
ar
X

iv
:1

90
2.

00
81

5v
1

 [
cs

.F
L

]
 2

 F
eb

 2
01

9

The number of languages with maximum state

complexity

Bjørn Kjos-Hanssen and Lei Liu

February 5, 2019

Abstract

Champarnaud and Pin (1989) found that the minimal deterministic
automaton of a language L ⊂ Σn, where Σ = {0, 1}, has at most

n
∑

i=0

min(2i, 22
n−i

− 1)

states, and for each n there exists L attaining this bound. Câmpeanu
and Ho (2004) have shown more generally that the tight upper bound
for Σ of cardinality k and for complete automata is

kr − 1

k − 1
+

n−r
∑

j=0

(2k
j

− 1) + 1

where r = min{m : km ≥ 2k
n−m

− 1}. (In these results, requiring
totality of the transition function adds 1 to the state count.) Câmpeanu
and Ho’s result can be viewed as concerning functions f : [k]n → [2]
where [k] = {0, . . . , k− 1} is a set of cardinality k. We generalize their
result to arbitrary function f : [k]n → [c] where c is a positive integer.

Let Oi be the number of functions from [bi] to [cb
n−i

] that are

onto [cb
n−i

− 1]. Câmpeanu and Ho stated that it is very difficult to
determine the number of maximum-complexity languages. Here we
show that it is equal to Oi, for the least i such that Oi > 0.

For monotone languages a tightness result seems harder to obtain.
However, we show that the following upper bound is attained for all
n ≤ 10.

n
∑

i=0

min(2i,M(n− i)− 1),

where M(k) is the kth Dedekind number.

1

http://arxiv.org/abs/1902.00815v1

1 Introduction

The function + on Z/5Z may seem rather complicated as functions on that
set go. On the other hand, f(x, y, z) = x + y + z mod 5 is less so, in that
we can decompose it as (x + y) + z, so that after seeing x and y, we need
not remember the pair (x, y) but only their sum. Out of the 55

3
ternary

functions on a 5-element set, at most 52·5
2
can be decomposed as (x∗1 y)∗2 z

for some binary functions ∗1, ∗2. In Section 2 we make precise a sense in
which such are not the most complicated ternary functions. We do this by
extending a result of Câmpeanu and Ho [3] to functions taking values in a
set of size larger than two.

Rising to an implicit challenge posed by Câmpeanu and Ho, we give a
formula for the number of maximally complex languages in Section 2.2.

A motivation from finance will be felt in Sections 3 and 4. The com-
plexity of financial securities came into focus with the 2008 financial crisis.
While Arora et al. [1] obtained NP-hardness results for the pricing of a se-
curity, here we look at the automatic complexity associated with executing
a given trading strategy. The possibility of exercising early leads to a less
complex option in our sense, as is easy to see. Thus we shall restrict atten-
tion to options which are European insofar as they can only be exercised at
the final time n.

2 Complexity of languages and operations

Definition 2.1. A deterministic finite automaton (DFA)[9] M is a 5-tuple,
(Q,Σ, δ, q0, F), where

• Q is a finite set of states,

• q0 ∈ Q is the start state,

• F ⊆ Q is the set of accept
states,

• Σ is a finite set of input sym-
bols and

• δ : Q × Σ −→ Q is the transi-
tion function.

If δ is not required to be total then we speak of a partial deterministic
finite automaton (PDFA).

Definition 2.2. Let Σ = {0, 1}, let n ∈ Z
+ and X ⊆ Σ≤n. Define A−(X) to

be the minimum |Q| over all PDFAsM = (Q,Σ, δ, q0, F) for which L(M), the
language recognized by M , equals X. We call a PDFA M = (Q,Σ, δ, q0, F)
minimal for X if

|Q| = A−(X).

2

2.1 Operations

Champarnaud and Pin [4] obtained the following result.

Theorem 2.3 ([4, Theorem 4]). The minimal PDFA of a language L ⊂
{0, 1}n has at most

n
∑

i=0

min(2i, 22
n−i

− 1)

states, and for each n there exists L attaining this bound.

Theorem 2.3 was generalized by Câmpeanu and Ho [3]:

Theorem 2.4 ([3, Corollary 10]). For k ≥ 1, let [k] = {0, . . . , k − 1}. Let
l ∈ N and let M be a minimal DFA for a language L ⊆ [k]l. Let Q be the
set of states of M . Then we have:

(i) #Q ≤ kr−1
k−1 +

∑l−r
j=0(2

kj − 1) + 1, where r = min{m | km ≥ 2k
l−m

− 1};

(ii) there is an M such that the upper bound given by (i) is attained.

Both of these results involve an upper bound which can be viewed as a
special case of Theorem 2.7 below.

Definition 2.5. Let b, n, and c be positive integers. We say that a PDFA
M accepts a function f : [b]n → [c] if there are c − 1 many special states
q1, . . . , qc−1 of M such that for all ~x ∈ [b]n,

• for i > 0, f(~x) = i iff M on input ~x ends in state qi; and

• f(~x) = 0 iff M does not end in any of the special states on input ~x.

Definition 2.5 generalizes the case b = 2 studied by Champarnaud and
Pin. We write AB for the set of all functions from B to A.

Definition 2.6. Let [c][b]
n

be the set of n-ary functions f : [b]n → [c]. Let b

and c be positive integers and let C ⊆ [c][b]
n

. The Champarnaud–Pin family

of C is the family of sets {Ck}0≤k≤n, where Ck ⊆ [c][b]
n−k

, 0 ≤ k ≤ n, given
by

Ck = {g ∈ [c][b]
n−k

: ∃f ∈ C, ~d ∈ [b]k ∀~x g(~x) = f(~d, ~x)}.

So C0 = C, C1 is obtained from C0 by plugging in constants for the first
input, and so forth. We write C

−
n = {f ∈ Cn : f 6= 0} in order to throw out

the constant zero function. Note that |C−
n | ≥ |Cn| − 1.

3

Theorem 2.7. Let b and c be positive integers. Let C ⊆ [c][b]
n

. An upper
bound on the minimal number of states of PDFAs accepting members of C
is given by

n
∑

i=0

min(bi, |C−
i |).

The proof will be apparent from the proof of the next result, which is a
generalization of Câmpeanu and Ho’s theorem.

Theorem 2.8. Let b and c be positive integers. For the minimal number of
states of PDFAs M accepting functions f : [b]n → [c], the upper bound

n
∑

i=0

min(bi, cb
n−i

− 1)

is attained.

Proof. Let log = logb. The critical point for this result is the pair of values
(i, k) with i + k = n such that bi ≤ cb

k

− 1 (i.e., i < bk log c) and bi+1 >

cb
k−1

−1 (i.e., bi+1 ≥ cb
k−1

, i.e., (i+1) ≥ bk−1 log c), which can be summarized
as

bk−1 log c− 1 ≤ i < bk log c. (1)

bk−1 log c ≤ i+ 1 ≤ bk log c.

We shall define a set A of k-ary functions of size (cb
k−1

)/b which when using

the b many transitions (substitutions for say p1) maps onto each of the cb
k−1

many k − 1-ary functions α. This will suffice if

cb
k−1

/b ≤ bi

which does hold for all b by (1). The construction is similar to that of [3,
Figure 1 and Theorem 8]; we shall be slightly more explicit than they were.

Let s = cb
k−1

− 1. Let f0, . . . , fs−1 the set of all nonzero k− 1-ary functions.
As s may not be divisible by b, let us write s = qb+ r with quotient q ≥ 0
and remainder 0 ≤ r < b. For j with 0 ≤ j ≤ q − 1, let gj be given by

gj(i, ~x) = fjb+i(~x)

for each i ∈ [b] and ~x ∈ [b]k−1. Let gq be given by gq(i, ~x) = fqb+i(~x) for each
0 ≤ i ≤ r− 1, and let gq(i, ~x) be arbitrary for r ≤ i < b. Finally, extend the
set of functions g0, . . . , gq to bi many k-ary functions in an arbitrary way,
obtaining functions hσ for σ ∈ [b]i. Then our function attaining the bound
is given by

H(σ, τ) = hσ(τ).

4

When b = 2 and c is larger, Theorem 2.8 corresponds to automatic
complexity of equivalence relations on binary strings as studied in [6]. When
b = c, we have the case of n-ary operations on a given finite set, which is of
great interest in universal algebra.

2.2 The number of maximally complex languages

Definition 2.9. Let b and c be positive integers and let 0 ≤ i ≤ n. Let

Oi = O
(b,c,n)
i be the number of functions from [bi] to [cb

n−i

] that are onto

[cb
n−i

−1]. That is, functions f : [bi] → [cb
n−i

] such that for each y ∈ [cb
n−i

−1]
there is an x ∈ [bi] with f(x) = y.

Câmpeanu and Ho lamented that it seemed very difficult to count the
number of maximum-complexity languages. Here we show

Theorem 2.10. Let b and c be positive integers and let n ≥ 0. The number
of maximum complexity functions f : [b]n → [c] is Oi, where 0 ≤ i ≤ n is
minimal such that Oi > 0.

Proof. Champarnaud and Pin, and Câmpeanu and Ho, and the present
authors in Theorem 2.8, all found a maximal complexity by explicitly ex-
hibiting the general automaton structure of a maximal-complexity language:
we start with states corresponding to binary strings and end with strings
corresponding to Boolean functions, and there is a crossover point in the
middle where, in order that all states be used, we need an onto function
exactly as specified in the definition of Oi. The crossover point occurs for
the least i such that Oi > 0, which is when the value of the minimum of
(bi, cb

n−i

− 1) switches from the first to the second coordinate. The number
of such functions is then the number of such onto functions. Since we do
not require totality and do not use a state for output 0 (“reject”) we omit
the constant 0 Boolean function in the range of our onto maps.

Note that the number of onto functions is well known in terms of Stirling
numbers of the second kind. Let Om,n be the number of onto functions from
[m] to [n]. Then

Om,n = n!

{

m

n

}

,

where
{

m
n

}

, the number of equivalence relations on [m] with n equivalence
classes, is a Stirling number of the second kind.

Note also that the number of functions from [a] to [b] that are onto the
first b− 1 elements of [b] is, in terms of the number m of elements going to

5

the not-required element,

a−(b−1)
∑

m=0

(

a

m

)

Oa−m,b−1.

Example 2.11. When n = 3 and b = c = 2, we have that Oi is the number
of functions from 2i to 22

3−i

that are onto 22
3−i

− 1. In this case, O1 = 0.
However, O2 is the number of functions from 4 to 4 that are onto 3. This is

4−(4−1)
∑

m=0

(

4

m

)

O4−m,4−1 = O4,3 + 4O3,3 = 36 + 24 = 60.

These 60 languages are shown in Table 1.

6

size Z

|Z| = 4

{000, 001, 010, 101}, {000, 001, 010, 111},
{000, 001, 011, 100}, {000, 001, 100, 111},
{000, 001, 011, 110}, {000, 001, 101, 110},
{000, 010, 011, 101}, {000, 010, 011, 111},
{001, 010, 011, 100}, {010, 011, 100, 111},
{001, 010, 011, 110}, {010, 011, 101, 110},
{000, 011, 100, 101}, {000, 100, 101, 111},
{001, 010, 100, 101}, {010, 100, 101, 111},
{001, 100, 101, 110}, {011, 100, 101, 110};
{000, 011, 110, 111}, {000, 101, 110, 111},
{001, 010, 110, 111}, {010, 101, 110, 111},
{001, 100, 110, 111}, {011, 100, 110, 111}.

|Z| = 5
{000, 001, 010, 100, 111}, {000, 001, 010, 101, 110},
{000, 001, 011, 100, 110}, {000, 001, 011, 101, 110},
{000, 001, 011, 100, 111}, {000, 001, 010, 101, 111},
{000, 010, 011, 100, 111}, {000, 010, 011, 101, 110},
{001, 010, 011, 100, 110}, {001, 010, 011, 101, 110},
{001, 010, 011, 100, 111}, {000, 010, 011, 101, 111},
{000, 010, 100, 101, 111}, {000, 011, 100, 101, 110},
{001, 010, 100, 101, 110}, {001, 011, 100, 101, 110},
{001, 010, 100, 101, 111}, {000, 011, 100, 101, 111},
{000, 010, 101, 110, 111}, {000, 011, 100, 110, 111},
{001, 010, 100, 110, 111}, {001, 011, 100, 110, 111},
{001, 010, 101, 110, 111}, {000, 011, 101, 110, 111}.

|Z| = 6
{000, 001, 010, 011, 100, 111},
{000, 001, 010, 011, 101, 110},
{000, 001, 010, 100, 101, 111},
{000, 001, 011, 100, 101, 110},
{000, 001, 010, 101, 110, 111},
{000, 001, 011, 100, 110, 111},
{000, 010, 011, 100, 101, 111},
{001, 010, 011, 100, 101, 110},
{000, 010, 011, 101, 110, 111},
{001, 010, 011, 100, 110, 111},
{000, 011, 100, 101, 110, 111},
{001, 010, 100, 101, 110, 111}.

Table 1: All possible sets Z with A−(Z) = 7.

7

Listing 1: Pseudocode for our variant of the Myhill–Nerode algorithm.

Input : S t r i n g s s and t , a s e t o f s t r i n g s L , and a max length n .
Output : The boolean o f whether s and t are equ iva l en t f o r L .
For u a binary s t r i n g o f l ength between 0 and n−1,

i f l en (s+u) , l en (t+u) both at most n
and exact ly one o f s+u , t+u i s in the up−c l o s u r e o f L ,

r eturn False
Return True .

2.3 Polynomial-time algorithm

It is perhaps worth pointing out that there is a polynomial-time algorithm for
finding the minimal automaton of Boolean functions, based on essentially the
Myhill–Nerode theorem [10, 5]. In this subsection we detail that somewhat.

Definition 2.12. Given a language L, and a pair of strings x and y, define
a distinguishing extension to be a string z such that exactly one of the two
strings xz and yz belongs to L. Define a relation RL on strings by the rule
that xRLy if there is no distinguishing extension for x and y.

As is well known, RL is an equivalence relation on strings, and thus it
divides the set of all strings into equivalence classes.

Theorem 2.13 (Myhill–Nerode). A language L is regular if and only if RL

has a finite number of equivalence classes. Moreover, the number of states
in the smallest deterministic finite automaton (DFA) recognizing L is equal
to the number of equivalence classes in RL. In particular, there is a unique
DFA with minimum number of states.

The difference is that for us we require |xz| ≤ n and |yz| ≤ n, see Listing
1.

3 Monotone Boolean functions

The main theoretical results of the paper are in Section 2. The present,
longer section deals with a more computational and exploratory investiga-
tion: what happens if we try to prove that the natural upper bound on
complexity is attained in restricted settings such as monotone functions?

Definition 3.1. An isotone map is a function ϕ with a ≤ b =⇒ ϕ(a) ≤
ϕ(b).

8

1111

0111

99sssss

1011

OO

1101

ee❑❑❑❑❑

0011

99sssss

OO

0101

ee❑❑❑❑❑
99sssss

1001

OOee❑❑❑❑❑

0001

ee❑❑❑❑❑
OO 99sssss

1110

0110

99sssss

1010

OO

1100

ee❑❑❑❑❑

0010

99sssss

OO

0100

ee❑❑❑❑❑
99sssss

1000

OOee❑❑❑❑❑

0000

ee❑❑❑❑❑
OO 99sssss

//

1111

1110

OO

0111

99sssss

1011

OO

1101

ee❑❑❑❑❑

0011

OO 99sssss

0101

ee❑❑❑❑❑
99sssss

1001

OOee❑❑❑❑❑

1010

ee❑❑❑❑❑
OO 99sssss

0110

99sssss

0001

OO

1100

ee❑❑❑❑❑

0010

OO 99sssss

0100

ee❑❑❑❑❑
99sssss

1000

OOee❑❑❑❑❑

0000

ee❑❑❑❑❑
99sssss

OO

Figure 1: Isotone 1:1 map from 24 to F−
3 .

The Online Encyclopedia of Integer Sequences (OEIS) has a tabulation
of Dedekind numbers, i.e., the number M(n) of monotone functions [12],
which is also the number of elements of the free distributive lattice on n
generators and the number of antichains of subsets of [n].

Definition 3.2. For an integer n ≥ 0, Fn is the set of monotone Boolean
functions of n variables (equivalently, the free distributive lattice on n gen-
erators, allowing 0 and 1 to be included), and F−

n = Fn \ {0} where 0 is the
constant 0 function.

Theorem 3.3. The minimal automaton of a monotone language L ⊂ {0, 1}n

has at most
n
∑

i=0

min(2i, |Fn−i| − 1)

states. This bound is attained for n ≤ 10.

Proof. The upper bound follows from Theorem 2.7. The sharpness results
are obtained in a series of theorems tabulated in Table 2.

Thinking financially, an option is monotone if whenever s is pointwise
dominated by t and s ∈ L then t ∈ L, where L is the set of exercise situations
for the option. This is the case for common options like call options or Asian
average-based options and makes financial sense if a rise in the underlying
is always desirable and always leads to a higher option value.

9

n Adequacy diagram #States Proof/witness

0
1
↓
(1)

1

1
1 (2)
↓
(2) ⇒ 1

2 Theorem 3.9

2
1 2 (4)

↓
(2) ⇒ 1

4 Theorem 3.9

3
1 2 (4)

↓
(5) ⇒ 2 1

6 Theorem 3.9; Example 3.4

4
1 2 4 (8)

↓
(5) ⇒ 2 1

10 Theorem 3.9

5
1 2 4 (8)

↓
(19) ⇒ 5 2 1

15 Theorem 3.9

6
1 2 4 8 (16)

↓
(19) ⇒ 5 2 1

23 Theorem 3.10.

7
1 2 4 8 16 (32)

↓
(19) ⇒ 5 2 1

39 Figure 1; Theorem 3.10

8
1 2 4 8 16 (32)

↓
(167) ⇒ 19 5 2 1

58 Theorem 3.8

9
1 2 4 8 16 32 (64)

↓
(167) ⇒ 19 5 2 1

90 Theorem 3.13

10
1 2 4 8 16 32 64 (128)

↓
(167) ⇒ 19 5 2 1

154 Theorem 3.12

Table 2: Maximum complexity of monotone securities.

Example 3.4 (Asian option; Shreve [11, Exercise 1.8]). This is the example
that in part motivates our looking at monotone options. Let n = 3 and
consider a starting capital S0 = 4, up-factor u = 2, down-factor d = 1

2 . Let

Yi =
∑i

k=0 Sk. The payoff at time n = 3 is (14Y3 − 4)+. To fit this example
into our framework in the present paper, let us look at which possibilities
lead to exercising, i.e., 1

4Y3 − 4 > 0 or Y3 > 16. Computation shows that
the set of exercise outcomes is {011, 100, 101, 110, 111}. The complexity is 6
(Figure 3), so it is maximally complex for a monotone option.

For n = 3 we are looking at isotone functions from {0, 1} to the family
of monotone functions on two variables p and q. For the Asian option in
Example 3.4 {0, 1} are mapped to {p ∧ q, 1}. For the majority function,
{0, 1} are mapped to {p ∧ q, p ∨ q} (Figure 3).

The sets {p ∧ q, p ∨ q} and {p ∧ q, 1} both have the desirable property
(from the point of view of increasing the complexity) that by substitution
we obtain a full set of nonzero monotone functions in one fewer variables,
in this case {p, 1}.

Definition 3.5. Let us say that a set of monotone functions on variables
p1, . . . , pn is adequate if by substitutions of values for p1 ∈ {0, 1} they contain

10

1

p ∨ q

77♥♥♥♥♥♥♥♥♥♥♥♥♥♥

q ∨ r

OO

p ∨ r

ggPPPPPPPPPPPPPP

q ∨ (p ∧ r)

OO 77♦♦♦♦♦♦♦♦♦♦♦

p ∨ (q ∧ r)

gg❖❖❖❖❖❖❖❖❖❖❖

77♦♦♦♦♦♦♦♦♦♦♦

r ∨ (p ∧ q)

OOgg❖❖❖❖❖❖❖❖❖❖❖

majority

gg❖❖❖❖❖❖❖❖❖❖❖

OO 77♦♦♦♦♦♦♦♦♦♦♦

p ∧ (q ∨ r)

77♦♦♦♦♦♦♦♦♦♦♦

q ∧ (p ∨ r)

OO

r ∧ (p ∨ q)

gg❖❖❖❖❖❖❖❖❖❖❖

p ∧ q

OO 77♦♦♦♦♦♦♦♦♦♦♦♦

p ∧ r

gg❖❖❖❖❖❖❖❖❖❖❖❖

77♦♦♦♦♦♦♦♦♦♦♦♦

q ∧ r

OOgg❖❖❖❖❖❖❖❖❖❖❖❖

p ∧ q ∧ r

ggPPPPPPPPPPPP

77♦♦♦♦♦♦♦♦♦♦♦♦

OO

r=0
//

1

p ∨ q

OO

p

==③③③③③③③③
q

aa❉❉❉❉❉❉❉❉

p ∧ q

aa❉❉❉❉❉❉❉❉❉

==③③③③③③③③③

Figure 2: Adequacy in the proof that 24 → 19 ⇒ 5.

start

1

p ∧ q

1

p

qf

1

0

0, 1

1

0, 1

1
start

p ∨ q

p ∧ q

1

p

qf

1

0

1

1

0, 1

1

0

Figure 3: Asian option, and European call option (corresponding to the
majority function).

11

all monotone nonzero functions on p2, . . . , pn. If one value for p1 suffices then
we say strongly adequate.

Let us write 2i for the set {0, 1}i with the product ordering.

Definition 3.6. If there is an embedding of 2i into F−
j ensuring adequacy

onto F−
j−1, in the sense that we map into Fj−1 (so self-loops may be used in

the automaton), and we map onto F−
j−1, then we write

2i → |F−
j | ⇒ |F−

j−1|.

It is crucial to note that in Section 2, adequacy was automatic: the
concept of function is much more robust than that of a monotone function,
meaning that functions can be combined in all sorts of ways and remain func-
tions. As an example of the unusual but convenient notation of Definition
3.6, we have:

Theorem 3.7. There is an embedding of 22 into F−
3 ensuring adequacy

onto F−
2 . In symbols,

4 → 19 ⇒ 5.

Proof. We use formulas of the form (r ∧ b) ∨ a with a ≤ b, as follows:
22 F−

3 F−
2

(0, 1) (r ∧ p) ∨ p ≡ p
(1, 0) (r ∧ q) ∨ q ≡ q
(0, 0) (r ∧ (p ∧ q)) ∨ (p ∧ q) ≡ p ∧ q
(1, 1) (r ∧ 1) ∨ (p ∨ q) 7→r=1 1

7→r=0 p ∨ q

Theorem 3.8. There is an embedding of 24 into F−
4 ensuring adequacy

onto F−
3 :

16 → 167 ⇒ 19

Proof. We make sure to hit p, q, r as follows: (r ∧ b) ∨ ai, 1 ≤ i ≤ 2, where
a1 < a2 ≤ b, and ai, b ∈ F−

3 , with b ∈ T . Here T is the top cube in F−
3 ,

T = {b ∈ F−
3 : maj ≤ b ≤ p ∨ q ∨ r}

=







(p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r),
p ∨ (q ∧ r), q ∨ (p ∧ r), r ∨ (p ∧ q),
p ∨ q, p ∨ r, q ∨ r, p ∨ q ∨ r







.

12

Let ψ : {0, 1}3 → T be an isomorphism. Not that b 6∈ {0̂, p, q, r}. And
{a1, a2} ⊂ {b, p, q, r, 0̂} where 0̂ is p ∧ q ∧ r, the least element of F−

3 . Let

(a1, a2) =

{

(0̂, b) if b bounds none of p, q, r;

(p, b) or (0̂, p) if say b > p;

By Lemma above, (r ∧ψ(x))∨ ai ≤ (r ∧ψ(y))∨ ci iff x ≤ y and ai ≤ ci.

We can consider whether u → v ⇒ w whenever the numbers are of the
form 2m, |F−

n | ∈ {1, 2, 5, 19, 167, . . . }, |F−
n−1|, and u ≤ v and w ≤ 2u (as u

increases, being 1:1 becomes harder but being adequate becomes easier). In
the case of strong adequacy witnessed by p = p0 we write simply u→ v →p0

w; this can only happen when w ≤ u.

Theorem 3.9. We have the following adequacy calculations:

1. 20 → 2 → 1

2. 21 → 2 → 1

3. 20 → 5 ⇒ 2

4. 21 → 5 → 2

5. 22 → 5 → 2

We omit the trivial proof of Theorem 3.9.

Theorem 3.10. 23 → 19 ⇒ 5 and 24 → 19 ⇒ 5.

Proof. The map in Figure 1 is onto F−
3 \ {p, q, r} so it works. As shown in

Figure 2, if we restrict that map to the top cube, mapping onto T ∪ {1} \
{p ∨ q ∨ r}, and set r = 0 then we map onto F−

2 .

Lemma 3.11. Let a1, a2, b1, b2 be Boolean functions of p, q, r and let

faibi(p, q, r, s) = [s ∧ bi] ∨ [¬s ∧ ai].

Then fa1b1 ≤ fa2b2 ⇐⇒ a1 ≤ a2 and b1 ≤ b2.

Proof. By definition,

fa1b1 ≤ fa2b2 ⇐⇒ [p4 ∧ b1] ∨ [¬p4 ∧ a1] ≤ [p4 ∧ b2] ∨ [¬p4 ∧ a2].

Clearly, a1 ≤ a2 and b1 ≤ b2 implies this, so we just need the converse. If
a1 6≤ a2 then any assignment that makes p4 false, a1 true, and a2 false will
do. Similarly if b1 6≤ b2 then any assignment that makes p4 true, b1 true,
and b2 false will do.

13

Theorem 3.12. There is an injective isotone map from 26 into F4, and in
fact

26 → 167 ⇒ 19.

Proof. We start with a monotone version of the simple equation 22
n

=
(22

n−1
)2. Namely, a pair of monotone functions g, h of n − 1 variables,

with g ≤ h, gives another monotone function via

f(p1, . . . , pn) = [pn ∧ f(p1, . . . , pn−1, 1)] ∨ [¬pn ∧ f(p1, . . . , pn−1, 0)]

= [pn ∧ h(p1, . . . , pn−1)] ∨ [¬pn ∧ g(p1, . . . , pn−1)]

= [pn ∧ h(p1, . . . , pn−1)] ∨ g(p1, . . . , pn−1).

Now consider elements a of the bottom hypercube in F3 and b of the top
hypercube in F3 in Figure 2. So we must have a ≤ b since the bottom is
below the top (and a = b can happen since the two hypercubes overlap in
the majority function). Let fab = [p4 ∧ b] ∨ [¬p4 ∧ a]. Since a ≤ b, fab is
monotonic. By Lemma 3.11, these functions fab are ordered as 26 = 23×23.

Finally, in order to ensure adequacy we modify this construction to reach
higher in F−

4 , replacing the top cube in the lower half by a cube formed from
the upper half. In more detail, consider (r ∧ b) ∨ a with a ≤ b from F−

3 ,
where the a’s are chosen from the bottom cube of F3, and the b’s from the
top cube, except that when a is the top of the bottom cube we let b be
the top cube with the top replaced by 1, and when a is the bottom of the
bottom cube we let b be the cube

{p, q, r, p ∧ q, p ∧ r, q ∧ r, p ∨ q, p ∨ r, q ∨ r, p ∧ q ∧ r, p ∨ q ∨ r}.

Theorem 3.13. 25 → 167 ⇒ 19.

Proof. A small modification of Theorem 3.12; only use bottom, top and two
intermediate “cubes” within the cube.

Open problem. For n = 11 we need to determine whether the following
holds, which has so far proved too computationally expensive:

27 → 167 ⇒ 19?

That is, is there an isotone map from the 128-element lattice 27 into F−
4 ,

the set of nonzero monotone functions in variables p, q, r, s, such that upon
plugging in constants for p, we cover all of F−

3 , the set of nonzero monotone
functions in q, r, s?

14

Probability

1 1

7/8 p ∨ q ∨ r

OO

6/8 q ∨ r

88qqqqqqqqqqqq

p ∨ r

OO

p ∨ q

kk❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

5/8 r ∨ (p ∧ q)

OO 88qqqqqqqqqqq

q ∨ (p ∧ r)

kk❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

77♣♣♣♣♣♣♣♣♣♣♣

p ∨ (q ∧ r)

kk❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

OO

4/8 r

OO

maj

ff▼▼▼▼▼▼▼▼▼▼▼

88qqqqqqqqqqq

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
q

OO

p

OO

3/8 r ∧ (p ∨ q)

OO 88qqqqqqqqqqq

q ∧ (p ∨ r)

ff▼▼▼▼▼▼▼▼▼▼▼

OO

p ∧ (q ∨ r)

kk❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

OO

2/8 q ∧ r

OO 33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
p ∧ r

ff▼▼▼▼▼▼▼▼▼▼▼

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
p ∧ q

gg◆◆◆◆◆◆◆◆◆◆◆◆

OO

1/8 p ∧ q ∧ r

ff▼▼▼▼▼▼▼▼▼▼▼▼

OO
33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

0 0

OO

Figure 4: The lattice F3 of all monotone Boolean functions in three variables
p, q, r.

15

4 Early-monotone functions and complete simple

games

In this section we take the financial ideas from Section 3 one step further,
by noting that the Asian option (Example 3.4) has the added property that
earlier bits matter more. In economics terms, we have what is called a
complete simple game: there is a set of goods linearly ordered by intrinsic
value. You get some of the goods and there are thresholds for how much
value you need to win.

Definition 4.1. Let ei ∈ {0, 1}n be defined by ei(j) = 1 if and only if
j = i. An n-ary Boolean function f is early if for all 0 ≤ i < j < n and all
y ∈ {0, 1}n with y(i) = y(j) = 0, if f(y + ej) = 1 then f(y + ei) = 1.

The number of early (not necessarily monotone) functions starts

2, 4, 12, 64, 700, 36864, . . .

If a function is early and monotone we shall call it early-monotone. Early-
monotonicity encapsulates an idea of time-value-of-money; getting paid now
is better than next week, getting promoted now is better than next decade,
etc.

In the early context one needs the map from 2m into the early functions
to be “early”, i.e., the function mapped to by 100 should dominate the one
mapped to by 010 etc. That is, the map must be order-preserving from 2m

with the majorization lattice order into the complete simple games.
The number of early-monotone functions on n variables, including zero,

is
2, 3, 5, 10, 27, 119, 1173, . . .

which appears in OEIS A132183 as the number of “regular” Boolean func-
tions in the terminology of Donald Knuth. He describes them also as the
number of order ideals (or antichains) of the binary majorization lattice with
2n points.

Definition 4.2. The binary majorization lattice En is the set {0, 1}n or-
dered by (a1, . . . , an) ≤ (b1, . . . , bn) iff a1 + · · ·+ ak ≤ b1 + · · ·+ bk for each
k.

The lattice E5 for n = 5 is illustrated in [7, Fig. 8, Volume 4A, Part
1]. The basic properties of this lattice are discussed in [7, Exercise 109 of
Section 7.1.1]. The majorization order is obtained by representing e.g. 1101

16

as (1, 2, 4,∞), showing where the kth 1 appears (the ∞ signifying that there
is no fourth 1 in 1101), and ordering these tuples by majorization. OEIS cites
work of Stefan Bolus [2] who calls the “regular” functions complete simple
games [8], a term from the economics and game theory literature. There,
arbitrary monotone functions are called simple games, and “complete” refers
to the fact that the positions have a complete linear ordering (in the finance
application, earlier positions are most valuable). Figure 5 shows that in the
complete-simple-games setting we have

1 → 2 → 4 → 8 → 16

↓

26 ⇒ 9 → 4 → 2 → 1

for a total maximal complexity of 47 for complete simple games at n =
8. This contrasts with Theorem 3.8 which shows that for arbitrary simple
games the complexity can reach 58 at n = 8.

17

1111

1110

1101

1100
♣♣

1011

◆◆

1010

◆◆ ♣♣
0111

◆◆

1001
♣♣

0110

◆◆ ♣♣

1000
♣♣

0101

◆◆ ♣♣

0100

◆◆ ♣♣
0011

◆◆

0010

◆◆ ♣♣

0001

0000

1111

1110

1101

∨

∨

♣♣♣
1011

◆◆

1100

♣♣
∨

◆◆◆ ♣♣♣

1010

◆◆ ♣♣
∨

◆◆◆

∨

◆◆◆ ♣♣♣
∨

◆◆◆

1001

♣♣
∨

♣♣♣
◆◆◆

0111

◆◆

∨

◆◆◆ ♣♣♣
0110

◆◆ ♣♣

∨

♣♣♣
0101

♣♣
◆◆

1000

♣♣
∨

♣♣♣
◆◆◆

0100

♣♣◆◆

0011

◆◆

0010

◆◆ ♣♣

0001

0000

∅

111

110

101

∨

100

ss
011

❑❑

010
tt❑❑

001

000

∅

(a) (b) (c)

Figure 5: (a) The majorization lattice E4 on 4 variables. (b) The 27 complete
simple games C4 on 4 variables. The symbol ∨ denotes an element that is
join-reducible. Red and blue denote the image under the first map E4 → C4

and blue in particular denotes some elements sufficient for the second map
C4 → C3 to be onto. (c) The 10 complete simple games C3 on 3 variables.

18

References

[1] Sanjeev Arora, Boaz Barak, Markus Brunnermeier, and Rong Ge. Com-
putational complexity and information asymmetry in financial prod-
ucts. Commun. ACM, 54(5):101–107, May 2011.

[2] Stefan Bolus. Power indices of simple games and vector-weighted ma-
jority games by means of binary decision diagrams. European J. Oper.
Res., 210(2):258–272, 2011.

[3] Cezar Câmpeanu and Wing Hong Ho. The maximum state complexity
for finite languages. J. Autom. Lang. Comb., 9(2-3):189–202, 2004.

[4] J.-M. Champarnaud and J.-E. Pin. A maxmin problem on finite au-
tomata. Discrete Applied Mathematics, 23(1):91 – 96, 1989.

[5] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata
theory, languages, and computation. Addison-Wesley Publishing Co.,
Reading, Mass., 1979. Addison-Wesley Series in Computer Science.

[6] Bjørn Kjos-Hanssen. On the complexity of automatic complexity. The-
ory Comput. Syst., 61(4):1427–1439, 2017.

[7] Donald E. Knuth. The art of computer programming. Vol. 4A. Combi-
natorial algorithms. Part 1. Addison-Wesley, Upper Saddle River, NJ,
2011.

[8] Sascha Kurz and Nikolas Tautenhahn. On Dedekind’s problem for com-
plete simple games. Internat. J. Game Theory, 42(2):411–437, 2013.

[9] Peter Linz. An Introduction to Formal Language and Automata. Jones
and Bartlett Publishers, Inc., USA, 2006.

[10] A. Nerode. Linear automaton transformations. Proc. Amer. Math. Soc.,
9:541–544, 1958.

[11] Steven E. Shreve. Stochastic calculus for finance. I. Springer Finance.
Springer-Verlag, New York, 2004. The binomial asset pricing model.

[12] N. J. A. Sloane. The Online Encyclopedia of Integer Sequences, 2018.
Sequence A000372.

19

	1 Introduction
	2 Complexity of languages and operations
	2.1 Operations
	2.2 The number of maximally complex languages
	2.3 Polynomial-time algorithm

	3 Monotone Boolean functions
	4 Early-monotone functions and complete simple games

