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Abstract

It is well-known that the set In of involutions of the symmetric group Sn corre-
sponds bijectively - by the Foata map F - to the set of n-permutations that avoid
the two vincular patterns 123 and 132. We consider a bijection Γ from the set Sn
to the set of histoires de Laguerre, namely, bicolored Motzkin paths with labelled
steps, and study its properties when restricted to Sn(123, 132). In particular, we
show that the set Sn(123, 132) of permutations that avoids the consecutive pat-
tern 123 and the classical pattern 132 corresponds via Γ to the set of Motzkin
paths, while its image under F is the set of restricted involutions In(3412). We
exploit these results to determine the joint distribution of the statistics des and
inv over Sn(123, 132) and over In(3412). Moreover, we determine the distribution
in these two sets of every consecutive pattern of length three. To this aim, we use
a modified version of the well-known Goulden-Jacson cluster method.

Keywords: permutation pattern, involution, histoire de Laguerre, Motzkin path, cluster
method.
MSC2010: 05A05, 05A15 (primary); 05A18 (secondary).

1 Introduction

In 1994 De Medicis and Viennot [5] introduced the definition of histoire de Laguerre,
namely, a pair (d, l), where d is a Motzkin path of length n whose horizontal steps may
have two different colors and l = (l1, . . . , ln) is a sequence of non-negative integers with
suitable constraints.

Many bijections are present in the literature between the set Hn of histoires de
Laguerre and the symmetric group Sn (see [10] for a survey on this topic), as well as
between a specific subset Ln of Hn and the set In of involutions in Sn (see, e.g., [2]). More
recently, Claesson [3] proved that the set In corresponds bijectively - via the classical

1

ar
X

iv
:1

90
2.

02
21

3v
2 

 [
m

at
h.

C
O

] 
 1

6 
M

ay
 2

01
9



Foata map - with the set Sn(123, 132) of n-permutations that avoid the two vincular
patterns 123 and 132.

In the first part of the present paper we consider the bijection Γ between the set of
n-permutations and the set of historires de Laguerre described in [1], which is essentially
the bijection defined in [4, p. 256], up to the reverse. This last bijection is in turn a
slightly modified version of the well-known Françon-Viennot bijection [7]. We exploit
Γ to connect the sets Sn(123, 132), In and Ln. More precisely we prove that the image
under Γ of the set Sn(123, 132) is precisely the set Ln, namely, the set consisting of
(uncolored) Motzkin paths whose down steps are labelled with an integer that does not
exceed their height. Furthermore, we show that the bijection Ψ defined in [2] is nothing
but the composition of the map F with Γ. Finally, the set of permutations avoiding the
consecutive pattern 123 and the classical pattern 132 is mapped by Γ onto the set of
unlabelled Motzkin paths and is mapped by F−1 onto the set of involutions avoiding the
classical pattern 3412.

In the second part of the paper we exploit the properties of the maps Γ and Ψ to study
in parallel some statistics over the two sets Sn(123, 132) and In(3412). In particular, in
both cases we determine the joint distribution of inversions and descents, as well as the
distribution of the occurrences of every consecutive pattern of length three.

In many situations we take advantage of a particular instance of the Goulden-Jackson
cluster method [8] for Motzkin paths. For the sake of completeness we describe this
method in the Appendix.

2 The bijections

A Motzkin path of length n is a lattice path starting in (0, 0), ending in (n, 0), con-
sisting of up steps U of the form (1, 1), down steps D of the form (1,−1) and horizontal
steps H of the form (1, 0) and lying weakly above the x-axis.

As usual, a Motzkin path can be identified with a Motzkin word, namely, a word
w = d1d2 . . . dn of length n in the alphabet {U,D,H} with the constraint that the
number of occurrences of the letter U is equal to the number of occurrences of the letter
D and, for every i, the number of occurrences of U in the subword d1d2 . . . di is not
smaller than the number of occurrences of D. In the following we will not distinguish
between a Motzkin path and the corresponding word.

Now we consider the set of bicolored Motzkin paths, defined as Motzkin paths whose
horizontal steps have two possible colors c1 and c2, such that horizontal steps lying on
the x-axis cannot be colored with the color c2. We will denote by H a horizontal step
colored by c1 and with H̃ a horizontal step colored by c2. It is well known that bicolored
Motzkin paths are counted by Catalan numbers (see [12]).

We will denote by Mn and CMn the sets of Motzkin paths of length n and bicolored
Motzkin paths of length n, respectively.
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We associate to every d = d1d2 . . . dn ∈ CMn the n-tuple h(d) = (h1, h2, . . . , hn),
where for every i = 1, . . . , n, the integer hi is defined as{

the y-coordinate of the ending point of the step di if di is D

the y-coordinate of the starting point of the step di otherwise

We will call the integer hi the height of the step di, and the n-tuple h(d) the height
list of d.

Example 2.1. Consider the bicolored Motzkin path d = UUDH̃DH, namely,

where the horizontal step with color c2 is represented by a dashed line. Then h(d) =
(0, 1, 1, 1, 0, 0).

We now describe a map from the set of permutations of length n to the set CMn.
This map is a slight modification of the map described in [1] in terms of valued Dyck
paths.

Let π = π1π2 . . . πn be a permutation in Sn written in one-line notation. An ascending
run in π is a maximal increasing subword of π. For example, the ascending runs of 346512
are w1 = 346, w2 = 5 and w3 = 12. Write π as

π = w1w2 . . . wk,

where the wi
′s are the ascending runs in π. The first and the last element of an ascending

run of length at least two are called a head and a tail, respectively. The only element
of an ascending run of length one is called a head-tail. Every other element is called a
boarder.

Now we associate to π a bicolored Motzkin path d of length n defined as follows. For
i = 1, . . . , n,

• if i is a head-tail, set di = H;

• if i is a head, set di = U ;

• if i is a tail, set di = D;

• if i is a boarder, set di = H̃.
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Then d = d1d2 . . . dn.
Obviously the correspondence γ : π → d is far from being injective. For example,

both the permutations 3124 and 1243 in S4 correspond to the bicolored Motzkin path
UH̃HD. In order to get a bijection, we associate to the permutation π a pair (d, l), where
d is the bicolored Motzkin path defined above and l = (l1, l2, . . . , ln) is the sequence of
non-negative integers

li = |{j|sj < i < tj, tj precedes i in π}|

where sj and tj are the first and the last element of the j-th ascending run of π.
We denote by Γ(π) the pair (d, l) associated with the permutation π.

Example 2.2. Consider the permutation π = 826913547. The ascending runs of π are
w1 = 8, w2 = 269, w3 = 135 and w4 = 47.

We have Γ(π) = (d, l), where d = UUH̃UDH̃DHD =

and l = (0, 0, 1, 2, 1, 0, 1, 0, 0).

We observe that the above bijection is essentially the map defined in [4, p. 256], up
to the reverse.

We recall that a pair (d, l), where d is a bicolored Motzkin path of length n and
l = (l1, . . . , ln) is a sequence of non-negative integers, is called a histoire de Laguerre
provided that li ≤ hi for all 1 ≤ i ≤ n, where hi is the i-th element of the height list of
d (see [5]). We denote by Hn the set of histoires de Laguerre of length n.

Theorem 2.3. The map Γ is a bijection between Sn and Hn.

Proof. See [1, Theorem 2.6].

We now describe the connection between the map Γ defined above and a bijection Ψ
between the set In of involutions of length n and labeled Motzkin paths studied in [2].
In order to do this, we exploit a result proved by Claesson [3], namely, the fact that the
classical Foata map induces a bijection between the set of involutions of length n and
the set of permutations of the same length that avoid two vincular patterns.

Let π ∈ Sn and τ ∈ Sm. We say that π = π1 . . . πn contains the pattern τ = τ1 . . . τm
in the classical sense if there exists an index subsequence 1 ≤ i1 < i2 < . . . < im ≤ n
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such that the words πi1πi2 . . . πim and τ1τ2 . . . τm are order isomorphic. Otherwise, π
avoids the pattern τ.

A vincular pattern is a permutation τ in Sm some of whose consecutive letters may
be underlined. If τ contains τiτi+1 . . . τj as a subword then the letters corresponding to
τi, τi+1, . . . , τj in an occurrence of τ in a permutation σ must be adjacent, whereas there
is no adjacency condition for non underlined consecutive letters (see [9, p. 10]).

For example, the permutation 431256 contains two occurrences of the vincular pattern
213, namely, 425 and 325. Note that a vincular pattern without underlined letters
is a pattern in the classical sense. On the other hand, the occurrences of a vincular
pattern all of whose letters are underlined must be formed by adjacent letters. The set
of permutations of length n that avoid the vincular pattern τ is denoted by Sn(τ).

We now recall Claesson’s result. Let π be an involution. Write π in standard cycle
notation, i.e., so that each cycle is written with its least element first and the cycles are
written in decreasing order of their least element. Define F (π) to be the permutation
obtained from π by erasing the parentheses separating the cycles. As an example consider
π = 47318625 ∈ I8. The cycle notation for π is (6)(5, 8)(3)(2, 7)(1, 4) and F (π) =
65832714.

In [3] Claesson proved that the map F is a bijection between In and Sn(132, 123).
It is easily seen that this last set coincides with Sn(132, 123) (see [6]). On the other
hand, in [2] the authors define a bijection Φ between the set In and the set of labelled
Motzkin paths of length n, namely, Motzkin paths whose down steps are labelled with
an integer that does not exceed their height, while the other steps are unlabelled. The
set of labelled Motzkin paths of length n will be denoted by Ln. Of course Ln ⊂ Hn.

In the present paper we need a bijection Ψ that is a slightly modified version of the
bijection Φ. The map Ψ can be described as follows. Let π ∈ In.

For every i = 1, . . . , n:

• if i is a fixed point for π , draw a horizontal step;

• if i is the first element in a 2-cycle, draw an up step;

• if i is the second element in a 2-cycle (j, i), draw a down step. Label this step with
h, where h is the number of cycles (x, y) of π such that j < x < i < y .

For example, consider the involution π = 65382174 whose standard cycle notation is
(7)(48)(3)(25)(16). Then

Ψ(π) =

1

1

0
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Our next aim is to prove the following result.

Theorem 2.4. The image under Γ of the set Sn(132, 123) is Ln, and the following
diagram

In Ln

Sn(132, 123)

F

Ψ

Γ

commutes.

First of all, we characterize the image of the map Γ, when restricted to the set
Sn(132, 123).

Proposition 2.5. Let π ∈ Sn and let Γ(π) = (d, l). Then π ∈ Sn(132, 123) if and only if

• the path d = d1 . . . dn has no horizontal steps of color c2, and

• for every index i, li > 0 implies that di is a down step.

Proof. Firstly note that π avoids the pattern 123 if and only if the ascending runs of π
have length at most two. In this case the set of boarders of π is empty and in d there
are no horizontal steps of color c2.

Now let π ∈ Sn(132, 123). Suppose that there exists an integer i such that li > 0 and
di is either an up step or a horizontal step. By definition of the sequence l, this implies
that the permutation π contains three elements πs, πs+1, πr, with πr = i, such that

• r > s+ 1,

• πs and πs+1 are the head and the tail of an ascending run,

• πs < πr < πs+1,

• πr is either a head or a head-tail.

If πr is a head, then πr+1 is the corresponding tail and πs, πr, πr+1 form an occurrence of
123. If πr is a head-tail, πr−1 > πr and πs, πr−1, πr form an occurrence of 132. But this is
impossible since, as noted above, Sn(132, 123) = Sn(132, 123). On the other hand, if the
permutation π contains an occurrence of the pattern 132 corresponding to the elements
πj, πj+1, πj+2, then πj < πj+2 < πj+1, πj+2 is a head or a head-tail, and πj, πj+1 are the
head and the tail of an ascending run. Hence lπj+2

> 0.

Theorem 2.4 now follows immediately from the description of the maps F, Γ and Ψ
and from the previous Proposition.
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As an example consider the involution π = (6)(48)(37)(2)(15) ∈ I8. Then the corre-
sponding permutation in S8(132, 123) is F (π) = 64837215, and

Ψ(π) =

1

2

0
= Γ(F (π)).

The subset of Ln of labelled Motzkin paths of length n all of whose labels are zero is
obviously isomorphic to the set Mn of Motzkin paths. It is possible to characterize the
preimage of this set under the maps Γ and Ψ in terms of pattern avoiding permutations.
In fact, in [1] the following result is proved.

Proposition 2.6. Let π ∈ Sn and let Γ(π) = (d, l). Then

π ∈ Sn(132) if and only if l = (0, . . . , 0).

As a consequence Γ induces a bijection between Sn(132, 123) and Mn.
Moreover, in [2, Theorem 9] it has been shown that the map Ψ induces a bijection

between the set of involutions avoiding the pattern 3412 and the set of labelled Motzkin
paths of length n all of whose labels are zero. These results imply that the following
diagram

In(3412) Mn

Sn(132, 123)

F

Ψ

Γ

commutes.
In the following sections we show how some statistics over the sets Sn(132, 123) and

In(3412) can be translated into statistics over Motzkin paths.

3 Inversions and descents over In(3412)

Let d be a Motzkin path. A tunnel in d is a horizontal segment between two lattice
points of d lying weakly below d and containing exactly two lattice points of d. Note that
each horizontal step of d is a tunnel. We will call the horizontal steps trivial tunnels.

We recall that each non-empty Motzkin path m can be decomposed either as Hm′,
where m′ is an arbitrary Motzkin path, or as Um′Dm′′, where m′ and m′′ are arbitrary
Motzkin paths. This decomposition is called first return decomposition. The definition
of the map Ψ implies that each 2-cycle of an involution π ∈ In(3412) corresponds to a
non-trivial tunnel of Ψ(π) and vice-versa.
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Let π = π1 . . . πn ∈ Sn. An inversion of π is a pair (i, j) with i < j such that πi > πj.
In this case we will say that the symbol πi is in inversion with the symbol πj. The
number of inversions of the permutation π will be denoted by inv(π).

The permutation π has a descent at position i if πi > πi+1. Otherwise, π has an
ascent at position i.The number of descents of π will be denoted by des(π).

Now we want to study the joint distribution of the statistics inv, des, fix over the set

I(3412) :=
⋃
n≥0

In(3412),

where fix(π) denotes the number of fixed points of π, namely, determine an expression
for the generating function

F (x, y, z, w) =
∑
n≥0

∑
π∈In(3412)

xnyinv(π)zdes(π)wfix(π). (1)

First of all we prove a preliminary result.

Lemma 3.1. Let π ∈ In(3412). Then

inv(π) = 2A− t,

where A is the area between the path Ψ(π) and the x-axis and t is the number of non-
trivial tunnels of Ψ(π).

Proof. Write π as π1π2 . . . πn. Let i be the least index such that πi > i. Then (i, πi) is a
cycle of π. Hence the symbol πi is in inversion with all the symbols πi+1, πi+2 . . . πi+k = i,
where k = πi − i. In fact, suppose by contradiction that there exist an index r, with
1 ≤ r ≤ k − 1, such that πi+r > πi, then πi, πi+r, i, r. would be an occurrence of the
pattern 3412.

For the same reason the symbol i is in inversion with the k−1 elements πi+1, . . . , πi+k−1.
Here we excluded the inversion (i, πi).

On the other hand, let T be the tunnel in the Motzkin path Ψ(π) corresponding to
the cycle (i, πi). The area of the trapezoid with height one and T as a basis is precisely
k = πi − i.

Repeating the preceding argument on the involution obtained from π by deleting the
symbols i and πi we get the assertion.

Lemma 3.2. Let π ∈ In(3412). The descents of π correspond bijectively to the occur-
rences in Ψ(π) of the following subwords: UU, DD, UH, HD and UD.

Proof. Suppose that one of these subwords occurs in the Motzkin path Ψ(π). Let v be
this subword and i be the position of the first step of v. If v = UU, then both πi and πi+1

are the greater elements in their respective 2-cycles and hence πi > πi+1. If v = UH, then
πi is the greater element in its 2-cycle while πi+1 is a fixed point and hence πi > πi+1.
The other cases can be treated in a similar way.
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We recall that a weak valley of a Motzkin path is an occurrence of one of the following
consecutive patterns:

HH, HU, DH, DU.

The preceding result yields immediately:

Corollary 3.3. The distribution of ascents over n-involutions avoiding the pattern 3412
is the same as the distribution of weak valleys over Motzkin paths of length n.

This implies that the generating function G(x, z) of Motzkin paths according to
the length (x) and the number of weak valleys (z) can be deduced from the function
F (x, y, z, w) appearing in Formula (1) as follows:

G(x, z) = 1 +
F (xz, 1, 1/z, 1)− 1

z
.

Similarly, 1 + F (xz,1,1/z,0)−1
z

gives the generating function of Dyck paths according to the
length and the number of valleys, which is essentially given by Narayana polynomials.

The above lemmas imply that the generating function F satisfies the following equa-
tion obtained by the first return decomposition for Motzkin paths.

F (x, y, z, w) = 1 + xwF (x, y, z, w) + x2yzF (x, y, z, w)

+ x2yz2(F (xy2, y, z, w)− 1) · F (x, y, z, w).
(2)

In fact, the terms in the right hand side of the previous equation correspond to
Motzkin paths either empty or of the form Hm, UDm, Um′Dm, with m′ non-empty,
respectively.

From equation (2) we get easily the following continued fraction expression for F .

Theorem 3.4.

F (x, y, z, w) =
1

1− xw − x2yz + x2yz2 − x2yz2F (xy2, y, z, w)
=

=
1

1 + b0 −
c0

1 + b1 −
c1

1 + b2 −
c2

1 + . . .

where bi = −xy2iw − x2y2i+1z + x2y2i+1z2 and ci = x2y2i+1z2, i ≥ 0.
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4 The distribution of consecutive patterns in In(3412)

Lemma 3.2 allows us to translate every three-letter subword of a Motzkin path into
an occurrence of a consecutive pattern of the corresponding involution in In(3412).

Theorem 4.1. Let π ∈ In(3412) and let Ψ(π) be the corresponding Motzkin path. Then
a subword of Ψ(π) of length three corresponds to an occurrence of a consecutive pattern
in π according to the following table.

→ 123 → 123 → 231

→ 132 → 132 → 132

→ 213 → 213 → 321

→ 312 → 312 → 321

→ 321 → 321 → 321

→ 213 → 213 → 321

→ 123 → 123 → 231

→ 132 → 132 → 132

→ 213 → 213 → 321

Now we enumerate the involutions in In(3412) according to the occurrences of a given
consecutive pattern of length three and the number of fixed points.

First of all, observe that an involution π ∈ In(3412) has k occurrences of 213 (312)
and f fixed points if and only if RC(π) has k occurrences of 132 (231, respectively) and
f fixed points, where RC(π) is the reverse-complement of the permutation π, namely,
RC(π = π1 . . . πn) = n+ 1− πn . . . n+ 1− π1.

Hence we can restrict our attention to the consecutive patterns 123, 321, 132 and
231.

10



4.1 The pattern 123

Let an,k,f be the number of involutions π ∈ In(3412) with k occurrences of 123 and
with f fixed points.

Our goal is to find a formula for the generating function

F =
∑

an,k,fx
ntkzf .

To this aim we use a variation of the Goulden-Jackson cluster method (see [8, p. 128]).
In the Appendix we give a detailed description of the notations and the results that will
be used.

By Theorem 4.1, the pattern 123 in π corresponds to occurrences in Ψ(π) of subwords
in the set S = {H3, H2U,DH2, DHU}. These subwords give rise to the clusters of type
Hj with j ≥ 3, HjU with j ≥ 2, DHj with j ≥ 2, and DHjU with j ≥ 1.

Note that

• the cluster Hj reduces to a horizontal step and has depth 0,

• the cluster HjU reduces to an up step and has depth 0,

• the cluster DHj reduces to a down step and has depth 0,

• the cluster DHjU reduces to a horizontal step and has depth −1.

To find F we will use Theorem 7.1 of the Appendix.
First of all, we determine the generating functions AH(x, t, z), A′H(x, t, z), AD(x, t, z),

A′D(x, t, z), AU(x, t, z) and A′U(x, t, z).
Consider the cluster Hj, j ≥ 5. This can be obtained by either juxtaposing a hori-

zontal step to the right of Hj−1 and adding an occurrence of the subword H3 that covers
the last two letters of Hj−1

Hj = ︸ ︷︷ ︸
Hj−1

HH . . .

H3︷ ︸︸ ︷
HHH

or juxtaposing two horizontal steps to the right of Hj−2 and adding an occurrence of the
subword H3 that covers the last letter of Hj−2

Hj = ︸ ︷︷ ︸
Hj−2

HH . . .

H3︷ ︸︸ ︷
HHH .

Note that in these two cases the number of occurrences of H3 increases by one, the
number of horizontal steps and the length increase by one in the first case and by two
in the second case. As a consequence, the generating function for clusters of this kind is

x3z3t

1− xzt− x2z2t
,

11



where the variables x, t, and z represent length, number of occurrences of the subwords
in S and number of H, respectively.

Similarly, the cluster DHj, j ≥ 4, can be obtained in the two ways depicted below

DHj = ︸ ︷︷ ︸
DHj−1

DH . . .

H3︷ ︸︸ ︷
HHH

or

DHj = ︸ ︷︷ ︸
DHj−2

DH . . .

H3︷ ︸︸ ︷
HHH

hence, the corresponding generating function is

x3z2t

1− xzt− x2z2t
. (3)

By similar arguments the generating function for the cluster HjU is

x3z2t

1− xzt− x2z2t
.

Lastly, the cluster DHjU, j ≥ 3 can be obtained by either juxtaposing the letter U
to the right of DHj and adding an occurrence of H2U that covers the last two letters of
DHj−1, or juxtaposing the letters HU to the right of DHj−1 and adding an occurrence of
H2U that covers the last letter of DHj−1. By formula (3) we get the following expression
for the generating function of the cluster of the form DHjU, j ≥ 2

x3z2t

1− xzt− x2z2t
· (xt+ x2tz)

The cluster DHU must be considered separately. Its contribution is x3tz.
As a consequence we have

AH(x, t, k) =
x3z2t(z + xt+ x2tz)

1− xzt− x2z2t
+ x3tz,

A′H(x, t, z) =
x3z3t

1− xzt− x2z2t

and

AD(x, t, z) = A′D(x, t, z) = AU(x, t, z) = A′U(x, t, z) =
x3z2t

1− xzt− x2z2t
.

Now we are in position to apply Theorem 7.1, hence finding the generating function
F123 evaluated in x, t+1, z. After the substitution t← t−1 we get the following expression
for F123(x, t, z).

12



Theorem 4.2.

F123(x, t, z) =
2A2

2(1−B)A2 − A2 + A2C + A2
√

(1− C)2 − 4A2

where

A = x+
x3z2(t− 1)

1− xz(t− 1)− x2z2(t− 1)
,

B = xz +
x3z3(t− 1)

1− xz(t− 1)− x2z2(t− 1)

and

C = xz +
x3z2(t− 1)(z + x(t− 1) + x2(t− 1)z)

1− xz(t− 1)− x2z2(t− 1)
+ x3(t− 1)z.

4.2 The pattern 132

Now we consider the pattern 132. By Theorem 4.1, an occurrence of this pattern in
π ∈ In(3412) corresponds to six possible subwords in Ψ(π), namely, DUY and HUY ′,
where Y and Y ′ can be any letters in {U,D,H}. The occurrences of such words corre-
spond to the occurrences of DU and HU .

Also in this case we use the cluster method. Here we have S = {HU,DU}. Note that
the only possible clusters formed by these two words are HU and DU themselves. The
first of these two clusters reduces to an up step and has depth 0, the second one reduces
to a horizontal step and has depth −1. Hence we have

AH(x, t, k) = x2t,

AU(x, t, z) = A′U(x, t, z) = x2tz

and
AD(x, t, z) = A′D(x, t, z) = A′H(x, t, z) = 0.

Theorem 7.1 allows us to determine F132(x, t+ 1, z). After the substitution t← t− 1,
we get

Theorem 4.3.

F132(x, t, z) =
2

1− xz + x2t− x2 +
√

(1− xz − x2(t− 1))2 − 4x(x+ x2z(t− 1))
.

Notice that this generating function in the case z = 1 encodes the distribution of
weakly descending subpaths over the set of Motzkin paths (see sequence A114690 in
[11]), where a weakly descending subpath is a maximal subword consisting of H and
D steps. In fact, every occurrence either of HU or DU breaks a weakly descending
subpath. Hence, in every Motzkin path the number of weakly descending subpaths
equals the number of occurrences of these two patterns increased by one.

13



4.3 The pattern 321

Theorem 4.1 shows that the occurrences of the pattern 321 in π correspond to the
occurrences of UUX, X ′DD and UHD in Ψ(π), where X and X ′ can be arbitrary letters
in {U,H,D}. Hence the occurrences of this pattern corresponds to the occurrences of
UU,DD and UHD in Ψ(π).

Let F321(x, t, z) be the corresponding generating function.
Denote by Xw and Yw be the first and last step of a Motzkin path w. We define

• A(x, t, z) to be the generating function of the set of Motzkin paths such that
(Xw, Yw) = (U,D),

• B(x, t, z) to be the generating function of the set of Motzkin paths such that
(Xw, Yw) is either (U,H) or (H,D),

• C(x, t, z) to be the generating function of the set of Motzkin paths such that
(Xw, Yw) = (H,H).

Observe that the first return decomposition implies that

F321 = 1 + xzF321 + x2(1 + xzt+Bt+ At2 + C)F321. (4)

A simple inclusion-exclusion argument yields

A = F321 − 2xzF321 + (xz)2F321 + xz − 1.

Moreover it is easily seen that

B = 2A
xz

1− xz
= 2(F321− 2xzF321 + (xz)2F321 +xz− 1)

xz

1− xz
= 2xz(F321−xzF321− 1)

and
C = (xz)2F321.

Substituting in (4), we get

Theorem 4.4. F321 satisfies the following functional equation

aF 2
321 + bF321 + c = 0,

where
a = 2x3zt− 2x4z2t+ x2t2 − 2x3zt2 + x4z2t2 + x4z2,

b = −1 + xz − x3zt− x2t2 + x2 + x3zt2, c = 1.

14



4.4 The pattern 312

This pattern correspond to occurrences of UHH and UHU in Ψ(π). Let F (x, t, z) be
the corresponding generating function.

Set
G(x, t1, t2, z) =

∑
n

∑
d∈Mn

xnt
o(UH)
1 t

o(UHD)
2 zo(H),

where o(UH), o(UHD) and o(H) denote the number of occurrences of the subwords
UH,UHD and H in d.

By the first return decomposition we get the following recurrence for G.

G = 1 + xzG+ x2G+ x3t1t2zG+ x3zt1G(G− 1) + x2G(G− xzG− 1).

In fact, a Motzkin path can either

• be empty, or

• start by UD, UHD, or

• be of the form UHmDd or Um′Dd, where m is a non empty Motzkin path, m′ is
a non empty path starting with U , and d an arbitrary path.

Hence we get a functional equation satisfied by F312(x, t, z) substituting in the previous
equation t1 ← t and t2 ← 1

t
:

F312 = 1 + xzF312 + x2F312 + x3zF312 + x3ztF312(F312 − 1) + x2F312(F312 − xzF312 − 1),

namely,

Theorem 4.5. The generating function F312 satisfies the following functional equation

aF 2
312 + bF312 + c = 0,

where
a = x3zt+ x2 − x3z,

b = xz + x2 + x3z − x3zt− x2 − 1, c = 1.

5 Inversions and descents over Sn(132, 123)

We now turn to the case of permutations in Sn(132, 123).
First of all we recall that, given a permutation π ∈ Sn(132, 123), if π = w1 . . . wk is

the decomposition of π into ascending runs, then the w′is have length at most 2 and the
sequence of the heads of π is a decreasing sequence. Moreover, the inverse of the map
Γ has an easy description in terms of tunnels of the Motzkin path, as in the case of the
map Ψ.
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Proposition 5.1. Let d be a Motzkin path and π the corresponding permutation in
Sn(132, 123). Let t1t2 . . . tk be the sequence of tunnels of d, listed in decreasing order of
the x-coordinate of their leftmost point. The decomposition of π into ascending runs is
π = w1w2 . . . wk with wi = xix

′
i, where xi is the x-coordinate of the first point of ti,

increased by one, and x′i is the x-coordinate of the last point of ti.

As an example consider the following Motzkin path

d =

The sequence of tunnels of d is given by 9-11, 6-7, 5-8, 2-4, 1-5, 0-9, where each tunnel
is represented by the x-coordinates of its first and last point. Hence the corresponding
permutation is π = 10 11 7 6 8 3 4 2 5 1 9.

Recall that a coinversion in a permutation π is a pair (i, j) such that i < j and
πi < πj. The number of coinversions of a permutation π will be denoted by coinv(π). Of
course a permutation π has k coinversions if and only if it has

(
n
2

)
− k inversions.

Now we are interested in the generating function for permutations in S(132, 123) :=
∪n≥0Sn(132, 123) enumerated by number of coinversions and number of descents:

F (x, y, z) =
∑

π∈S(132,123)

xnycoinv(π)zdes(π).

We have the following.

Proposition 5.2. Let π ∈ Sn(132, 123) and let Γ(π) be the corresponding Motzkin path.
Then

• coinv(π) is the area of Γ(π) and

• des(π) is equal to the number of tunnels of Γ(π) minus one.

Proof. Let (i, j) be a coinversion of the permutation π. Since the sequence of heads of
π is decreasing, πj is a tail, hence it corresponds to a down step in Γ(π). Furthermore,
given a down step D̄ in Γ(π) at position k, consider the up step Ū that forms a tunnel
with D̄, and denote by h the position of Ū . Then, by the construction of the map Γ, the
coinversions of π having k as second element are precisely (x, k) where h ≤ x ≤ k − 1.
The number of such elements equals the area of the trapezoid determined by the tunnel
between Ū and D̄.

The second statement follows immediately form the fact that every descent in π
corresponds to a non initial head or head-tail.
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The above Proposition and the first return decomposition for Motzkin paths yield
the following recurrence equation for the generating function F.

F (x, y, z) = 1 + x+ zx(F (x, y, z)− 1) + yz2x2(F (x, y, xz)− 1)(F (x, y, z)− 1)

+ yzx2(F (x, y, z)− 1) + yzx2(F (x, y, xz)− 1) + yx2.
(5)

Notice that F (x, 1, z) is the generating function of sequence A107131 in [11], while
F (x, y, 1) is the generating function of sequence A129181 in [11].

6 The distribution of consecutive patterns in Sn(132, 123)

Now we enumerate permutations π ∈ Sn(132, 123) by the number of occurrences of a
consecutive pattern of length three. Needless to say, we consider only the patterns 213,
231, 312 and 321.

6.1 The pattern 213

Let F213(x, t) be the generating function of permutations π ∈ Sn(132, 123) enumer-
ated by length and number of occurrences of 213.

Note that an occurrence of this pattern in a permutation π corresponds to an occur-
rence in Γ(π) of a sequence of the form UαD, where α is any non-empty Motzkin path.
We call such a sequence a long tunnel.

In fact, an occurrence of 213 in π is a sequence of consecutive letters bac, with
a < b < c. Here, ac is an ascending run wi+1, while b is either the tail or the head-tail of
the preceding ascending run wi.

By Proposition 5.1, wi and wi+1 correspond to two tunnels ti, ti+1 such that ti lies
above ti+1. Hence, the occurrence bac of the pattern 213 corresponds to the long tunnel
ti+1.

Let F̂ (x, t, y) be the generating function for Motzkin paths enumerated by length (x),
occurrences of long tunnels (t) and peaks (y), i.e., occurrences of the sequence UD.

Notice that each non-empty Motzkin path can be either a horizontal step followed
by any Motzkin path, or a peak followed by any Motzkin path, or a long tunnel followed
by any Motzkin path. Hence, the generating function F̂ (x, t, y) satisfies

F̂ (x, t, y) = 1 + xF̂ (x, t, y) + x2yF̂ (x, t, y) + x2t(F̂ (x, t, y)− 1)F̂ (x, t, y).

With the substitution y ← 1 we get

Theorem 6.1. The generating function F213(x, t) satisfies the following equation:

aF 2
213 + bF213 + 1 = 0,

where
a = x2t, and b = −1 + x+ x2 − x2t.
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6.2 The pattern 231

By Proposition 5.1 an occurrence in π of the pattern 231 corresponds to an occurrence
in Γ(π) of an up step in a non-initial position. Let F̂ (x, t, y) be the generating function
of Motzkin paths enumerated by length (x), number of non-initial up steps (t), number
of initial up steps (y).

We have the following recurrence for F̂ (x, t, y) :

F̂ (x, t, y) = 1 + xF̂ (x, t, t) + x2yF̂ (x, t, t). (6)

In fact, every non-empty Motzkin d path can be decomposed either as Hm, or
Um′Dm′′, where m, m′, and m′′ are arbitrary Motzkin paths. Note that each up step in
m, m′, or m′′ cannot be at the initial position of d.

Substituting y ← t in (6) we find an expression for F̂ (x, t, t) :

F̂ (x, t, t) =
1− x−

√
1 + x2 − 2x− 4x2t

2x2t
.

Substituting this expression in (6) and then replacing y ← 1 we get an expression for
the generating function for permutations π ∈ Sn(132, 123) enumerated by length (x) and
number of occurrences of 231 (t):

F231(x, t) = F̂ (x, t, 1) = 1 + F̂ (x, t, t)(x+ x2F̂ (x, t, t)).

6.3 The pattern 312

An occurrence of the pattern 312 corresponds to an occurrence in Γ(π) of a peak
p = UD such that Γ(π) = αpβ where β 6= Dk, k ≥ 0. We call such peak a non-final peak.

Let F̂ (x, t, y) be the generating function for Motzkin paths enumerated by length (x),
number of non-final peaks (t), number of final peaks (y).

The first return decomposition implies that

F̂ (x, t, y) =

= 1 + xF̂ (x, t, y) + x2y + x2(F̂ (x, t, y)− 1)(F̂ (x, t, t)− 1)

+ x2(F̂ (x, t, y)− 1) + x2t(F̂ (x, y, t)− 1).

Using the same arguments of the previous Subsection we get the following expression
for the generating function F̂ (x, t, 1) :

F312(x, t) = F̂ (x, t, 1) =
1− x2F̂ (x, t, t) + x2 − x2t

1− x− x2F̂ (x, t, t)− x2t
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where

F̂ (x, t, t) =
−b−

√
b2 − 4a

2a

with
a = x2, and b = −1 + x− x2 + x2t.

6.4 The pattern 321

An occurrence of the pattern 321 corresponds to an occurrence in Γ(π) of a horizontal
step that is neither in the first nor in last position nor followed only by down steps. We
call such a horizontal step a distinguished horizontal step.

Let F̂ (x, t, y, z) be the generating function for Motzkin paths enumerated by length
(x), number of distinguished horizontal steps (t), number of horizontal steps in the first
position (y), number of horizontal steps followed only by a (possibly empty) sequence of
down steps (z).

We have the following recurrence for F̂ (x, t, y, z) :

F̂ (x, t, y, z) =

= 1 + xy(F̂ (x, t, t, z)− 1) + xz + x2F̂ (x, t, t, z)

+ x2F̂ (x, t, t, t)(F̂ (x, t, t, z)− 1)

As a consequence

F321(x, t) = F̂ (x, t, 1, 1) =
1− xt− x2G+ x− x2t+ x2 − x3t+ x3

−x2 + 1− xt− x2G

where

G =
−b−

√
b2 − 4a

2a

with
a = x2, and b = −1 + xt.

7 Appendix

In this appendix we describe the method that we used in Section 4 to count Motzkin
paths by occurrences of a set of given subpatterns. This method is a slight modification
of the Goulden-Jackson cluster method used to enumerate words over an arbitrary finite
alphabet by occurrences of given subwords ([8, p. 128]). In this context the Goulden-
Jackson cluster method does not apply directly, since the words we are considering
correspond to Motzkin paths, hence, they have particular constraints. Our method is
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inspired by those presented in [13], where the author uses similar ideas to count Dyck
words by occurrences of given subwords.

Let A be the set of words in the alphabet {U,D,H}, and let S ⊆ A.
Given w ∈ A, let |w| be the length of w, |w|L its number of steps of type L ∈ {U,D,H}

and |w|S the total number of occurrences in w of subwords from S.
A marked subword of a word w = a1 . . . an ∈ A with respect to the set S is a pair

(i, v) where i is a positive integer, v = aiai+1 . . . ai+|v|−1 and v ∈ S. A marked word is a
word w ∈ A with a (possibly empty) set of marked subwords of w. A cluster with respect
to S is a marked word that is not the concatenation of two nonempty marked words.

As an example, consider S = {UUU,DHU}. The marked subwords of the word w =
UUUHUDDUUUDDDDHUHDD are (1, UUU), (8, UUU) and (14, DHU). Hence

(w, {(1, UUU), (14, DHU)})

is an example of a marked word.
Two clusters for S are the marked words

(DHUUUUU, {(1, DHU), (3, UUU), (4, UUU), (5, UUU)})

D H U U U U U

and
(DHUUUUU, {(1, DHU), (3, UUU), (5, UUU)})

D H U U U U U

whereas
(DHUUUUU, {(1, DHU), (4, UUU), (5, UUU)})

D H U U U U U

is not a cluster, because it can be seen as the juxtaposition of the marked words
(DHU, {(1, DHU)}) and (UUUU, {(1, UUU), (2, UUU)}).

Note that, if w′ ∈ S, (w′, {(1, w′)}) is trivially a cluster.
We say that a word w ∈ A reduces to an up step (to a down step, to a horizontal

step)if |w|U − |w|D = 1 (−1, 0, respectively). If one of these three cases occur we say
that w reduces to a single step. A cluster reduces to a single step if the underlying word
does.

Now we define the depth of a word w ∈ A that reduces to a single step. Draw the
word w in the lattice plane starting at the origin and assigning to the letters U,D,H
the usual steps. Let k be the minimal y-coordinate reached by the resulting path. We
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say that w has depth k if it reduces to an up or horizontal step and k+ 1 if it reduces to
a down step. For example, the word DDU has depth −1, the word DU has depth −1,
and the word UDU has depth 0.

Recall that the height of a step di of a Motzkin path is

{
the y-coordinate of the starting point of the step di if di is either U or H,

the y-coordinate of the ending point of the step di otherwise.

Observe that if a Motzkin path can be decomposed as Um′Dm′′ then all the steps in m′

have height at least 1.

Theorem 7.1. Let S = {w1, . . . , wk} be a subset of A such that no words wi are proper
subwords of other words in S. Suppose that each cluster formed by these words reduces to
a single step and has depth greater than or equal to −1. Let AH(x, t, z) be the generating
function of clusters that reduce to a horizontal step enumerated by length (x), occurrences
of w1, . . . , wk as subwords (t), and horizontal steps (z). Denote by A′H(x, t, z) the gen-
erating function of clusters that reduce to a horizontal step with depth 0. The generating
functions AD(x, t, z), A′D(x, t, z), and AU(x, t, z), A′U(x, t, z) are defined in the same way
for clusters that reduce to a down step and an up step, respectively. Then the generat-
ing function F (x, t, z) for Motzkin paths enumerated by length, occurrences of the words
w1, . . . , wk and number of horizontal steps satisfies

F (x, t+ 1, z) =
2ys

2(1− l′)ys− y′s′ + y′s′l + y′s′
√

(1− l)2 − 4ys
, (7)

where

• l = xz + AH(x, t, z),

• l′ = xz + A′H(x, t, z),

• y = x+ AU(x, t, z),

• y′ = x+ A′U(x, t, z),

• s = x+ AD(x, t, z),

• s′ = x+ A′D(x, t, z).

Proof.

F (x, t+ 1, z) =
∑
w∈M

x|w|z|w|H (t+ 1)|w|S =

∑
w∈M

x|w|z|w|H
∑
k≥0

(
|w|S
k

)
tk =
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∑
w∈M

x|w|z|w|H
∑
T⊆Sw

t|T |,

where Sw is the set of words in S contained in w as subwords.
Hence F (x, t + 1, z) counts Motzkin words weighted by the number of marked sub-

words contained therein, by length and number of horizontal steps.
We want to show that the right-hand side of (7) counts the same objects.
Let G(y, s, l, y′, s′, l′) be the generating function for Motzkin paths enumerated by

occurrences of U,D and H at non-zero height and by occurrences of U,D and H at zero
height. Hence, the formal power series G1(y, s, l) := G(y, s, l, y, s, l) is the generating
function of Motzkin paths enumerated by occurrences of U,D and H.

By the first return decomposition we get immediately

G1(y, s, l) = 1 + lG1(y, s, l) + ysG2
1(y, s, l)

and

G(y, s, l, y′, s′, l′) = 1 + l′G(y, s, z, y′, s′, l′) + y′s′G(y, s, l, y′, s′, l′) ·G1(y, s, l).

As a consequence

G1(y, s, l) =
1− l −

√
(1− l)2 − 4ys

2ys

and

G(y, s, l, y′, s′, l′) =
1

1− l′ − y′s′G1(y, s, l)

=
2ys

2(1− l′)ys− y′s′ + y′s′l + y′s′
√

(1− l)2 − 4ys
.

Let Ĝ(x, t, z) be the generating function obtained from G(y, s, l, y′, s′, l′) by replacing

• the variable l by xz + AH(x, t, z)

• the variable l′ by xz + A′H(x, t, z)

• the variable y by x+ AU(x, t, z)

• the variable y′ by x+ A′U(x, t, z)

• the variable s by x+ AD(x, t, z)

• the variable s′ by x+ A′D(x, t, z).
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Note that Ĝ(x, t, z) is precisely the right-hand side of Equation (7).
Let w be a Motzkin word. Choose in w some clusters c1, . . . , ck. By hypothesis these

clusters have depth −1 or 0.
If in w we replace each cluster ci with the step that ci reduces to, we get another

Motzkin word.
Conversely, given a Motzkin word v we can choose in v some up, down and horizontal

steps, and replace them by a cluster that reduces to an up, down and horizontal step,
respectively, with the constraint that a step of height 0 can be only replaced by a cluster
of depth 0.

As a consequence the generating function Ĝ(x, t, z) counts marked Motzkin words
weighted by the number of marked subwords contained therein.
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bijection de Foata-Zeilberger. Adv. in Appl. Math., 15(3):262–304, 1994.

[6] S. Elizalde and M. Noy. Consecutive patterns in permutations. Adv. in Appl. Math.,
30(1-2):110–125, 2003. Formal power series and algebraic combinatorics (Scottsdale,
AZ, 2001).

23
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