Consider the version of automatic complexity where the transition functions
are not required to be total.1 Then we claim that the digraphs representing the
witnessing automata are planar, in fact they are “trees of cycles”. As an example,
for the word 05105160103, we have the following witnessing automaton:
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To explain this, first let us say that a cycle is a sequence of states that starts and
ends with the same state. Let us say that a lump is the automaton whose transi-
tions come from a given cycle. So if a cycle is repetitive, like 3456734567345673,
then it generates the same lump as just 345673.

Consider the sequence of states visited during processing of a unique accepted
word x of length n. Let us call the first visited state 0, the next distinct state 1,
and so on. (So for example the permitted state sequences of length 3 are only
000, 001, 010, 011, 012.)

Then the state sequence starts 0, 1, . . . , q, q+1, . . . , q where q is the first state
that is visited twice. Now the claim is that there will never, at a later point in
the state sequence, be a transition (an edge) q1,q2 such that q2 occurs within
the lump generated by the cycle q, q+1, . . . , q and such that the transition q1, q2

does not occur in that lump. Indeed, otherwise our state sequence would start

0, 1, . . . , q, . . . , q2︸ ︷︷ ︸
first

, . . . , q, . . . , q1, q2︸ ︷︷ ︸
second

and then there is a second accepting path of the same length where the first and
second segments are switched.

1 Whether determinism is required is not important in the following, but in the
nondeterministic case we assume we require there to be only one accepting path, as
usual.



Planar digraphs for automatic complexity 3

Consequently, the path can only return to states that are not yet in any
lumps. This leaves only two choices whenever we decide to create a new edge
leading to a previously visited state:

Case 1. Go back to a state that was first visited after the last completed
lump so far seen, or Case 2. Go back to a state that was first visited at some
earlier time, before some of the lumps so far seen started (and in general after
some of them were complete).

This gives a tree of lumps where each new lump either (Case 1) creates a
new sibling for the previous lump, or (Case 2) creates a new parent for a final
segment of the so far seen top-level siblings. In this tree of lumps, only the leaves
(the lumps that are not anybody’s parents) can be traversed more than once by
the uniquely accepted path of length n.

So if the first lump created is l1 then next we can have two cases:

(l1, l2) (Case 1)

l1 → l2 (Case 2)

In Case 1, l1 and l2 are siblings ordered from first to second. In Case 2, →
denotes is a child of, which by definition is the same as sub-digraph. Now for the
third lump l3, we have only the following possibilities:

(l1, l2, l3) (Subcase 1.1)

(l1, l2 → l3) (Subcase 1.2)

(l1, l2)→ l3 (Subcase 1.3)

(l1 → l2, l3) (Subcase 2.1)

l1 → l2 → l3 (Subcase 2.2)

In Subcase 1.2, l1 and l3 are siblings and l2 is a child of l3. In Subcase 1.3, l3 is
a common parent of l1 and l2. In Subcase 2.1, l3 is a new sibling for l2, and l2
still has l1 as its child. In Subcase 2.2, l3 is a parent of l2.

For instance, the state sequence 01234567345673456720 has the structure
of Subcase 2.2, with l1 being the lump generated from 345673, l2 being gen-
erated from 23456734567345672, and l3 being generated from the whole se-
quence 01234567345673456720. The corresponding automaton is shown in an
online tool.2 Using this planarity result, we are able to increase the speed of our
algorithm for calculating AN (x). Consequently, we have been able to extend the
string length in our computations from n = 23 to n = 25. The number of max-
imally complex binary words of a given length are shown in Table 1. A similar
table for n ≤ 23 was given in [3].

2 http://math.hawaii.edu/wordpress/bjoern/complexity-of-0001111011110111111/

http://math.hawaii.edu/wordpress/bjoern/complexity-of-0001111011110111111/
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n # 2n %complex 2n-#

0 1 1 100.00% 0
1 2 2 100.00% 0

2 2 4 50.00% 2
3 6 8 75.00% 2

4 8 16 50.00% 8
5 24 32 75.00% 8

6 30 64 46.88% 34
7 98 128 76.56% 30

8 98 256 38.28% 158
9 406 512 79.30% 106

10 344 1,024 33.59% 680
11 1,398 2,048 68.26% 650

12 1,638 4,096 39.99% 2,458
13 5,774 8,192 70.48% 2,418

14 5,116 16,384 31.23% 11,268
15 23,018 32,768 70.25% 9,750

16 22,476 65,536 34.30% 43,060
17 86,128 131,072 65.71% 44,944

18 89,566 262,144 34.17% 172,578
19 351,250 524,288 67.00% 173,038

20 375,710 1,048,576 35.83% 672,866
21 1,461,670 2,097,152 69.70% 635,482

22 1,539,164 4,194,304 36.70% 2,655,140
23 5,687,234 8,388,608 67.80% 2,701,374

24 6,814,782 16,777,216 40.62% 9,962,434
25 24,031,676 33,554,432 71.62% 9,522,756

26 27,782,964 67,108,864 41.40% 39,325,900
27 97,974,668 134,217,728 73.00% 36,243,060

Table 1: Lengths n, number of words of length n of maximal AN (x), 2n, per-
centage of maximally complex words, number of non-maximally complex words.
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3 The asymptotic number of words of given complexity

In this section, we examine the asymptotic behavior of the number of words with
automatic complexity q for a fixed q ∈ N.

Definition 2 A binary word x is right inextendible if AN (x) < AN (x0) and
AN (x) < AN (x1).

Inextendibility is closely related to volatility of the automatic complexity, as
examined in the Complexity Option Game [5]. The number and proportion of
right-inextendible words of length n and complexity q can be examined using an
online database [4] and is shown in Table 2 for small q and n.

A basic procedure in our results will be the counting of periodic words, since a
cycle containing a periodic word can be shortened and an automaton containing
such a cycle will not be optimal.

Definition 3 A word x is periodic if there exists a subword y 6= x and an
integer n such that

yyy · · · y︸ ︷︷ ︸
n

= x.

A non-periodic word [2] is also called a primitive word and one starting with 0,
in our setting, is called a Lyndon word [6].

Definition 4 ([1]) Let n be a positive integer with ω(n) denoting the number of
distinct prime factors of n and Ω(n) denoting the total number of prime factors
(i.e., with repetition) of n. The Möbius function µ is defined as

µ(n) :=

{
(−1)ω(n) mod 2 if Ω(n) = ω(n),

0 if Ω(n) > ω(n).

Theorem 5 ([2]) The number of unique periodic binary words of length n is
given by Z(0) = 0 and for n ≥ 1,

Z(n) = 2n −
∑
d|n

µ
(n
d

)
· 2d.

Recall that a necklace is an equivalence class of non-periodic words under cyclic
rotation. Thus, for instance, {0011, 0110, 1100, 1001} is a necklace. Theorem 5 is
a restatement of the following classical result.

Theorem 6 (Witt’s Formula [9]) The number of necklaces of binary words
of length n is

1

n

∑
d|n

µ
(n
d

)
· 2d.

Definition 7 We define the set Sq(n) = {x ∈ {0, 1}n : A(x) = q} and sq(n) =
|Sq(n)|.
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Definition 8 Given an automaton, G, whose set of states is Q, we define a
detour to be a pair of finite non-trivial sequences of states, α, β ∈ Q∗, such that
α(0) = β(0), α(|α| − 1) = β(|β| − 1) and α 6= β. We call a detour minimal if
{α(i) : 0 < i < |α| − 1} ∩ {β(i) : 0 < i < |β| − 1} = ∅.

Consider an automaton with a single cycle (Figure 5). Suppose the automaton
has i states before the cycle and ` states after the cycle (which implies that there
are q− (i+ `) states within the cycle). We now obtain a formula for the limit of
the number of binary words of given complexity q.

Theorem 9 sq is eventually constant, with limiting value∑
i,`≥0
i+`<q

2(i−1)+ · [2q−(i+`) − Z(q − (i+ `))] · 2(`−1)+ ,

where Z was defined in Theorem 5 and

x+ = max{x, 0}.

Proof. Consider an arbitrary automaton G with q states. There are a finite
number of such automata. We will prove that unless G has at most one minimal
detour, there is an N such that, for all n ≥ N , G cannot accept a unique word
of length n.

We begin with the observation that we may assume that G has a unique
initial state and a unique accepting state.

If G has at most one detour, then G has one of the the following forms.

z�

k

+3
i

+3
j

+3
`

�$

k

+3
i

+3
j

+3
`

If G is of the type on the right and G accepts a unique word σ of length n, then
any accepting path for σ either uses the k states that comprise the top path of
the detour, or uses the j states that comprise the bottom path, but no both.
Thus, if both k and j are non-zero, there is an automaton with fewer states that
accepts only σ among all words of length n. We conclude that in the case of
automata with at most one minimal detour, we need only consider ones of the
form on the left.

Now, we consider the possibilities for automata with at least two distinct
minimal detours. Each of the twelve cases in Figure 1 falls into one of three
cases.

1. On any accepting path, each detour can be used at most once ((1), (2) and
(3)).

2. On any accepting path, one of the detours can be used at most once ((7),
(8), (10), (11) and (12)).



8 A. Beros, B. Kjos-Hanssen et al.

��

n

��

p

+3
i

+3
j

+3
k

+3
`

+3
m

(1)

�%

n

�%

p

+3
i

+3
j

+3
k

+3
`

+3
m

(2)

�'
n

�$

p

+3
i

+3
j

+3
k

+3
`

+3
m

(3)

��

n

��

p

+3
i

+3
j

+3
k

+3
`

+3
m

(4)

y�

n

y�

p

+3
i

+3
j

+3
k

+3
`

+3
m

(5)

w�
n

z�

p

+3
i

+3
j

+3
k

+3
`

+3
m

(6)

��

n

��

p

+3
i

+3
j

+3
k

+3
`

+3
m

(7)

�%

n

y�

p

+3
i

+3
j

+3
k

+3
`

+3
m

(8)

�'
n

z�

p

+3
i

+3
j

+3
k

+3
`

+3
m

(9)

��

n

��

p

+3
i

+3
j

+3
k

+3
`

+3
m

(10)

y�

n

�%

p

+3
i

+3
j

+3
k

+3
`

+3
m

(11)

w�
n

�$

p

+3
i

+3
j

+3
k

+3
`

+3
m

(12)

Fig. 1: The possibilities for automata with at least two distinct minimal detours.
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3. There are accepting paths that use each of the detours an arbitrary number
of times ((4), (5), (6) and (9)).

These further break down as follows:

– (1), (4), (7), (10) represent two separated cycles;
– (2), (5), (8), (11) represent overlapping cycles.
– (3), (6), (9), (12) represent nested cycles; and

If G falls into the first case, then σ is also uniquely accepted among words
of length n by an automaton with at most q states and no detours. If G falls
into the second case, then σ is uniquely accepted by an automaton with at most
q states and at most one detour. If G falls into the third category, then there
are two cycles (although they may have common transitions) which can each
be traversed and independent and arbitrary number of times on an accepting
path. Thus, for large enough n, the cycles can be traversed in different orders or
different numbers of times and still reach an accepting state, thereby violating
the requirement that G accept exactly one word of length n.

As an example of the third case, suppose that G is of the type shown in (9).
G has two independent cycles, one of length p+ j+k+ ` and the other of length
p+ j +n+ `. Let N = i+ a(p+ j + k+ `) +m = i+ b(p+ j +n+ `) +m, where
a, b ∈ N. There are at least two words of length N that G accepts, and for any
M ≥ N such that G accepts a word of length M , G must accept at least two
words of length M .

In conclusion, we may assume our automata have at most one detour. Thus
they consist of a chain of states, followed by a single (in general multi-state)
cycle, followed by another chain. Let i be the number of states before the cycle,
` the number of states after the cycle, so that q− (i+ `) if the number of states
within the cycle. If the bits read within the cycle do not form a necklace, we
can reduce the number of states. Thus there are [2q−(i+`)−Z(q− (i+ `))] states
within the cycle. The an upper bound for the total number of binary words with
AN (x) = q is

2i · 2` · [2q−(i+`) − Z(q − (i+ `))].

Let ξ be the bit that advances the automaton from the ith state to the (i+ 1)th
state (i.e. the transition that takes the automaton into the cycle) and η be the
bit that advances that automaton from the q − (i + `)th state to the (i + 1)th
state (i.e, the transition that completes the cycle). If ξ = η, then it is possible
to create an automaton with fewer states that accepts the same word and no
other of length n. A similar consideration applies upon leaving the cycle. Thus,
we have

2(i−1)+ · [2q−(i+`) − Z(q − (i+ `))] · 2(`−1)+

possible words.
Finally, to conclude that sq(n) is eventually constant, note that while the

single cycle will have to be exited at different points depending on n mod k,
where k is the length of the main cycle, there will always be exactly one value of
n mod k and hence exactly one automaton contributed from the cycle and the
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given “head” and “tail” words. See Figures 2, 3, and 4 for illustrations of the
cases q = 2, 3, 4, respectively.

Remark 10 Here is perhaps a simpler view of the classification of detours in
Figure 1. Suppose A is an NFA that uniquely accepts some word. Now consider
some shortest directed path P from q0 to the unique final state qf . Let us say
that an alternate route is any simple directed path, edge-disjoint from P , joining
two vertices of P .

Suppose there are two alternate routes, Q and R, joining qi and qj, and qk
and ql, respectively. If we do not worry about the direction of the paths for the
moment, we may assume i ≤ j and k ≤ l. Then there are three possibilities:

1. j ≤ k: Q precedes R;
2. k ≤ i and j ≤ l: Q encompasses R;
3. i ≤ k ≤ j ≤ l: Q and R overlap.

Furthermore, for Q and R one can choose the direction of the edges indepen-
dently. This gives 3 · 4 = 12 possibilities to consider.

Count Regex Automaton

1 01∗
q1start q2

0

1

2 0∗1
q1start q2

1

0

3 (01)∗

n odd n even

q1start q2

0

1

q1start q2

0

1

Fig. 2: The witnessing automata for limn sq(n)/2 = 3, q = 2. The first two are
used at any length n, whereas the bottom two are each used only for one value
of n mod 2, illustrating Theorem 11.

The main proviso to Theorem 9 may be that while the number of words with
given complexity reaches a limit, the set of witnessing automata does not quite.
To wit:

Theorem 11 There is a q such that there is no set of automata M1, . . . ,Ms

such that for all sufficiently large n,
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Count Regex Automata

1–5
001∗ (shown)
010∗, 01∗0
0∗10, 0∗11

q0start q1 q2
0 0

1

6–8
(001)∗ (shown)
(010)∗, (011)∗

n ≡ 0 mod 3 n ≡ 1 mod 3 n ≡ 2 mod 3

q1 q2

q0

start

0

0

1

q1 q2

q0

start

0

0

1

q1 q2

q0

start

0

0

1

9 0(01)∗

n odd n even

q1 q2

q0start

0

0

1

q1 q2

q0start

0

0

1

10 (01)∗x

n odd n even

q0start q1

q2

0

1
1

q0start q1

q2

0

1
0

Fig. 3: Automata and regular expressions witnessing limn sq(n)/2 = 10 for q = 3.
The exponents indicated by ∗ are not necessarily integers (so that for instance
abcd1.5 = abcdab). The letter x indicates 0 or 1, chosen so as to break a pattern.
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Count Regex Automata

1–3
(001)∗x (shown),
(010)∗x,
(011)∗x

n ≡ 0 mod 3 n ≡ 1 mod 3 n ≡ 2 mod 3

q0

start

q2 q1q3

0

0

1

0

q0

start

q2 q1

q3

0

0

1

1 q0

start

q2 q1

q3
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0

1 1

4–6
0(001)∗, 0(011)∗,
0(101)∗

edge followed by cycle of length 3

7–8
(01)∗x0 (shown),
(01)∗x1

n ≡ 0 mod 2 n ≡ 1 mod 2

q0

start

q1

q2 q3

0

1
1

0

q0

start

q1

q3 q2

0

1
0

0

9 0(01)∗x edge followed by cycle of length 2 followed by edge

10–15

(0001)∗ (shown),
(0010)∗,
(0100)∗, (0011)∗,
(0110)∗, (0111)∗

n ≡ 0 mod 4 n ≡ 1 mod 4 n ≡ 2 mod 4 n ≡ 3 mod 4

q0

start

q1

q2q3

0

0

0

1

q0

start

q1

q2q3

0

0

0

1

q0

start

q1

q2q3

0

0

0

1

q0

start

q1

q2q3

0

0

0

1

16–17 00(01)∗, 01(10)∗ two edges followed by cycle of length 2

18–21
0∗101, 0∗110,
0∗111, 0∗100

loop followed by chain

22–25
0010∗, 0001∗,
0110∗, 0101∗ chain followed by loop

26–29
010∗1, 001∗0,
01∗00, 01∗01

chain of edges with a single loop near middle

Fig. 4: Witnessing automata for limn sq(n)/2 = 29, q = 4. The exponents indi-
cated by ∗ are not necessarily integers, and the letter x indicates 0 or 1, chosen
so as to break a pattern.
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– for each i there is some x of length n such that AN (x) = q and Mi witnesses
the inequality AN (x) ≤ q, and

– for all x of length n, AN (x) = q iff the inequality AN (x) ≤ q is witnessed by
one of the Mi.

Proof. Let q = 2. The limiting value of sq is 6 as witnessed by the patterns: 0∗1,
01∗, (01)∗. However, for (01)∗, different states will be the final state depending
on the length n mod 2; see Figure 2.

Theorem 12 (Number of right-inextendible words) For q ≥ 1, define a
function rq by

rq(n) = #{x ∈ {0, 1}n | AN (x) + 1 = AN (x0) = AN (x1)}.

Then rq is eventually constant, with limiting value∑
i≥0,`>0
i+`<q

2(a−1)+ · [2q−(i+`) − Z(q − (i+ `))] · 2`−1,

where Z(n) refers to the function defined in Theorem 2, and (x−y)+ := max{(x−
y), 0}.

Proof. Let x be a binary word such that its accepting automaton has a single
cycle, as in Figure 5. As shown in Theorem 9, we need only consider this par-
ticular case. Let ` be the number of states between the cycle and the accepting
state of the automaton.

Fig. 5: Schematic of an automaton with a single cycle.

Suppose ` = 0. Then the accepting state must be one of the states within the
cycle. Without loss of generality, suppose the path out of the accepting state is
triggered by a 0 input. Then x0 must have the same automatic complexity as x,
as appending 0 to x does not require the addition of any additional states, and
x is thus not inextendible. Thus, for a word to be inextendible, it is necessary
that ` > 0.

Theorem 13 sq(n) is eventually bounded by 2q−2
(

q(q+5)
2 + 1

)
.

Proof. By Theorem 9, we can upper bound the sum by∑
i,`≥0,i+`<q

2q =

(
q + 1

2

)
2q.
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In fact, by considering the four possible truth values for the cases i = 0, ` = 0,
we get the upper bound

∑
i=`=0

2q +
∑

i`=0,i+`>0

2q−1 +
∑

i>0,`>0

2q−2 = 2q + 2(q − 1)2q−1 +

(
q − 1

2

)
2q−2

= 2q−2

(
4q +

(
q − 1

2

))
= 2q−2

(
q(q + 5)

2
+ 1

)
.

Remark 14 A comparison of sq with the bound in Theorem 13 can be done
using the computer code in Figure 6. The number in the title of this section
was calculated using that Python script and using a table of values of Z from the
OEIS database. Table 3 shows an initial segment of the resulting sequence. There
we count only words starting with 0, so that the full number would be twice that,
matching the impression that limn s3(n) = 20 given by Table 2.

q limn sq(n)/2 q limn sq(n)/2

1 1 21 64 594 576
2 3 22 141 046 655
3 10 23 306 858 874
4 29 24 665 342 837
5 82 25 1 438 134 475
6 215 26 3 099 548 927
7 556 27 6 662 442 946
8 1 385 28 14 285 118 725
9 3 391 29 30 557 828 119

10 8 135 30 65 225 030 201
11 19 261 31 138 937 277 596
12 44 963 32 295 385 810 819
13 103 906 33 626 867 939 224
14 237 719 34 1 328 075 901 017
15 539 458 35 2 809 126 944 436
16 1 214 993 36 5 932 793 909 801
17 2 718 760 37 12 511 847 996 740
18 6 047 426 38 26 350 575 690 893
19 13 380 766 39 55 423 630 773 538
20 29 463 632 40 116 429 658 505 697

Table 3: The number of binary words 0x of length n with AN (0x) = q, for
sufficiently large n. The value for q = 7 is surprisingly small when comparing
with Table 2.
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o e i sVa lue s = [
0 , 0 , 2 , 2 , 4 , 2 , 10 , 2 , 16 , 8 , 34 , 2 , 76 , 2 , 130 , 38 , 256 , 2 ,
568 , 2 , 1036 , 134 , 2050 , 2 , 4336 , 32 , 8194 , 512 , 16396 , 2 , 33814 ,
2 , 65536 , 2054 , 131074 , 158 , 266176 , 2 , 524290 , 8198 , 1048816 , 2 ,
2113462 , 2 , 4194316 , 33272 , 8388610 , 2 , 16842496 , 128 , 33555424

]# from \ p r o t e c t \ v ru l e wid th0p t \ p r o t e c t \ h r e f { h t t p :// o e i s . org /A152061}{ h t t p :// o e i s . org /A152061}
def Z(n ) : # number o f p e r i o d i c b inary s t r i n g s o f l e n g t h n

return oe i sVa lue s [ n ]
def plus ( k ) :

i f k<0:
return 0

return k
def l imS ( q ) : #limitingNumberOfStringsWithNFAComplexity ( q ) :

num = 0
print ” . ”
for i in range (0 , q ) :

for l in range (0 , q ) :
i f i+l<q :

l e f t = 2∗∗( p lus ( i −1))
r i g h t = 2∗∗( p lus ( l −1))
middle = (2∗∗ ( q−( i+l ))−Z(q−( i+l ) ) )
num += l e f t ∗middle∗ r i g h t

return num
def answer ( q ) :

bound = 2∗∗(q−2)∗(1+q∗( q+5)/2)
print ”q=” + str ( q ) + ” , ” + str ( limS ( q ) ) ,
print ” , bound = ” + str ( bound ) + ” , ” ,
print str ( limS ( q )/ f loat ( bound ) )

for q in range (3 , len ( oe i sVa lue s ) ) :
answer ( q )

Fig. 6: Python code which when run hints at the sharpness of Theorem 13.
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