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ON THE DIFFERENCES BETWEEN ZUMKELLER NUMBERS

F. JOKAR

Abstract. In this paper, we prove that for every ℓ ∈ N there are infinitely
many (a, b) that both a and b are Zumkeller numbers and b− a = ℓ

0. Introduction

A positive integer n is said to be a Zumkeller number if the positive divisors of
n can be partitioned into two disjoint subsets of equal sum [1]. In this paper, we
prove that for every even integer ℓ there are infinitely many (a, b), in which both a

and b are even zumkeller numbers and a− b = ℓ. We also prove that for every odd
integer ℓ, there are infinitely many (a, b) that b is an odd Zumkeller number, a is
an even Zumkeller number, and b− a = ℓ

1. differences between Zumkeller numbers

Definition 1.1 (Definition 1 in [1]). A positive integer n is said to be a Zumkeller
number if the positive divisors of n can be partitioned into two disjoint subsets of
equal sum. A Zumkeller partition for a Zumkeller number n is a partition {A,B}
of the set of positive divisors of n so that each of A and B sums to the same value.

Proposition 1.2 (Corollary 5 in [1]). If the integer n is Zumkeller and w is rela-

tively prime to n, then nw is Zumkeller

Example 1.3. It is easy to verify that 6 is a Zumkeller number. On the other hand,
for every k ∈ N, gcd(6, 3k+ 2) = gcd(6, 3k+ 1) = 1. Hence, 18k+ 6 = 6× (3k+ 1)
and (18k + 12) = 6× (3k + 2) are two Zumkeller numbers.

Definition 1.4 (Definition 2 in [1]). A positive integer n is said to be a practical
number if every positive integer less than n can be represented as a sum of distinct
positive divisors of n.

Proposition 1.5 (Proposition 7 in [1]). A positive integer n with the prime fac-

torization pk1

1 pk2

2 . . . pkm

m and p1 < p2 < · · · < pm is a practical number if and only

if p1 = 2 and pi+1 ≤ σ(pk1

1 . . . pki

i ) + 1 for 1 ≤ i ≤ m− 1

Proposition 1.6 (Proposition 10 in [1]). A practical number n is Zumkeller if and

only if σ(n) is even.

Theorem 1.7. Let ℓ be an even integer. Then there is a Zumkeller number a that

a+ ℓ is also a Zumkeller number

Proof. Suppose that ℓ is a an even integer. Then there are k ∈ N and an even
integer 0 ≤ r < 18 that ℓ = 18k + r. By Example 1.3, we have:
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(1) If r = 0, then a = 6 and a+ℓ = 18k′+6 are Zumkellers (k′ is a nonnegative
integer which varies according to a and r),

(2) If r = 2, then a = 28 and a+ ℓ = 18k′ + 12 are Zumkellers,
(3) If r = 4, then a = 20 and a+ ℓ = 18k′ + 6 are Zumkellers,
(4) If r = 6, then a = 6 and a+ ℓ = 18k′ + 12 are Zumkellers,
(5) If r = 8, then a = 40 and a+ ℓ = 18k′ + 12 are Zumkellers,
(6) If r = 10, then a = 20 and a+ ℓ = 18k′ + 12 are Zumkellers,
(7) If r = 12, then a = 54 and a+ ℓ = 18k′ + 12 are Zumkellers,
(8) If r = 14, then a = 28 and a+ ℓ = 18k′ + 6 are Zumkellers,
(9) If r = 16, then a = 80 and a+ ℓ = 18k′ + 6 are Zumkellers.

�

Theorem 1.8. Let ℓ be an odd integer. Then there is a Zumkeller number a that

a+ ℓ is also Zumkeller.

Proof. Suppose that ℓ is an odd integer. There is a prime number p which p ∤ 945
and p ∤ ℓ. Let that t is an integer which p < 2 × 2t − 1 = σ(2t). Hence by
Proposition 1.5 and Proposition 1.6, 2t×p is a Zumkeller number. Therefore, there
are an odd integer r1 that 1 ≤ r1 < (2tp)2 and k1 ∈ N which ℓ = (2tp)2k1 + r1. Let
r2 = 2tp−r1. There are 1 ≤ r3 < 945 and k2 ∈ N that 945 = (2tp)2k2+r3 and since
gcd(r3, 2

tp) = 1, so there is r4 ∈ N which r4r3 ≡ r2 (mod (2tp)2) and gcd(r3, 2
tp) =

1. Let k4 ∈ N, q = (2tp)2k4 + r4 be a prime number, and gcd(q, 945) = 1 (by
Dirichlet’s Theorem we can find such a prime number). Since 945 is Zumkeller and
gcd(q, 945) = 1, a = q × 945 is a Zumkeller number. There is also m ∈ N that
gcd(m, 2tq) = 1 and a+ ℓ = 2tqm. Hence, a+ ℓ is a Zumkeller number. �

Proposition 1.9. Let (a1, a2, . . . , ak) be a k-tuple of Zumkeller numbers which

a1 < a2 < · · · < ak and for every 1 ≤ i 6= j ≤ k, ℓij = ai − aj. there are infinitely

many k-tuples of Zumkeller numbers like (a′1, a
′

2, . . . , a
′

k) that a′1 < a′2 < · · · < a′k
and for every 1 ≤ i 6= j ≤ k, ℓij = a′i − a′j

Proof. Suppose that a1 < a2 < · · · < ak are Zumkeller numbers and for every
1 ≤ i 6= j ≤ k, ℓij = ai − aj . Then a′1 = an1a

n
2 . . . a

n
k + a1, a

′

2 = an1a
n
2 . . . a

n
k + a2,

. . . , a′k = an1a
n
2 . . . a

n
k + ak are Zumkeller numbers and for every 1 ≤ i 6= j ≤ k,

ℓij = a′i − a′j . �

Corollary 1.10. For every ℓ ∈ N, there are infinitely many Zumkeller numbers

like a which a+ ℓ is also a Zumkellern number.

Theorem 1.11 (See [2]). Let a be a Zumkeller and b be the smallest Zumkeller

number which is greater than a. Then, b− a ≤ 12

Proof. Suppose that a is a Zumkeller number. There are a, k ∈ N that a = 18k+ r

and 0 ≤ r < 18. If 0 ≤ r ≤ 12, then it is clear that there is r′ ∈ N that
a+r′ = 18k+12. Hence, by Example 1.3, it is a Zumkeller number. If 13 ≤ r ≤ 18,
then it is clear that there is a r′ ∈ N, 0 ≤ r′ ≤ 12 that a + r′ = 18(k + 1) + 6.
Therefore, by Example 1.3 it is a Zumkeller number. �

Corollary 1.12 (See [2]). The difference between consecutive Zumkeller numbers

is at most 12.

Remark 1.13. There are Zumkeller numbers a and b that b is the smallest Zumkeller-
number which is greater than a and b−a = 12. For instance, a = 222 is a Zumkeller
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number. b = 224 is the smallest Zumkeller number which is greater that a and the
difference between them is 12.
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