# ON THE DIFFERENCES BETWEEN ZUMKELLER NUMBERS 

## F. JOKAR


#### Abstract

In this paper, we prove that for every $\ell \in \mathbb{N}$ there are infinitely many $(a, b)$ that both $a$ and $b$ are Zumkeller numbers and $b-a=\ell$


## 0. Introduction

A positive integer $n$ is said to be a Zumkeller number if the positive divisors of $n$ can be partitioned into two disjoint subsets of equal sum (1). In this paper, we prove that for every even integer $\ell$ there are infinitely many ( $a, b$ ), in which both $a$ and $b$ are even zumkeller numbers and $a-b=\ell$. We also prove that for every odd integer $\ell$, there are infinitely many $(a, b)$ that $b$ is an odd Zumkeller number, $a$ is an even Zumkeller number, and $b-a=\ell$

## 1. DIFFERENCES BETWEEN ZUMKELLER NUMBERS

Definition 1.1 (Definition 1 in [1]). A positive integer $n$ is said to be a Zumkeller number if the positive divisors of $n$ can be partitioned into two disjoint subsets of equal sum. A Zumkeller partition for a Zumkeller number $n$ is a partition $\{A, B\}$ of the set of positive divisors of $n$ so that each of $A$ and $B$ sums to the same value.

Proposition 1.2 (Corollary 5 in [1]). If the integer $n$ is Zumkeller and $w$ is relatively prime to $n$, then $n w$ is Zumkeller

Example 1.3. It is easy to verify that 6 is a Zumkeller number. On the other hand, for every $k \in \mathbb{N}, \operatorname{gcd}(6,3 k+2)=\operatorname{gcd}(6,3 k+1)=1$. Hence, $18 k+6=6 \times(3 k+1)$ and $(18 k+12)=6 \times(3 k+2)$ are two Zumkeller numbers.
Definition 1.4 (Definition 2 in [1]). A positive integer $n$ is said to be a practical number if every positive integer less than $n$ can be represented as a sum of distinct positive divisors of $n$.

Proposition 1.5 (Proposition 7 in [1]). A positive integer $n$ with the prime factorization $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ and $p_{1}<p_{2}<\cdots<p_{m}$ is a practical number if and only if $p_{1}=2$ and $p_{i+1} \leq \sigma\left(p_{1}^{k_{1}} \ldots p_{i}^{k_{i}}\right)+1$ for $1 \leq i \leq m-1$
Proposition 1.6 (Proposition 10 in [1]). A practical number $n$ is Zumkeller if and only if $\sigma(n)$ is even.

Theorem 1.7. Let $\ell$ be an even integer. Then there is a Zumkeller number a that $a+\ell$ is also a Zumkeller number

Proof. Suppose that $\ell$ is a an even integer. Then there are $k \in \mathbb{N}$ and an even integer $0 \leq r<18$ that $\ell=18 k+r$. By Example 1.3, we have:

[^0](1) If $r=0$, then $a=6$ and $a+\ell=18 k^{\prime}+6$ are Zumkellers ( $k^{\prime}$ is a nonnegative integer which varies according to $a$ and $r$ ),
(2) If $r=2$, then $a=28$ and $a+\ell=18 k^{\prime}+12$ are Zumkellers,
(3) If $r=4$, then $a=20$ and $a+\ell=18 k^{\prime}+6$ are Zumkellers,
(4) If $r=6$, then $a=6$ and $a+\ell=18 k^{\prime}+12$ are Zumkellers,
(5) If $r=8$, then $a=40$ and $a+\ell=18 k^{\prime}+12$ are Zumkellers,
(6) If $r=10$, then $a=20$ and $a+\ell=18 k^{\prime}+12$ are Zumkellers,
(7) If $r=12$, then $a=54$ and $a+\ell=18 k^{\prime}+12$ are Zumkellers,
(8) If $r=14$, then $a=28$ and $a+\ell=18 k^{\prime}+6$ are Zumkellers,
(9) If $r=16$, then $a=80$ and $a+\ell=18 k^{\prime}+6$ are Zumkellers.

Theorem 1.8. Let $\ell$ be an odd integer. Then there is a Zumkeller number a that $a+\ell$ is also Zumkeller.

Proof. Suppose that $\ell$ is an odd integer. There is a prime number $p$ which $p \nmid 945$ and $p \nmid \ell$. Let that $t$ is an integer which $p<2 \times 2^{t}-1=\sigma\left(2^{t}\right)$. Hence by Proposition 1.5 and Proposition 1.6, $2^{t} \times p$ is a Zumkeller number. Therefore, there are an odd integer $r_{1}$ that $1 \leq r_{1}<\left(2^{t} p\right)^{2}$ and $k_{1} \in \mathbb{N}$ which $\ell=\left(2^{t} p\right)^{2} k_{1}+r_{1}$. Let $r_{2}=2^{t} p-r_{1}$. There are $1 \leq r_{3}<945$ and $k_{2} \in \mathbb{N}$ that $945=\left(2^{t} p\right)^{2} k_{2}+r_{3}$ and since $\operatorname{gcd}\left(r_{3}, 2^{t} p\right)=1$, so there is $r_{4} \in \mathbb{N}$ which $r_{4} r_{3} \equiv r_{2}\left(\bmod \left(2^{t} p\right)^{2}\right)$ and $\operatorname{gcd}\left(r_{3}, 2^{t} p\right)=$ 1. Let $k_{4} \in \mathbb{N}, q=\left(2^{t} p\right)^{2} k_{4}+r_{4}$ be a prime number, and $\operatorname{gcd}(q, 945)=1$ (by Dirichlet's Theorem we can find such a prime number). Since 945 is Zumkeller and $\operatorname{gcd}(q, 945)=1, a=q \times 945$ is a Zumkeller number. There is also $m \in \mathbb{N}$ that $\operatorname{gcd}\left(m, 2^{t} q\right)=1$ and $a+\ell=2^{t} q m$. Hence, $a+\ell$ is a Zumkeller number.

Proposition 1.9. Let $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be a $k$-tuple of Zumkeller numbers which $a_{1}<a_{2}<\cdots<a_{k}$ and for every $1 \leq i \neq j \leq k$, $\ell_{i j}=a_{i}-a_{j}$. there are infinitely many $k$-tuples of Zumkeller numbers like $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k}^{\prime}\right)$ that $a_{1}^{\prime}<a_{2}^{\prime}<\cdots<a_{k}^{\prime}$ and for every $1 \leq i \neq j \leq k$, $\ell_{i j}=a_{i}^{\prime}-a_{j}^{\prime}$
Proof. Suppose that $a_{1}<a_{2}<\cdots<a_{k}$ are Zumkeller numbers and for every $1 \leq i \neq j \leq k, \ell_{i j}=a_{i}-a_{j}$. Then $a_{1}^{\prime}=a_{1}^{n} a_{2}^{n} \ldots a_{k}^{n}+a_{1}, a_{2}^{\prime}=a_{1}^{n} a_{2}^{n} \ldots a_{k}^{n}+a_{2}$, $\ldots, a_{k}^{\prime}=a_{1}^{n} a_{2}^{n} \ldots a_{k}^{n}+a_{k}$ are Zumkeller numbers and for every $1 \leq i \neq j \leq k$, $\ell_{i j}=a_{i}^{\prime}-a_{j}^{\prime}$.
Corollary 1.10. For every $\ell \in \mathbb{N}$, there are infinitely many Zumkeller numbers like a which $a+\ell$ is also a Zumkellern number.

Theorem 1.11 (See [2]). Let $a$ be $a$ Zumkeller and $b$ be the smallest Zumkeller number which is greater than $a$. Then, $b-a \leq 12$

Proof. Suppose that $a$ is a Zumkeller number. There are $a, k \in \mathbb{N}$ that $a=18 k+r$ and $0 \leq r<18$. If $0 \leq r \leq 12$, then it is clear that there is $r^{\prime} \in \mathbb{N}$ that $a+r^{\prime}=18 k+12$. Hence, by Example 1.3, it is a Zumkeller number. If $13 \leq r \leq 18$, then it is clear that there is a $r^{\prime} \in \mathbb{N}, 0 \leq r^{\prime} \leq 12$ that $a+r^{\prime}=18(k+1)+6$. Therefore, by Example 1.3 it is a Zumkeller number.

Corollary 1.12 (See [2]). The difference between consecutive Zumkeller numbers is at most 12.

Remark 1.13. There are Zumkeller numbers $a$ and $b$ that $b$ is the smallest Zumkellernumber which is greater than $a$ and $b-a=12$. For instance, $a=222$ is a Zumkeller
number. $b=224$ is the smallest Zumkeller number which is greater that $a$ and the difference between them is 12 .

## References

[1] K. P. S. Bhaskara Rao and Yuejian Peng, On Zumkeller numbers, Journal of Number Theory 133, No. 4 (2013) 1135-1155
[2] The online Encyclopedia of Integer Sequences, https://oeis.org/A083207/.
Faculty of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
E-mail address: jokar.farid@gmail.com


[^0]:    2010 Mathematics Subject Classification. 11R04.
    Key words and phrases. Zumkeller numbers, practical numbers, Zumkeller partition.

