
ar
X

iv
:1

90
2.

02
70

5v
1

 [
m

at
h.

C
O

]
 7

 F
eb

 2
01

9

Combinatorial specifications for juxtapositions of permutation

classes

Robert Brignall∗

School of Mathematics and Statistics

The Open University

Milton Keynes, MK7 6AA

United Kingdom

Jakub Sliačan∗

Matematik och matematisk statistik

Umeå universitet

901 87 Umeå

Sweden

February 8, 2019

Abstract

We show that, given a suitable combinatorial specification for a permutation class C , one can
obtain a specification for the juxtaposition (on either side) of C with Av(21) or Av(12), and that if

the enumeration for C is given by a rational or algebraic generating function, so is the enumeration
for the juxtaposition. Furthermore this process can be iterated, thereby providing an effective

method to enumerate any ‘skinny’ k × 1 grid class in which at most one cell is non-monotone,

with a guarantee on the nature of the enumeration given the nature of the enumeration of the
non-monotone cell.

1 Introduction

A phenomenon observed both in the practical enumeration of specific permutation classes and in

the study of growth rates is that in many classes, the entries of any permutation in the class can be

partitioned in such a way as the pattern formed by the entries in each part lies in some specified

proper subclass.

As well as very general compositions such as the merge of two classes (exemplified by the class

Av(321), being the merge of two increasing sequences), one more restrictive (but nonetheless ubiqui-

tous) instance of this phenomenon is the juxtaposition of two classes, first considered by Atkinson [4].

Formally, a permutation π = π(1) · · · π(n) of length n is the juxtaposition σ|τ of two (possibly empty)

permutations σ and τ if there exists an index i such that π(1) · · · π(i) is order isomorphic to σ, and

π(i + 1) · · · π(n) is order-isomorphic to τ. The juxtaposition of two classes C and D is then defined by

C | D = {π : π = σ|τ is a juxtaposition with σ ∈ C ∪ {ǫ}, τ ∈ D ∪ {ǫ}}.

In this paper, we consider the effect on combinatorial specifications of juxtapositions. The juxtapo-

sition of two permutations can be thought of as a special kind of merge, in which only the values

of the two permutations can be interleaved arbitrarily, and not the positions. However, our primary

∗Email addresses: rbrignall@gmail.com, jakub.sliacan@gmail.com.

1

http://arxiv.org/abs/1902.02705v1

motivation in studying juxtapositions is towards a generalisation in another direction, namely the

broader study of grid classes.

Our main result is as follows. Definitions are given in Section 2, but we note here that context-free

specifications give rise to algebraic generating functions, while regular ones give rational generating

functions.

Theorem 1.1. Let C be a permutation class that admits a bottom-to-top combinatorial specification S , and let

M ∈ {Av(21), Av(12)}.

(i) If S tracks the rightmost entry, then there exists a combinatorial specification for C|M that tracks the

rightmost entry.

(ii) Similarly, if S tracks the leftmost entry, then there exists one for M|C that tracks the leftmost entry.

(iii) If S tracks both the leftmost and the rightmost entries, then there exists specifications for C|M and M|C
that do.

(iv) If S is context-free (resp. regular), then the specifications for C|M and M|C are context-free (regular).

Since the resulting specifications satisfy the same conditions as the theorem requires of C, the process

can be iterated, thereby allowing us to generate combinatorial specifications for classes of the form

given in Figure 1.

M1 Mj−1 C Mj+1 Mk· · · · · ·

Figure 1: The k × 1 grid classes in Corollary 1.2, in which C possesses a rightmost- and leftmost-entry tracking
specification, and Mi ∈ {Av(21), Av(12)} for all i 6= j.

Corollary 1.2. If a permutation class C possesses a specification S that tracks the rightmost and leftmost

entries, then so does any k × 1 grid class of the form given in Figure 1. In particular, if C possesses an algebraic

or rational generating function, then so too does the k × 1 grid class.

Permutation classes to which our method applies include any class C that contains only finitely many

simple permutations, but it is not limited to this (for example, in Section 4 we present a suitable

specification for Av(321)). By its nature, there is a parallel between our bottom-to-top specifications

and the insertion encoding of Albert, Linton and Ruškuc [3], and we explore this further in Section 4.

Prior to this paper, the most general result for k × 1 grids concerns the case where the class C above

is itself also monotone. Such grid classes were called ‘skinny’ grid classes by Bevan [7, Chapter 3],

where he demonstrates an iterative technique for enumerating any k × 1 grid in which all the cells

are monotone. Indeed, the enumeration of such classes was also studied under the term ‘monotone

segment sets’ by Albert, Atkinson and Ruškuc [2], where it was shown that all such classes can

be encoded in a regular language, and hence possess rational generating functions. Meanwhile,

the process of juxtaposing some permutation class C with a monotone one plays a key role in the

classification of possible growth rates, since each such juxtaposition has a growth rate that is precisely

one more than that of C, see Vatter [15] and Bevan [8].

More recently, in [12] the current authors enumerated all juxtapositions of the form C|M where C
is a ‘Catalan’ class (i.e. one of the classes avoiding a single length 3 permutation, all of which are

2

enumerated by the Catalan numbers), and M is monotone. Our approach in this article is different

from the technique employed in that earlier paper, and is considerably more general.

Our method is fully constructive, and relies on operators that act on the equations of the combinato-

rial specification. Thus, it could be used for practical enumeration tasks, although each application

typically results in a sixfold-increase in the number of equations of the specification. Perhaps a more

significant consequence of our approach is the general theory, offering a guarantee of the nature of

combinatorial specifications and their related enumerations, which could be used to inform future

development of algorithms such as TileScope and its underpinning CombSpecSearcher, see Bean’s

PhD thesis [6].

The rest of this paper is organised as follows. Following some preliminary definitions and results in

Section 2, the proof of Theorem 1.1 is given in Section 3. In Sections 4 and 5, we present a number of

classes to which this method applies, and demonstrate the process by computing the specifications

and enumerations of three specific juxtaposition classes. Some concluding remarks are given in

Section 6.

2 Combinatorial specifications and permutation classes

We will begin by covering a few of the most pertinent basic definitions relating to the study of

permutations, but refer the reader to Bevan’s introduction [10] for others. We say that a permutation

σ is contained in another π, and write σ ≤ π if there is a subsequence of π that is order-isomorphic to

σ, i.e. a subsequence of the entries of π possesses the same relative ordering as the entries of σ. A

permutation class is a set of permutations that is closed under the permutation containment ordering,

that is, if C is a permutation class, π ∈ C and σ ≤ π, then we must have σ ∈ C.

If there is no subsequence of π order-isomorphic to σ, then we say that π avoids σ. A permutation

class can be defined by its unique minimal avoidance set, which we call the basis. We write C = Av(B)

to mean that C is the permutation class comprising all permutations that avoid every permutation in

B,

C = Av(B) = {π : π 6∈ β for all β ∈ B}.

We will also typically drop the set braces in this notation, thus writing, e.g., Av(321) instead of

Av({321}).

Combinatorial classes and specifications A combinatorial class is a pair (C, | · |) where C is a count-

able set of combinatorial objects, e.g. permutations, and | · | : C → Z+ is a size function such that the

number of objects of size n in C is finite. In this paper, we will primarily be concerned with com-

binatorial classes which are sets of permutations.1 However, we will periodically need to consider

related objects which will be in bijection with some set of permutations. Formally, we say that two

combinatorial classes are combinatorially isomorphic if their counting sequences are identical. This is

equivalent to the existence of a size-preserving bijection between the two classes.

1In an unfortunate clash of notation, note that a ‘combinatorial class of permutations’ need not be a ‘permutation class’

as it need not be downwards-closed.

3

D

C

C

Z

Figure 2: An example of a class which would correspond to the term ZCCD in a bottom-to-top combinatorial

specification.

Following Flajolet and Sedgewick [14], given a combinatorial class C, a combinatorial specification for

C is a system of equations










C = S1= f1(E ,Z ,S1, . . . ,Sr)
...

Sr= fr(E ,Z ,S1, . . . ,Sr)

where each fi is a constructor that only involves admissible operations acting on the classes S1, . . . , Sr,

the atom Z and the empty class E . The only admissible operations we will consider are the combina-

torial sum +, Cartesian product ×, and the sequence construction Seq(·). Crucially, note that these

admissible operations are not necessarily commutative, and indeed we will assume throughout that

the Cartesian product is noncommutative.

For convenience, throughout this paper we will write equations such as those in the above specifica-

tion as Si = fi(V), where V = {S1, . . . ,Sr} is the set of classes. Note that we have omitted the empty

class E and any atoms: the function fi may depend on these implicitly.

We are particularly interested in certain types of combinatorial specifications, in which the construc-

tors fi satisfy certain additional conditions. We highlight two in particular here:

Regular A combinatorial specification for C is regular if the constructors involve only atoms and the

three admissible operations +, × and Seq(·).
Context-free A combinatorial specification for C is context-free if the constructors use only the ad-

missible operations + and ×.

It is possible to see the family of context-free specifications as more general than regular specifications

by observing that the equation SZ = E + SZ ×Z is combinatorially isomorphic to SZ = Seq(Z), i.e.

the sequence construction. Indeed, in what follows we will periodically use the class SZ , together

with its context-free combinatorial specification, to correspond to Seq(Z).

The attraction of regular and context-free specifications is due to the following two results:

Proposition 2.1 (See, e.g. Proposition I.2 [14]). A combinatorial class that has a regular specification admits

a rational (ordinary) generating function.

Theorem 2.2 (Chomsky-Schutzenberger [13]). A combinatorial class C that has a context-free specification

admits an algebraic (ordinary) generating function C(z). In other words, there exists a (non-null) bivariate

polynomial P(z, y) ∈ C[z, y] such that P(z, C(z)) = 0.

4

Figure 3: The role of the rightmost point of the class C in fixing a greedy gridding for C|M. A gridline any

further left would produce a basis element of M involving this entry.

Bottom-to-top specifications We say that a combinatorial specification of a permutation class C is

bottom-to-top if in the specification, the left-to-right reading order of the atoms and classes in a term

corresponds to the order of the entries of the permutations in the class, reading from bottom to top.

(Recall that the Cartesian product is noncommutative.) For example, the term ‘ZCCD’ in a bottom-

to-top specification refers to permutations which, from bottom to top, can be seen as an atom Z ,

followed by two instances of elements from C, followed by an element from D. A typical example of

how this might arise is illustrated in Figure 2.

2.1 Greedy griddings and atoms

We will be working with operators that act on bottom-to-top combinatorial specifications of a class

C, and produce new combinatorial specifications for the class C|M or M|C (i.e. for C juxtaposed by a

monotone class M to its right or left). A challenge in this process is to ensure that each permutation

in such a juxtaposition has a unique representation in the resulting combinatorial specification. Our

solution will be to greedily add as many entries as possible into the monotone class M. For this

to work, the operators need to know whether the bottom-to-top reading of the specification has

encountered the rightmost (for C|M) or leftmost (for M|C) entry of C. See Figure 3 for an illustration.

To this end, we will use four different atoms: In addition to the standard atom Z to represent generic

entries of a permutation, we may use ZL to identify the left-most entry and ZR the right-most entry.

The fourth atom, ZLR, represents an entry that is simultaneously both leftmost and rightmost, and

thus can only occur to represent the singleton permutation.

Clearly, each term in a combinatorial specification can have at most one leftmost atom and one

rightmost atom, and it will be helpful to decorate the classes in the specification with L, R or LR to

indicate when these atoms are present or not present. For example, CL represents a class in which

the leftmost atom ZL is used exactly once in each permutation (but ZR is not used).

We say that a class C admits a combinatorial specification that tracks the rightmost entry if there

exists a bottom-to-top specification for CR. Note that in moving from combinatorial specifications

to generating functions, the four atoms all make the same contribution z. Thus Proposition 2.1 and

Theorem 2.2 remain valid, and we can still use the terms ‘regular’ and ‘context-free’ to refer to

5

specifications involving all the different atoms.

3 Operators and the proof of Theorem 1.1

To describe the process by which we transform a combinatorial specification for C into one for a jux-

taposition of C with a monotone class M, we begin by considering only the juxtaposition C|Av(21).

We will later describe symmetry operators that allow us to obtain the other possible juxtapositions.

We can think of the juxtaposition of C with Av(21) as the entries of C, with sequences of monotone

entries inserted vertically in-between (but horizontally to the right). Let x be any entry of a permuta-

tion π ∈ C. The gap associated with x is the vertical space immediately below x and above the entry

immediately below (if it exists) – see Figure 4. In addition, the top gap is the vertical space above the

highest point of C.

x

Figure 4: The shaded region on the RHS corresponds to the gap associated with x.

Lemma 3.1. Let C be a permutation class with a combinatorial specification that tracks the rightmost entry.

Then the juxtaposition C|Av(21) is combinatorially isomorphic to the class C with (possibly empty) sequences

of atoms inserted in the gaps, such that there is at least one nonempty gap no higher than the atom ZR of C.

Proof. First, by the comments made before the statement of the lemma it is clear that the juxtaposition

C|Av(21) can be thought of as sequences of monotone entries inserted into the gaps (including the

top gap) of a (possibly empty) permutation from C.

It remains to ensure that we consider each permutation in C|Av(21) at most once, and for this we use

the greedy gridding described in the previous section to include as many entries in the monotone

part as possible. Let π ∈ C|Av(21), and write π = στ such that σ ∈ C, and τ is as large as possible

subject to τ ∈ Av(21). First, if σ is empty, then π = τ ∈ Av(21) is either empty or an increasing

permutation, which can be thought of as the insertion of a sequence into the top gap of the empty

permutation ǫ.

Otherwise, both σ and τ are nonempty, and thus the rightmost entry of σ must be above at least

one entry of τ. Since ZR tracks the rightmost entry of σ in a bottom-to-top specification, the greedy

gridding condition translates to the requirement that there is at least one entry of τ in some gap

below ZR, as required.

To produce the combinatorial specification representing this insertion of sequences of entries into the

gaps of permutations from C, we will define operators that are sensitive to the atom ZR to ensure the

6

conditions of Lemma 3.1 are satisfied. Specifically, we will distinguish between an operator which

inserts the lowest entry in Av(21), and operators that insert (possibly empty) sequences of entries

above this.

Furthermore, the claim made in Theorem 1.1 requires us to output a combinatorial specification for

C|Av(21) that tracks the rightmost point. By our choice of greedy gridding this rightmost point

must lie in Av(21), and is therefore created by the process of applying operators. Thus, we will also

distinguish between an operator which inserts the rightmost (= highest) entry ZR in some gap, and

an operator that acts on gaps below this.

To this end, we define the following linear operators.

Ωǫ the null operator: inserts no entries, but replaces ZR with Z in its operand (if it appears).

Ω• inserts a single point (lowest and highest entry) in some gap of its operand below ZR.

Ω◦◦ inserts (possibly empty) increasing sequences of entries in the gaps of its operand.

Ω•◦ inserts the lowest entry in some gap of its operand (below the operand atom ZR), followed by

(possibly empty) increasing sequences of entries in the subsequent gaps.

Ω◦• inserts (possibly empty) increasing sequences of entries in the gaps of its operand, finishing

with the insertion of a new rightmost atom ZR in some (non-topmost) gap.

Ω•• inserts the lowest entry in some gap of its operand (below the operand atom ZR), followed by

(possibly empty) increasing sequences of entries in the subsequent gaps, and finishing with the

insertion of a new rightmost atom ZR.

For convenience later, let O = {Ωǫ, Ω•, Ω◦◦, Ω•◦, Ω◦•, Ω••} denote the set of operators.

We will defer the description of the action of the operators in O until later, except to define their

action on the neutral atom E . The two operators that add potentially empty sequences of points,

namely Ωǫ and Ω◦◦, act as the identity on E , whereas the other four annihilate the term entirely; this

convention is simply to ensure that later expressions involving combinatorial sums and Cartesian

products are consistent.

Ωǫ(E) = Ω◦◦(E) = E
Ω•(E) = Ω•◦(E) = Ω◦•(E) = Ω••(E) = 0.

Lemma 3.2. Let C be a class given by a combinatorial specification which tracks the rightmost entry, and let

M = Av(21). Then the class C|M is given by

C|M = E + SZ ×ZR + Ω•(C) + Ω••(C) + Ω•◦(C)×SZ ×ZR,

where SZ = E + SZ ×Z = Seq(Z).

Furthermore, if C = CL also tracks the leftmost entry, then the class CL|M is given by

CL|M = E +ZLR +ZL ×SZ ×ZR + Ω•(CL) + Ω••(CL) + Ω•◦(CL)×SZ ×ZR.

Proof. Let π ∈ C|M be nonempty, and take the leftmost gridding π = πCπM. If πC is empty, then π

is a monotone increasing sequence of points, and this is captured by the term SZ × ZR, so we now

assume that πC is non-empty. Observe that, by the greedy gridding, there is at least one entry in πM.

7

If there is precisely one, then there must be at least one entry of πC above it, and this is captured by

the term Ω•(C).
We may now suppose that there are at least two entries in πM. If all the entries in M lie in gaps

associated with entries from πC , then π lies in Ω••(C).
On the other hand, if one or more entries lie in the top gap, then ZR lies in this gap and is the

topmost entry, preceded by a (possibly empty) sequence of atoms. Below the top gap, we must insert

the lowest entry of πM (which must be below the rightmost entry of πC), followed by a (possibly

empty) sequence, interleaved with the entries of πC . This accounts for the final term.

The case where C = CL also tracks the leftmost entry follows similarly; indeed, the only difference is

in handling the case where the portion πC of π is empty.

Thus in order to describe the class C|Av(21), we need to understand terms such as Ω•(C), Ω••(C)
and Ω•◦(C). To do this, we can use the given combinatorial specification for the class C. In other

words, we will be applying our operators to equations, each of which is built from a combination of

+, × and Seq(·) of other combinatorial classes (which have their own specifications) and atoms.

We need to document precisely the effect these six operators have on their operands; this is carried

out in the next three subsections. As the operators act linearly, and having described the effect on

the neutral atom E earlier, we have three main tasks: to describe (1) the action on the four atoms, (2)

the action over Cartesian products, and (3) the action over the sequence constructor.

3.1 The action on the four atoms

The complete list of actions is given below, followed by a short narrative to explain the terms. Recall

that SZ = E + SZZ = Seq(Z) represents sequences of the atom Z .

Operand Ωǫ Ω• Ω◦◦ Ω•◦ Ω◦• Ω••
Z Z ZRZ SZZ ZSZZ SZZRZ ZSZZRZ
ZR Z ZRZ SZZ ZSZZ SZZRZ ZSZZRZ
ZL ZL ZRZL SZZL ZSZZL SZZRZL ZSZZRZL

ZLR ZL ZRZL SZZL ZSZZL SZZRZL ZSZZRZL

For an operand that is one of the four atoms, the operators Ω◦◦, Ω•◦, Ω◦• and Ω•• all add a (possibly

empty) sequence of entries in the gap corresponding to the atom – this is represented by SZ . Oper-

ators that insert a new rightmost entry (namely Ω•, Ω◦• and Ω••) insert the atom ZR immediately

before the final atom Z (which corresponds to the same entry as the original operand).

Finally, we have also listed explicitly the action on the operands ZL and ZLR, although these are

broadly analogous to Z and ZR. Such atoms will still be leftmost after the effect of the operator, but

they will cease to be rightmost (even in the case of Ωǫ).

3.2 The action on Cartesian products

Whereas the operators all act linearly over combinatorial sums (+), their action on the Cartesian

product of two (or more) classes is dependent upon whether they insert the lowest entry of the new

8

cell or not. We will call those that do not insert the lowest entry (Ωǫ, Ω◦◦ and Ω◦•), ZR-invariant

while the others are ZR-sensitive. We will describe the action of these two groups separately.

Note also that we have not mentioned explicitly the leftmost atom ZL (or the class containing it) of

the operand. This is because the action on the Cartesian product of two or more classes is the same

whether ZL is present or not.

ZR-invariant operators Operators which do not insert the lowest entry in the new cell act in the

same way irrespective of whether the operand contains ZR or not. There are three such operators,

namely Ωǫ, Ω◦◦ and Ω◦•. Their action over Cartesian products is therefore defined by:

Ωǫ(AB) = Ωǫ(A)Ωǫ(B)
Ω◦◦(AB) = Ω◦◦(A)Ω◦◦(B)
Ω◦•(AB) = Ω◦•(A)Ωǫ(B) + Ω◦◦(A)Ω◦•(B)

for all classes A and B.2

ZR-sensitive operators The remaining three operators all insert the lowest entry of the cell, and are

therefore sensitive to the position of the atom ZR. For the action on the product of two operators, we

distinguish two cases: A×B where no term of A contains ZR, and AR ×B where every term of AR

contains exactly one ZR (or another class DR of the same form).

Ω•(AB) = Ω•(A)Ωǫ(B) + Ωǫ(A)Ω•(B)
Ω•◦(AB) = Ω•◦(A)Ω◦◦(B) + Ωǫ(A)Ω•◦(B)
Ω••(AB) = Ω••(A)Ωǫ(B) + Ω•◦(A)Ω◦•(B) + Ωǫ(A)Ω••(B)

Ω•(ARB) = Ω•(AR)Ωǫ(B)
Ω•◦(ARB) = Ω•◦(AR)Ω◦◦(B)
Ω••(ARB) = Ω••(AR)Ωǫ(B) + Ω•◦(AR)Ω◦•(B)

Note, in each case, that the only difference between the action on AB and the action on ARB is to

lose the final term (involving Ωǫ(A)). Such a term would correspond to inserting the lowest entry

above the atom ZR, which is of course disallowed by the greedy gridding.

3.3 The action on sequences

In the case that we are given a regular specification, then we need to understand how the operators

in O act on the sequence constructor, Seq. Note first that the atoms ZL, ZR and ZLR can never appear

inside a Seq operator, since there can only ever be at most one copy of each of these types of atom

in a term. Thus, in describing these actions we do not need to consider the ZR-sensitive operators

separately.3

2Note that by the convention for the actions of these operators of the empty class E , these and later definitions for the

Cartesian product are consistent with the trivial products A× E and E × B.
3Note that it would be perfectly possible to describe the action of operators in O on sequence constructors that involve,

e.g. ZR.

9

Let A be an atom, class, or an expression involving combinatorial sums, Cartesian products and

sequences of the atom Z and other classes not involving ZL, ZR or ZLR. It is routine to verify that

the following expressions correctly describe the action of operators on the sequence construction.

Ωǫ(Seq(A)) = Seq(Ωǫ(A))

Ω◦◦(Seq(A)) = Seq(Ω◦◦(A))

Ω•(Seq(A)) = Seq(Ωǫ(A))× Ω•(A)× Seq(Ωǫ(A))

Ω•◦(Seq(A)) = Seq(Ωǫ(A))× Ω•◦(A)× Seq(Ω◦◦(A))

Ω◦•(Seq(A)) = Seq(Ω◦◦(A))× Ω◦•(A)× Seq(Ωǫ(A))

Ω••(Seq(A)) = Seq(Ωǫ(A))× Ω•◦(A)× Seq(Ω◦◦(A))× Ω◦•(A)× Seq(Ωǫ(A))

+ Seq(Ωǫ(A))× Ω••(A)× Seq(Ωǫ(A))

3.4 Expansions

Let V be a collection of combinatorial classes, and let Ω ∈ O be an operator. Define VΩ = {Ω(S) :

S ∈ V} to be the collection of combinatorial classes under the action of Ω, and VO =
⋃

Ω∈O VΩ.

Given an equation C = f (V) from some combinatorial specification, we have (trivially), Ω(C) =

Ω(f (V)). The expansion of Ω(C) is then the equation obtained by using the linearity of the operators

and the expressions for atoms and Cartesian products given above, i.e. the equation of the form

Ω(C) = g(VO ∪ {SZ}),

for some function g. See Figure 5 for an example. The properties of g are given in the next lemma.

Lemma 3.3. Let C = f (V) be an equation from a combinatorial specification using only the combinatorial

sum, Cartesian product and sequence constructors. Then, for every operator Ω ∈ O, the expansion of Ω(C) is

an equation involving only the combinatorial sum, Cartesian product and sequence constructors, acting only

on atoms and classes from VO ∪ {SZ}.

Furthermore, if C = f (V) does not use the sequence constructor, then neither does the expansion of Ω(C).

Proof. First, any operator Ω ∈ O acts linearly on combinatorial sums

Ω(A+ B) = Ω(A) + Ω(B),

so it suffices to consider the action of Ω on individual terms of f (V). Such terms, however, are

themselves composed of Cartesian products of classes in V or sequences of classes in V , and the rules

for any operator in O described earlier in this subsection demonstrate that these can be rewritten as

expressions involving combinatorial sums, Cartesian products and sequences of classes in VO . Note

that the action of an operator Ω ∈ O on an atom is described in Subsection 3.1, and can be expressed

as the Cartesian product of atoms and the class SZ . This completes the proof.

Finally, if there are no sequence constructors in the original equation, then the rules given earlier

for operators in O guarantee that no sequence constructor will be introduced in the expansion of

Ω(C).

With this result in place, we can now conclude the first piece of our main result.

10

D
CR

B
A

Ω••(A)Ωǫ(BCRD)

D
CR

B
A

Ω•◦(A)Ω◦•(B)Ωǫ(CRD)

D
CR

B
A

Ω•◦(A)Ω◦◦(B)Ω◦•(CR)Ωǫ(D)

D
CR

B
A

Ω•◦(A)Ω◦◦(BCR)Ω◦•(D)

D
CR

B
A

Ωǫ(A)Ω••(B)Ωǫ(CRD)

D
CR

B
A

Ωǫ(A)Ω•◦(B)Ω◦•(CR)Ωǫ(D)

D
CR

B
A

Ωǫ(A)Ω•◦(B)Ω◦◦(CR)Ω◦•(D)

D
CR

B
A

Ωǫ(AB)Ω••(CR)Ωǫ(D)

D
CR

B
A

Ωǫ(AB)Ω•◦(CR)Ω◦•(D)

Figure 5: The expansion of Ω••(C) given the equation C = ABCRD is given by the combinatorial sum of the 9
terms above.

Proposition 3.4. Let C be a permutation class, and S a combinatorial specification for C that tracks the

rightmost entry. Then there exists a combinatorial specification S ′ for the class C|Av(21) that tracks the

rightmost entry.

Furthermore, if S is context-free, and/or tracks the leftmost entry, then so is S ′.

Proof. First, let V denote the set of classes that appear on the left hand side of any equation in the

specification S . Thus, any equation in S is of the form S = f (V).
By Lemma 3.2, the class C|Av(21) is given by the equation

C|Av(21) = E + SZ ×ZR + Ω•(C) + Ω••(C) + Ω•◦(C)×SZ ×ZR.

We therefore need to establish a system of equations to describe the classes Ω•(C), Ω••(C) and

Ω•◦(C), which taken together with the equation SZ = E + SZZ , forms a complete combinatorial

specification. We claim that it suffices to define the system of equations S ′ to comprise the following:

C|Av(21) = E + SZ ×ZR + Ω•(C) + Ω••(C) + Ω•◦(C)×SZ ×ZR

Ω(S) = gΩ(S)(VO ∪ {SZ}) for every Ω ∈ O,S ∈ V
SZ = E + SZ ×Z .

11

Every class in VO is of the form Ω(S) for some Ω ∈ O and S ∈ V . Writing S = f (V) (an equation

taken from S), by Lemma 3.3 the expansion of Ω(S) is an equation involving only combinatorial

sums and Cartesian products of classes from VO ∪ {SZ}. Thus the system S ′ above is indeed a

context-free combinatorial specification, providing S is. Furthermore, each term in the equation for

C|M acts from bottom-to-top, and specifies the position of the rightmost entry ZR.

If the atom ZL and/or ZLR is present in the specification for C(= CL), then, by definition, the

operators in O ensure that ZL and/or ZLR are correctly tracked for CL|M. However, in this case we

need to use the following expression for the class CL|M, given in Lemma 3.2:

CL|Av(21) = E +ZLR +ZL ×SZ ×ZR + Ω•(CL) + Ω••(CL) + Ω•◦(CL)×SZ ×ZR.

Analogously, we have the following result that guarantees a regular specification is obtained if the

initial specification is regular.

Proposition 3.5. Let C be a permutation class, and S a regular combinatorial specification for C that tracks

the rightmost entry. Then there exists a regular combinatorial specification S ′ that tracks the rightmost entry

for C|Av(21).

Furthermore, if S tracks the leftmost entry, then so does S ′.

Proof. We construct the specification S ′ from S following the proof of Proposition 3.4. We will omit

the details as they are similar, the only exception being that we now need to use the defined actions

of operators in O on sequences in the expansions. Note that S ′ will track the rightmost entry, and if

S tracks the leftmost entry, then so does S ′.

It remains to verify that S ′ is regular. Note that the right hand side of any equation in S involves

only atoms, combined using the sum, Cartesian product and sequence operations. As such, by

considering the effect of the operators in O, the expansion of an equation in S under some operator

in O will yield an equation in S ′ also involving only sums, products and sequences of atoms, except

for the appearance of the class SZ . This however, can be replaced by Seq(Z) wherever it appears,

whence the equation in S ′ satisfies the conditions to be regular.

3.5 Symmetry operators

Having established how to find a combinatorial specification for C|Av(21) given one for C, we now

need to describe how to find specifications for C|Av(12), Av(21)|C and Av(12)|C.

Let π be a permutation of length n. The reverse of π, denoted πr, is the permutation obtained by

reading the entries of π in reverse order, i.e. πr(i) = π(n+ 1− i). Similarly, the complement of π is πc,

defined by πc(i) = n + 1 − π(i). Combining these two operations, we obtain the reverse-complement,

πrc, which is formally defined by πrc(i) = n + 1 − π(n + 1 − i).

By extension, we may consider the reverse, complement, and reverse-complement of a class C of

permutations, for example Cr = {πr : π ∈ C}.

12

Observation 3.6. For any permutation class C, we have the following:

C|Av(12) = (Cc|Av(21))c

Av(12)|C = (Cr|Av(21))r , and

Av(21)|C = (Crc|Av(21))rc.

Given a bottom-to-top combinatorial specification for C, we can obtain a bottom-to-top specification

for Cc simply by reversing the order in which terms in a Cartesian product are taken. This is charac-

terised by the complement operator, Θ, which acts linearly on combinatorial sums, as the identity on

atoms (i.e. Θ(Z) = Z , Θ(ZR) = ZR, Θ(ZL) = ZL, Θ(ZLR) = ZLR), and is then defined recursively

on Cartesian products as follows:

Θ(A×B) = Θ(B)× Θ(A)

for classes A and B. The action on the sequence operator is given by

Θ(Seq(A)) = Seq(Θ(A)).

Similarly, given a specification for C that tracks both the leftmost and rightmost entries, we can find

one for Cr by preserving the order in the Cartesian product, but switching the atoms ZR and ZL. This

is characterised by the reverse operator, Φ, which acts linearly on combinatorial sums, distributively

on Cartesian products (Φ(A ×B) = Φ(A)× Φ(B)) and sequences (Φ(Seq(A)) = Seq(Φ(A))), and

satisfies

Φ(Z) = Z , Φ(ZR) = ZL, Φ(ZL) = ZR, Φ(ZLR) = ZLR.

Note that if a class C tracks only the leftmost entry, then Φ(C) tracks only the rightmost entry and

vice versa, and if C tracks both, then so does Φ(C).
Given some equation C = f (V) from a combinatorial specification, the expansion of Θ(C) is the

equation obtained by using the linearity of Θ, together with the defined action on Cartesian products,

to obtain an equation of the form

Θ(C) = g(VΘ)

for some g. Similarly, the expansion of Φ(C) is the equation obtained following the definition of Φ

above, Φ(C) = h(VΦ) for some h.

We now have the following observation, mirroring Lemma 3.3. We omit its proof.

Lemma 3.7. Let C = f (V) be an equation from a combinatorial specification using only the combinatorial

sum, Cartesian product, and sequence constructors. Then the expansion of Θ(C) and Φ(C) are equations

involving only the combinatorial sum, Cartesian product and sequence operators, acting only on classes from

VΘ and VΦ, respectively.

Furthermore, if C = f (V) does not contain any instance of a sequence operator, then neither does the expansion

of Θ(C).
Similarly, we may combine these expansions to obtain combinatorial specifications for Cc, Cr and Crc.

As its proof resembles (but is simpler than) the proof of Proposition 3.4, we will omit it.

Proposition 3.8. Let S be a combinatorial specification for a class C. Then there exist combinatorial specifi-

cations S Θ, S Φ and S Θ·Φ for the classes Cc, Cr and Crc, respectively.

Furthermore, if S tracks the rightmost (resp. leftmost) entry, then so does S Θ, while the specifications S Θ·Φ

and S Φ track the leftmost (resp. rightmost) entry.

13

Equipped with Observation 3.6 and combinatorial specifications for C|M, Cc, Cr and Crc, we can now

complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By Proposition 3.4, if the combinatorial specification S for C tracks the right-

most entry, then there exists a specification for C|Av(21) that does. To complete the proof of part (i),

therefore, we need to consider C|Av(12).

By Observation 3.6, we have C|Av(12) = (Cc|Av(21))c. By Proposition 3.8, there exists a combi-

natorial specification S Θ for Cc. To this we apply Proposition 3.4 to obtain a combinatorial speci-

fication for Cc|Av(21). Finally, an application of Θ to this specification gives us a specification for

(Cc|Av(21))c, which is combinatorially isomorphic to C|Av(12). Furthermore, all these specifications

track the rightmost entry by Propositions 3.4 and 3.8.

Similar arguments can now be made to establish part (ii) of the theorem: Observation 3.6 gives us

equations for Av(21)|C and Av(12)|C, and combinatorial specifications for these can then be com-

puted using applications of Φ, Θ, and the operators in O. Note that if S tracks the leftmost entry,

then by Proposition 3.8 S Φ and S Θ·Φ (being specifications Cr and Crc) track the rightmost entry (as

required for the operators in O to append Av(21) to the right). After appending Av(21), a further

application of Φ replaces the rightmost entry with the leftmost, while any application of Θ keeps the

rightmost and leftmost atoms intact.

For part (iii), note that the operators Θ and those in O preserve the atom ZL, while Φ interchanges

the atoms ZL and ZR, and both Θ and Φ preserve ZLR. Combined with Proposition 3.4, We conclude

that the resulting combinatorial specifications for all of C|Av(21), C|Av(12), Av(21)|C and Av(12)|C
also track both the leftmost and rightmost entries.

Finally, for part (iv), if S is context-free or rational, then it is clear that the operators Θ and Φ

preserve this. We know that the operators in O preserve context-freeness by Proposition 3.4, and

preserve rationality by Proposition 3.5. This completes the proof.

4 Applicable classes

In this section, we demonstrate classes which possess combinatorial specifications that track the

rightmost and leftmost entries.

Classes containing finitely many simple permutations It has been known since Albert and Atkin-

son [1] that classes which possess only finitely many simple permutations admit an algebraic gen-

erating function. Subsequently, Brignall, Huczynska and Vatter [11] described a framework, called

‘query-completeness’ which concluded that many other subsets of permutations in a class with only

finitely many simple permutations also have algebraic generating functions: in the language of this

current article, this is done by constructing context-free specifications.

More recently, a fully algorithmic method to derive combinatorial specifications for permutation

classes with only finitely many simple permutations was given by Bassino, Bouvel, Pierrot, Pivoteau,

and Rossin [5], and we refer to that article for fuller details.

To begin, we need to adapt the notation used for inflations slightly, to handle the ‘bottom-to-top’ re-

quirement of our combinatorial specifications. Given a permutation σ and permutations π1, . . . , π|σ|,

14

the bottom-to-top inflation of σ by π1, . . . , π|σ| is the permutation σ[π1, . . . , π|σ|]
T formed by replacing

the σ−1(i)th entry of σ by πi. That is, the lowest entry of σ is inflated by π1, the second-lowest by π2,

and so on.

In terms of specifications, if πi ∈ Ci, then the bottom-to-top inflation σ[π1, . . . , π|σ|]
T belongs to the

product of classes C1 × · · · × C|σ|. By virtue of the bottom-to-top inflation, this is compatible with

bottom-to-top specifications. Furthermore, in order to track the rightmost entry of such an inflation, it

is the rightmost entry of the permutation inflating the rightmost entry of σ, namely πσ(|σ|). Similarly,

the leftmost entry of this inflation is the leftmost entry of πσ(1).

Proposition 4.1. Every class containing only finitely many simple permutations admits a combinatorial spec-

ification that track the leftmost and rightmost entries.

Proof. Let Si(C) denote the (finite) set of simple permutations in C, which for convenience we will

assume includes the permutations 12 and 21. Consider some combinatorial specification S for C, as

produced e.g. by the algorithm of Bassino et al [5].

Let V denote the set of classes and atoms arising in S , and consider any D ∈ V , specified by some

equation D = f (V). The function f comprises a combinatorial sum of finitely many terms, each of

which arises from the inflation of a permutation in Si(C) by other classes from V (or is simply equal

to an atom Z). For each such term, we replace the expression with the corresponding expression

from the bottom-to-top inflation. Note that this amounts simply to reordering the classes in the term.

By modifying the ordering of all terms in this way, we obtain a bottom-to-top specification S ′ for C.

Now, in order to track the rightmost entry, we define VR = {DR : D ∈ V} to be the collection of

classes that track the rightmost entry. For each DR ∈ VR, we copy the corresponding equation for D
in S ′, except that in each term (corresponding to the inflation of a simple permutation) we identify

the rightmost class F , say, and replace it with FR.

A similar process can be carried out to track the leftmost entry as required, as well as tracking both

the leftmost and rightmost entries. Combining all the equations thus described for V , VR, VL and

VLR as required, we obtain a specification for CR (or CL, CLR) satisfying the requirements of the

proposition.

The class Av(321) Permutations of length n in Av(321) are in bijection with Dyck paths below

the diagonal, starting at (0, 0) and ending at (n, n) via up (U) and right (R) steps. This bijection is

well-known, and rather than present a formal definition we merely illustrate the process in Figure 6.

Figure 6: Moving from a Dyck path to its corresponding 321-avoider.

In this bijection, the rightmost entry of a 321-avoider is the first right-to-left minimum, which occurs

in the final ‘corner’, i.e. the first U step after the last R step.4 Thus, the class of Dyck paths D satisfies

4It is also possible to identify the leftmost entry, though for brevity we have not done this here.

15

the following combinatorial specification (taking the atoms to be R, U, and (to mark the ‘rightmost

corner’) UR.

DR = DRDR
U+DRU

R

D = E +DRDU

Translating this to the permutation case (by mapping U to Z , UR to ZR, and ignoring R) yields the

following specification:

CR = CCRZ + CZR

C = E + CCZ .

Insertion encodings Introduced by Albert, Linton and Ruškuc [3], the insertion encoding of a class

is a method of constructing permutations in the class by repeatedly adding a new maximal element

into a number of permitted active sites called slots. The addition of a new maximal element can be

performed in one of four ways: fill the slot (F), insert to the right of a slot (R, leaving a slot to the left

of the newly-inserted entry), insert to the left of a slot (L), or insert in the middle of a slot (M, leaving

a slot on both sides of the newly-inserted entry). To these four basic letters, one typically uses indices

to denote which slot (reading, e.g., from left to right) the action is performed on. For example, the

permutation 3164752 is encoded by M1R2F1M1R2F1F1, illustrated as follows (Reading upwards):

3164752

3164 ⋄ 52

31⋄4 ⋄ 52

31⋄4 ⋄ 2

31 ⋄ 2

⋄1 ⋄ 2

⋄1⋄
⋄

By their nature, insertion encodings for permutation classes are bottom-to-top processes. Thus, in

order to include classes which possess specifications given by insertion encodings amongst those to

whom our method can be applied,5 it suffices to capture how to track the rightmost (and/or the

leftmost) entry.

We make the following observation.

Lemma 4.2. In any insertion encoding of a permutation class, the rightmost entries of permutations in the

class correspond to an F or R insertion into the rightmost gap.

For example, the following grammar (given in Albert,Linton, Ruškuc [3]) defines the insertion en-

coding of Av(312). (Note that, as there is only one active slot, we have omitted all indices.)

s → F | Ls | Rs | Mss.

5Note that, for a class C which possesses a regular or context-free insertion encoding, the use of our method may

be overkill: for example, to count C|Av(21), it may be easier simply to adjust the insertion encoding by permitting an

additional slot on the right (subject to ensuring each permutation is represented uniquely, of course).

16

To adapt this encoding to track the rightmost entry, we introduce two new symbols, F
R and R

R,

corresponding to the insertion of the rightmost entry: thus, any word in this encoding has exactly

one of these two symbols, occurring exactly once. The grammar becomes:

s
R → F

R | Ls | RR
s | Mss

R

s → F | Ls | Rs | Mss

where s
R denotes the encoding for the class with the rightmost entry encoded separately. Converting

to combinatorial specifications for the class Av(312), we obtain

CR = ZR +ZCR +ZRC +ZCCR

C = Z +ZC +ZC +ZCC.

This specification can be simplified slightly by admitting the empty permutation into C:

CR = ZRC +ZCCR

C = E +ZCC.

Similar modifications can be made to track the leftmost entry; we omit the details.

5 Examples

In this section, we give three examples of the application of our operators to derive combinatorial

specifications (and hence enumerations) for juxtapositions.

5.1 Av(321) | Av(21)

Juxtaposing the 321-avoiding permutations with a monotone increasing sequence was first carried

out by the current authors [12]. We repeat that enumeration here using the rightmost-entry-tracking

specification obtained in the previous section:

CR = CCRZ + CZR

C = E + CCZ .

From the specification above, together with the master equation,

CR|Av(21) = E + SZ ×ZR + Ω•(CR) + Ω••(CR) + Ω•◦(CR)× SZ ×ZR.

17

we obtain expansions for the classes in VO , where V = {C, CR}. To aid readability, we use the

shorthand CR
• = Ω•(CR), C•• = Ω••(C) and so on.

CR

• = C•CR

ǫ Z + CǫCR

•Z + C•Z + CǫZRZ
CR

•• = C••(CR

ǫ Z +Z) + C•◦(CR

◦•Z + CR

◦◦SZZRZ + SZZRZ) + Cǫ(CR

••Z + CR

•◦SZZRZ +ZSZZRZ)

CR

◦• = C◦•(CR

ǫ Z +Z) + C◦◦(CR

◦•Z + CR

◦◦SZZRZ + SZZRZ)

CR

•◦ = C•◦(CR

◦◦SZZ + SZZ) + Cǫ(CR

•◦SZZ +ZSZZ)

CR

◦◦ = C◦◦(CR

◦◦SZZ + SZZ)

CR

ǫ = Cǫ(CR

ǫ Z +Z)

C• = C•CǫZ + CǫC•Z + CǫCǫZRZ
C•• = C••CǫZ + C•◦(C◦•Z + C◦◦SZZRZ) + Cǫ(C••Z + C•◦SZZRZ + CǫZSZZRZ)

C◦• = C◦•CǫZ + C◦◦(C◦•Z + C◦◦SZZRZ)

C•◦ = C•◦C◦◦SZZ + Cǫ(C•◦SZZ + CǫZSZZ)

C◦◦ = E + C◦◦C◦◦SZZ
Cǫ = E + CǫCǫZǫ.

Solving, simplifying and converting into generating functions yields the following,

f (z) = −1 −
√

1 − 4z + z(−4 +
√

1 − 4z +
√

1 − 5z/
√

1 − z

2z2
.

which corresponds to OEIS sequence A278301.

5.2 Av(21) | Av(21) | Av(21)

In this example, we will demonstrate the use of the operators acting on sequences, together with the

use of the Φ and Θ operators. For this, our construction of the double juxtaposition Av(21) | Av(21) |
Av(21) will be somewhat contrived, appending one class Av(21) to the right, then appending the

other increasing sequence to the left (via symmetries).

We begin with the following regular specification for Av(21) that tracks both the leftmost and right-

most entries:

C = ZLR +ZLSeq(Z)ZR.

Since we need to keep track of the leftmost entry, we use the following equation for our first juxta-

position.

C|Av(21) = E +ZLR +ZLSeq(Z)ZR + Ω•(C) + Ω••(C) + Ω•◦(C)Seq(Z)ZR.

However, as we will only be appending to each side once, we do not need to keep track of the

rightmost entry in the above expression. We can therefore use the following simplified version:

C|Av(21) = E +ZLSeq(Z) + Ω•◦(C)Seq(Z). (1)

The only term we need to expand in the above is Ω•◦(C), and we do this first, separately. For ease of

viewing, we use SZ for Seq(Z), and make use of expressions such as E + SZZ = SZ to simplify the

18

presentation. Similarly, we will also use the superscript + to denote non-empty sequences, thus we

have, for example, S+
Z = SZZ = ZSZ and Seq

+(A) = Seq(A)A.

Ω•◦(C) =
(

S+
ZZL +ZLS+

ZS+
Z

)

Seq(S+
Z).

Thus

C|Av(21) = E +ZLSZ +
(

S+
ZZL +ZLS+

ZS+
Z

)

Seq(S+
Z)SZ .

Momentarily evaluating this as a generating function, we have

fC| Av(21)(z) =
1

1 − z
+

z2

(1 − z)2(1 − 2z)

as expected.

We now turn to appending Av(21) to the left of C|Av(21). First, we need to apply the operators Φ

and Θ to the specification above, yielding the following specification for Av(21)|Crc :

Av(21)|Crc = E + SZZR + SZSeq(S+
Z)

(

ZRS+
Z + S+

ZS+
ZZR

)

= E + SZZR + Seq(S+
Z)

(

SZZRS+
Z + S+

ZS+
ZSZZR

)

Again, we will use the simplified equation (1) to find the specification for Av(21)|Crc |Av(21), without

keeping track of the rightmost entry. This requires us to compute Ω•◦(Av(21)|Crc):

Ω•◦(Av(21)|Crc) = S+
Z Seq

+(S+
Z) + Seq

+(S+
Z)Seq

+(S+
Z)Seq

+(Seq
+(S+

Z))Seq
+(S+

Z)Seq(S+
Z)

+ Seq
+(S+

Z)
[

Seq(S+
Z)Seq

+(S+
Z) + S+

Z Seq
+(S+

Z) + S+
ZS+

Z
]

Seq
+(S+

Z).

Inserting this into equation (1) yields a specification for Av(21)|Crc |Av(21). Moving to generating

functions, and noting that the classes Av(21)|Crc |Av(21) and Av(21)|C|Av(21) are identical (and

hence equinumerous), we obtain the following generating function.

fAv(21)|Av(21)|Av(21) =
1

1 − z
+

z2

(1 − z)2(1 − 2z)
+

z3(1 + z − 4z2)

(1 − z)3(1 − 2z)2(1 − 3z)
.

This agrees with the expression given in Bevan’s thesis [7, page 34].

5.3 Separable permutations

The following is an illustrated bottom-to-top specification for the class of non-empty separable per-

mutations, Av(2413, 3142):

C = Z +

C⊕
C +

C
C⊖

C⊖ = Z +

C⊕
C

C⊕ = Z +

C
C⊖

19

where C⊖ and C⊕ denote the skew-indecomposable and sum-indecomposable permutations in C,

respectively. The following specification then tracks the rightmost entry:

CR = ZR + C⊕CR + CRC⊖

C = Z + C⊕C + CC⊖

C⊖ = Z + C⊕C
C⊕ = Z + CC⊖.

Note that there are other specifications that carry out the same process, but this one has been chosen

to minimise the number of combinatorial classes required in the final specification for the juxtaposi-

tion we will compute below, namely the juxtaposition of the separable permutations with the class

Av(21).

First, although we do not need to know the basis of this class for our method, we can compute that

C|Av(21) is equivalent to

Av(25143, 35142, 35241, 41532, 42531, 241365, 251364, 314265, 315264, 415263).

To describe the complete specification for CR|Av(21) that tracks the rightmost entry requires 26

separate equations. Instead, here we will again drop the rightmost tracking in order to compute the

generating function for CR|Av(21) using the simplified equation (1). This requires the following 11

equations (together with the equation for SZ , and the equation for the class itself).

CR

•◦ = ZSZZ + C⊕
•◦CR

◦◦ + C⊕
ǫ CR

•◦ + CR

•◦C⊖
◦◦

CR

◦◦ = SZZ + C⊕
◦◦CR

◦◦ + CR

◦◦C⊖
◦◦

C•◦ = ZSZZ + C⊕
•◦C◦◦ + C⊕

ǫ C•◦ + C•◦C⊖
◦◦ + CǫC⊖

•◦
C◦◦ = SZZ + C⊕

◦◦C◦◦ + C◦◦C⊖
◦◦

Cǫ = Z + C⊕
ǫ Cǫ + CǫC⊖

ǫ

C⊖
•◦ = ZSZZ + C⊕

•◦C◦◦ + C⊕
ǫ C•◦

C⊖
◦◦ = SZZ + C⊕

◦◦C◦◦
C⊖

ǫ = Z + C⊕
ǫ Cǫ

C⊕
•◦ = ZSZZ + C•◦C⊖

◦◦ + CǫC⊖
•◦

C⊕
◦◦ = SZZ + C◦◦C⊖

◦◦
C⊕

ǫ = Z + CǫC⊖
ǫ

Solving, we obtain the following

fC|Av(21)(z) =
(2 − 4z + z2)xy

4(1 − z)(−2 + 7z − 7z2 + z3)
+

(−2 − 6z − 15z2 + 7z3)x + (2 − 6z + z2 + 6z3 − z4)y − 10 + 54z − 99z2 + 66z3 − 9z4

4(1 − z)2(−2 + 7z − 7z2 + z3)

where

x =
√

1 − 6z + z2 and y =
√

1 − 8z + 8z2.

The first ten terms of the counting sequence are

1, 1, 2, 6, 24, 115, 609, 3409, 19728, 116692, 701062.

20

6 Concluding remarks

Acyclic grids with one non-monotone A natural next step beyond the k × 1 grids considered here

are families of acyclic grids in which at most one cell is non-monotone. This poses a number of

challenges beyond the methods described in this article, notably to incorporate the ability to switch

from a bottom-to-top specification to a left-to-right one, depending on where a new monotone cell

needs to be appended. Another challenge is to identify some canonical way to handle griddings that

is consistent in both directions.

Multiple non-monotone One can likely replace the monotone classes in our framework with certain

other easy-to-describe classes, such as the class Av(312, 231) of layered permutations. This adds

considerably to the number and complexity of the operators required, but the same principles apply.

On the other hand, our approach does not seem to offer insight for juxtapositions involving more

complicated classes, for example juxtaposing two classes with algebraic generating functions. A

notable example of such a juxtaposition is Av(132) | Av(213), which is the superclass of the “domino”

used in recent bounds on the growth rate of Av(1324) [9].

References

[1] Albert, M. H., and Atkinson, M. D. Simple permutations and pattern restricted permutations.

Discrete Math. 300, 1-3 (2005), 1–15.

[2] Albert, M. H., Atkinson, M. D., and Ruškuc, N. Regular closed sets of permutations. Theoret.

Comput. Sci. 306, 1-3 (2003), 85–100.

[3] Albert, M. H., Linton, S., and Ruškuc, N. The insertion encoding of permutations. Electron. J.

Combin. 12, 1 (2005), Research paper 47, 31 pp.

[4] Atkinson, M. D. Restricted permutations. Discrete Math. 195, 1-3 (1999), 27–38.

[5] Bassino, F., Bouvel, M., Pierrot, A., Pivoteau, C., and Rossin, D. An algorithm computing

combinatorial specifications of permutation classes. Discrete Appl. Math. 224 (2017), 16–44.

[6] Bean, C. Finding structure in permutation sets. PhD thesis, Reykjavik University, June 2018.

[7] Bevan, D. On the growth of permutation classes. PhD thesis, The Open University, 2015.

[8] Bevan, D. Intervals of permutation class growth rates. Combinatorica 38, 2 (Apr 2018), 279–303.

[9] Bevan, D., Brignall, R., Price, A. E., and Pantone, J. A structural characterisation of av(1324)

and new bounds on its growth rate. Submitted.

[10] Bevan, D. I. Permutation patterns: basic definitions and notation. arXiv:1506.06673, 2015.

[11] Brignall, R., Huczynska, S., and Vatter, V. Simple permutations and algebraic generating

functions. J. Combin. Theory Ser. A 115, 3 (2008), 423–441.

[12] Brignall, R., and Sliačan, J. Juxtaposing catalan permutation classes with monotone ones.

Electron. J. Combin. 24(2), 2 (2017), P2.11, 16 pp. (electronic).

21

[13] Chomsky, N., and Schützenberger, M. P. The algebraic theory of context-free languages. In

Computer programming and formal systems. North-Holland, Amsterdam, 1963, pp. 118–161.

[14] Flajolet, P., and Sedgewick, R. Analytic combinatorics. Cambridge University Press, Cambridge,

2009.

[15] Vatter, V. Permutation classes of every growth rate above 2.48188. Mathematika 56, 1 (2010),

182–192.

22

	1 Introduction
	2 Combinatorial specifications and permutation classes
	2.1 Greedy griddings and atoms

	3 Operators and the proof of Theorem ??
	3.1 The action on the four atoms
	3.2 The action on Cartesian products
	3.3 The action on sequences
	3.4 Expansions
	3.5 Symmetry operators

	4 Applicable classes
	5 Examples
	5.1 Av(321)Av(21)
	5.2 Av(21)Av(21)Av(21)
	5.3 Separable permutations

	6 Concluding remarks

