A Combinatorial Problem Solved by a Meta-Fibonacci Recurrence Relation

Ramin Naimi Eric Sundberg

Mathematics Department Occidental College Los Angeles, CA {rnaimi, sundberg}@oxy.edu

Mathematics Subject Classification: 05A15

February 11, 2019

Abstract

We present a natural, combinatorial problem whose solution is given by the meta-Fibonacci recurrence relation $a(n) = \sum_{i=1}^{p} a(n-i+1-a(n-i))$, where p is prime. This combinatorial problem is less general than those given in [3] and [4], but it has the advantage of having a simpler statement.

1 Introduction

Let M be a matrix with entries in \mathbb{Z}_2 , such that every column contains at least one 1. We want to pick a subset of the rows such that when they are added together modulo 2, their sum \vec{s} has as many 1's as possible. If M has n columns, what is the largest number of 1's we can guarantee \vec{s} to have? For example, if n = 5, we can always find a set of rows whose sum \vec{s} contains at least four 1's. Let $\lambda(n)$ denote the largest number of 1's \vec{s} can be guaranteed to have for any M with n nonzero columns. We will show that $\lambda(n)$ satisfies the recurrence relation

$$\lambda(n) = \lambda(n - \lambda(n - 1)) + \lambda(n - 1 - \lambda(n - 2)).$$
(1)

More generally, for p prime, let $\vec{v} = (v_1, \ldots, v_n)$ satisfy $v_i \in \mathbb{F}_p$ for $1 \leq i \leq n$. Let $\operatorname{supp}(\vec{v}) = \{i \in [n] : v_i \neq 0\}$ and let $\|\vec{v}\| = |\operatorname{supp}(\vec{v})|$, i.e., $\|\vec{v}\|$ is the number of nonzero terms in \vec{v} . Let M be an $m \times n$ matrix whose entries are in \mathbb{F}_p . Let $\operatorname{row}(M)$ be the rowspace of M, i.e., the set of all linear combinations of the row vectors of M over the field \mathbb{F}_p . Let c(M) denote the *capacity* of M, which we define as follows,

$$c(M) = \max_{\vec{v} \in \mathbf{row}(M)} \|\vec{v}\|.$$

For each integer $n \ge 1$, let $\lambda_p(n)$ be the minimum possible capacity of an \mathbb{F}_p -matrix consisting of *n* nonzero columns (i.e., no column equals $\vec{0}$). Restated, let

$$\mathcal{M}_n^* = \{ M \in \mathbb{F}_p^{m \times n} : 1 \le m \le p^n \text{ and no column of } M \text{ equals } \vec{0} \}$$

then

$$\lambda_p(n) = \min_{M \in \mathcal{M}_n^*} c(M).$$

We will see that λ_p satisfies the recurrence relation

$$\lambda_p(n) = \sum_{i=1}^p \lambda_p(n-i+1-\lambda_p(n-i)).$$
(2)

This type of recurrence relation is called a meta-Fibonacci relation.

Meta-Fibonacci sequences have been studied by various authors, dating at least as far back as 1985, when Hofstadter [2] apparently coined the term "meta-Fibonacci." These are integer sequences defined by "nested, Fibonacci-like" recurrence relations, such as relation (1), which was studied by Conolly [1], and (2). Generalizations of (2) were shown in [3] and [4] to be solutions to certain combinatorial problems involving k-ary infinite trees, and compositions of integers. The "matrix capacity" problem described above is a different combinatorial problem whose solution is also given by relation (2). This combinatorial problem is "natural" in the sense that it arose while the first named author was working on a problem in spatial graph theory. It was only later that we learned (through the OEIS A046699) that it can be characterized as a meta-Fibonacci sequence.

2 Main Result

We begin with a lemma which allows us to produce a lower bound on $\lambda_p(n)$. For the remainder of this paper, instead of writing λ_p , we will simply write λ . For a matrix M, let $\mathbf{row}^*(M) = \mathbf{row}(M) - \{\vec{0}\}.$

Lemma 1. Let M be an \mathbb{F}_p -matrix with n nonzero columns, i.e., $M \in \mathcal{M}_n^*$. Let $\vec{v} \in \operatorname{row}^*(M)$. If

$$p\lambda(n - \|\vec{v}\|) > \|\vec{v}\|,$$

then there is a vector $\vec{z} \in \mathbf{row}^*(M)$ such that $\|\vec{z}\| > \|\vec{v}\|$.

Proof. Let M be an \mathbb{F}_p -matrix with n nonzero columns. Let $\vec{v} \in \mathbf{row}^*(M)$, and let $k = \|\vec{v}\|$. Let $\vec{v} = (v_1, \ldots, v_n)$. W.l.o.g., suppose $v_i \neq 0$ for $1 \leq i \leq k$ and $v_i = 0$ for $k+1 \leq i \leq n$. Let $\vec{w} \in \mathbf{row}^*(M)$ be such that $w_i \neq 0$ for at least $\lambda(n-k)$ coordinates i, where $k+1 \leq i \leq n$. In other words, if we let $\vec{w}_L = (w_1, \ldots, w_k)$ and $\vec{w}_R = (w_{k+1}, \ldots, w_n)$, then $\|\vec{w}_R\| \geq \lambda(n-k)$. Since $\|\vec{w}\| = \|\vec{w}_L\| + \|\vec{w}_R\|$, if $\|\vec{w}_L\| \geq (p-1)\lambda(n-k)$, then $\|\vec{w}\| \geq p\lambda(n-k) > \|\vec{v}\|$, and we are done. So we may assume that $\|\vec{w}_L\| < (p-1)\lambda(n-k)$.

Our goal will be to prove that there exists a nonzero constant c such that $||c\vec{w_L}+\vec{v_L}|| > k - \lambda(n-k)$, where $\vec{v_L} = (v_1, \ldots, v_k)$. Once we establish that such a constant exists, then we will be done, because we will have $||c\vec{w}+\vec{v}|| = ||c\vec{w_L}+\vec{v_L}|| + ||\vec{w_R}|| > (k-\lambda(n-k)) + \lambda(n-k) = k$.

For $1 \leq a \leq p-1$, let $S_a = \{i \in [k] : aw_i + v_i = 0\}$. Since $v_i \neq 0$ for $1 \leq i \leq k$, then $S_a \subseteq \operatorname{supp}(\vec{w}_L)$. Thus, if $aw_i + v_i = 0 = bw_i + v_i$, then $w_i \neq 0$, which allows us to conclude that a = b. Therefore, if $a \neq b$, then $S_a \cap S_b = \emptyset$. Since $\bigcup_{a=1}^{p-1} S_a \subseteq \operatorname{supp}(\vec{w}_L)$ and the S_a are pairwise disjoint, we have

$$\sum_{a=1}^{p-1} |S_a| \le |\operatorname{supp}(\vec{w}_L)| = ||\vec{w}_L|| < (p-1)\lambda(n-k).$$

Therefore, the average value of $|S_a|$ is strictly less than $\lambda(n-k)$, and if we let $c \in [p-1]$ be such that $|S_c|$ is minimum, then $|S_c| < \lambda(n-k)$. Thus, $||c\vec{w}_L + \vec{v}_L|| = k - |S_c| > k - \lambda(n-k)$, and as noted above, we are done. Specifically, $||c\vec{w} + \vec{v}|| > ||\vec{v}||$.

It is easy to check that the following corollary holds.

Corollary 1. If $1 \le n \le p$, then $\lambda(n) = n$.

For an integer $k \ge 0$, let $\sigma_k = \sum_{j=0}^k p^j$.

Proposition 1. Suppose

$$n = \sum_{j=\ell}^k b_j \sigma_j,$$

where $b_k \ge 1$, and $0 \le b_j \le p - 1$ for $j \ne \ell$, and $1 \le b_\ell \le p$. Then

$$\lambda(n) \ge \sum_{j=\ell}^k b_j p^j.$$

Proof of Proposition 1. We proceed by induction on k. When k = 0, then $n = b_0 \sigma_0 = b_0$. Since $1 \le b_0 \le p$, then $\lambda(n) = b_0$ by Corollary 1, thus, $\lambda(n) = b_0 p^0$ and the result holds. Now suppose $k \ge 1$. Our inductive hypothesis will be if

$$n = \sum_{j=\ell}^m b_j \sigma_j,$$

where $b_m \ge 1$, and $0 \le b_j \le p - 1$ for $j \ne \ell$, and $1 \le b_\ell \le p$, and m < k, then

$$\lambda(n) \ge \sum_{j=\ell}^m b_j p^j$$

Let M be an \mathbb{F}_p -matrix with n nonzero columns. Suppose $\vec{v} \in \mathbf{row}^*(M)$ with

$$\|\vec{v}\| < \sum_{j=\ell}^k b_j p^j.$$

Then

$$n - \|\vec{v}\| > n - \sum_{j=\ell}^{k} b_j p^j = \sum_{j=\ell}^{k} b_j \sigma_j - \sum_{j=\ell}^{k} b_j p^j$$
$$= \sum_{j=\ell}^{k} b_j (\sigma_j - p^j)$$
$$= \sum_{j=\ell}^{k} b_j \sigma_{j-1},$$

where we define $\sigma_{-1} = 0$ to handle the case j = 0, since $\sigma_0 - p^0 = 0$. Thus,

$$n - \|\vec{v}\| \ge \sum_{\ell - 1 \le j \le k - 1} b_{j+1} \sigma_j + 1.$$

We want to determine a lower bound on $p\lambda\left(\sum_{j=\ell-1}^{k-1} b_{j+1}\sigma_j + 1\right)$ that allows us to conclude that $p\lambda(n - \|\vec{v}\|) > \|\vec{v}\|$ so that we may use Lemma 1. We consider the case where $b_{\ell} = p$ and the case where $1 \le b_{\ell} \le p - 1$ separately.

Suppose $b_{\ell} = p$. Then

$$\sum_{\ell-1 \le j \le k-1} b_{j+1}\sigma_j + 1 = \sum_{\ell \le j \le k-1} b_{j+1}\sigma_j + b_\ell\sigma_{\ell-1} + 1$$
$$= \sum_{\ell \le j \le k-1} b_{j+1}\sigma_j + (p\sigma_{\ell-1} + 1))$$
$$= \sum_{\ell \le j \le k-1} b_{j+1}\sigma_j + \sigma_\ell$$
$$= \sum_{\ell+1 \le j \le k-1} b_{j+1}\sigma_j + b_{\ell+1}\sigma_\ell + \sigma_\ell$$
$$= \sum_{\ell+1 \le j \le k-1} b_{j+1}\sigma_j + (b_{\ell+1} + 1)\sigma_\ell$$

Notice that our sum satisfies all of the criteria for the inductive hypothesis. Specifically, the coefficient of its lowest sigma-term σ_{ℓ} is $b_{\ell+1} + 1$, which satisfies $1 \leq b_{\ell+1} + 1 \leq p$; the coefficient of σ_j is b_{j+1} and $0 \leq b_{j+1} \leq p-1$ for $j \neq \ell$; the coefficient of the largest sigma-term σ_{k-1} is b_k , which satisfies $b_k \geq 1$; and finally, the index of its largest sigma term is k-1 which is strictly less than k. Therefore, by the inductive hypothesis,

$$p \cdot \lambda \left(\sum_{\ell+1 \le j \le k-1} b_{j+1} \sigma_j + (b_{\ell+1}+1) \sigma_\ell \right) \ge p \left(\sum_{\ell+1 \le j \le k-1} b_{j+1} p^j + (b_{\ell+1}+1) p^\ell \right)$$
$$= \sum_{\ell+1 \le j \le k-1} b_{j+1} p^{j+1} + (b_{\ell+1}+1) p^{\ell+1}$$
$$= \sum_{\ell \le j \le k-1} b_{j+1} p^{j+1} + p \cdot p^\ell$$
$$= \sum_{\ell+1 \le j \le k} b_j p^j + p \cdot p^\ell$$
$$= \sum_{\ell \le j \le k} b_j p^j,$$

where the last equality holds because $b_{\ell} = p$. Since λ is a nondecreasing function, our previous work implies

$$p\lambda(n - \|\vec{v}\|) \ge p \cdot \lambda \left(\sum_{\ell+1 \le j \le k-1} b_{j+1}\sigma_j + (b_{\ell+1} + 1)\sigma_\ell\right)$$
$$\ge \sum_{\ell \le j \le k} b_j p^j > \|\vec{v}\|.$$

Thus, by Lemma 1, there is a vector $\vec{z} \in \mathbf{row}^*(M)$ such that $\|\vec{z}\| > \|\vec{v}\|$.

Now suppose $1 \leq b_{\ell} \leq p-1$. Recall that our sum is

$$\sum_{\ell-1 \le j \le k-1} b_{j+1}\sigma_j + 1 = \sum_{\ell-1 \le j \le k-1} b_{j+1}\sigma_j + 1 \cdot \sigma_0.$$

In this case, the smallest sigma-term is σ_0 , and its coefficient is $b_1 + 1$, where $b_1 = 0$ if $\ell \geq 2$. We note that our sum satisfies all of the criteria for the inductive hypothesis. Since each b_j satisfies $0 \leq b_j \leq p - 1$, then $1 \leq b_1 + 1 \leq p$; when $j \geq 1$, the coefficient of each σ_j is b_{j+1} and $0 \leq b_{j+1} \leq p - 1$; the coefficient of the largest sigma-term σ_{k-1} is b_k , which satisfies $b_k \geq 1$; and finally, the index of its largest sigma term is k - 1 which is strictly less than k.

When $\ell \geq 2$, the coefficient of σ_0 is 1, and we apply the inductive hypothesis to obtain

$$p \cdot \lambda \left(\sum_{\ell-1 \le j \le k-1} b_{j+1} \sigma_j + 1 \right) \ge p \left(\sum_{\ell-1 \le j \le k-1} b_{j+1} p^j + 1 \right)$$
$$= \sum_{\ell-1 \le j \le k-1} b_{j+1} p^{j+1} + p$$
$$= \sum_{\ell \le j \le k} b_j p^j + p.$$

Thus,

$$p\lambda(n - \|\vec{v}\|) \ge p \cdot \lambda \left(\sum_{\ell-1 \le j \le k-1} b_{j+1}\sigma_j + 1\right)$$
$$\ge \sum_{\ell \le j \le k} b_j p^j + p > \|\vec{v}\|.$$

When $\ell \in \{0,1\}$, our sum is $\sum_{j=0}^{k-1} b_{j+1}\sigma_j + 1$, and we apply the inductive hypothesis to obtain

$$p \cdot \lambda \left(\sum_{0 \le j \le k-1} b_{j+1} \sigma_j + 1 \right) = p \cdot \lambda \left(\sum_{1 \le j \le k-1} b_{j+1} \sigma_j + (b_1 + 1) \right)$$
$$\geq p \left(\sum_{1 \le j \le k-1} b_{j+1} p^j + b_1 + 1 \right)$$
$$= \sum_{1 \le j \le k-1} b_{j+1} p^{j+1} + b_1 p + p$$
$$= \sum_{1 \le j \le k} b_j p^j + p.$$

Thus,

$$p\lambda(n - \|\vec{v}\|) \ge p \cdot \lambda \left(\sum_{0 \le j \le k-1} b_{j+1}\sigma_j + 1\right)$$
$$\ge \sum_{1 \le j \le k} b_j p^j + p$$
$$> \sum_{\ell \le j \le k} b_j p^j > \|\vec{v}\|.$$

Thus, by Lemma 1, there is a vector $\vec{z} \in \mathbf{row}^*(M)$ such that $\|\vec{z}\| > \|\vec{v}\|$. Therefore $\lambda(n) \ge \sum_{j=\ell}^k b_j p^j$.

Now we show that every $n \ge 1$ can be written in the form described in Proposition 1.

Claim 1. Let $n \in \mathbb{Z}^+$. Suppose $n < \sigma_{k+1}$. Let $n_{k+1} = n$, and for $0 \le j \le k$, assuming n_{j+1} is defined, let b_j be the largest integer such that $b_j\sigma_j \le n_{j+1}$, and let $n_j = n_{j+1} - b_j\sigma_j$. Then for $0 \le j \le k$, we have $0 \le n_{j+1} \le p\sigma_j$ and $0 \le b_j \le p$. Moreover,

$$n = \sum_{j=0}^{k} b_j \sigma_j,$$

and if $b_j = p$, then $b_i = 0$ for i < j.

Proof of Claim 1. Suppose $n \in \mathbb{Z}^+$ and $n < \sigma_{k+1}$. Then $n \leq \sigma_{k+1} - 1 = p\sigma_k$. Let $n_{k+1} = n$, and for $0 \leq j \leq k$, assuming n_{j+1} is defined, let b_j be the largest integer such that $b_j\sigma_j \leq n_{j+1}$, and let $n_j = n_{j+1} - b_j\sigma_j$. We proceed by induction on k - j. Assume $0 \leq n_{j+1} \leq p\sigma_j$ and let b_j and n_j be defined as above. Since $0 \leq n_{j+1}$, then $b_j \geq 0$. Since $n_{j+1} \leq p\sigma_j$ and $b_j\sigma_j \leq n_{j+1}$, then $b_j\sigma_j \leq p\sigma_j$. Thus, since $\sigma_j \geq 1$, we have $b_j \leq p$. Since $b_j\sigma_j \leq n_{j+1}$ and $n_j = n_{j+1} - b_k\sigma_k$, then $n_j \geq 0$. Since $n_{j+1} < (b_j + 1)\sigma_j$, then $n_{j+1} - b_j\sigma_j < \sigma_j$, i.e., $n_j \leq \sigma_j - 1 = p\sigma_{j-1}$. Therefore, by induction, $0 \leq n_{j+1} \leq p\sigma_j$ and $0 \leq b_j \leq p$ for $0 \leq j \leq k$.

Now suppose $b_j = p$. Since $b_j \sigma_j \le n_{j+1} \le p\sigma_j$, then $n_{j+1} = p\sigma_j$ and $n_j = n_{j+1} - b_j \sigma_j = 0$. Moreover, $b_i = 0$ and $n_i = 0$ for all i < j.

To see that $n = \sum_{j=0}^{k} b_j \sigma_j$, observe that $b_j \sigma_j = n_{j+1} - n_j$ for $0 \le j \le k$, because of the definition of n_j . Thus,

$$\sum_{j=0}^{k} b_j \sigma_j = \sum_{j=0}^{k} (n_{j+1} - n_j) = n_{k+1} - n_0 = n - n_0.$$

Since $0 \leq n_1 \leq p\sigma_0 = p$, then, by definition, $b_0 = n_1$ and $n_0 = n_1 - b_0\sigma_0 = n_1 - n_1(1) = 0$. Thus, $\sum_{j=0}^k b_j\sigma_j = n$

With Proposition 1 and Claim 1, we have established a lower bound on $\lambda(n)$ for all $n \ge 1$. We need to prove the corresponding upper bound. We will do so by constructing a matrix with *n* columns whose capacity equals the lower bound given in Proposition 1. We begin by constructing such a matrix for certain values of *n*, namely, when $n = \sigma_k$ for some $k \ge 0$. For each integer $k \ge 0$, we define a $(k + 1) \times \sigma_k$ matrix B_k , recursively, as follows. The matrix B_0 is the 1×1 matrix whose sole entry is 1. For $k \ge 1$, B_k can be defined as a block matrix with a "row" consisting of p copies of B_{k-1} followed by a $k \times 1$ column of 0's, then one more row of dimensions $1 \times \sigma_k$ with its first σ_{k-1} entries equal to 0 (below the first B_{k-1}), then σ_{k-1} entries equal to 1 (below the next B_{k-1}), ..., then σ_{k-1} entries equal to p-1 (below the last B_{k-1}), and one last entry equal to 1, i.e.,

$$B_{k} = \begin{bmatrix} B_{k-1} & B_{k-1} & \cdots & B_{k-1} & \vdots \\ 0 \cdots & 1 \cdots & (p-1) \cdots & (p-1) & 1 \end{bmatrix}.$$

For $k \geq 1$, let B'_k be the $k \times \sigma_k$ matrix obtained from B_k by removing its last row, i.e.,

$$B'_{k} = \left[\begin{array}{c|c} B_{k-1} \\ B_{k-1} \\ \end{array} \middle| \begin{array}{c} \cdots \\ \cdots \\ \end{array} \right] \left[\begin{array}{c} 0 \\ \vdots \\ 0 \end{array} \right].$$

Lemma 2. For each $\vec{v} \in \mathbf{row}^*(B_k)$, $\|\vec{v}\| = p^k$.

Proof. We proceed by induction on k. When k = 0, the result is trivial. Let $k \ge 1$. Assume the result for j < k. Let $\vec{v} \in \mathbf{row}^*(B_k)$. We first consider the case where $\vec{v} \in \mathbf{row}^*(B'_k)$. Then we can write

$$\vec{v} = (v_1^{(0)}, \dots, v_{\sigma_{k-1}}^{(0)}, v_1^{(1)}, \dots, v_{\sigma_{k-1}}^{(1)}, \dots, v_1^{(p-1)}, \dots, v_{\sigma_{k-1}}^{(p-1)}, 0).$$

To shorten notation, we will write

$$\vec{v} = (\vec{v}_0, \vec{v}_1, \dots, \vec{v}_{p-1}, 0),$$
(3)

where $\vec{v}_i = (v_1^{(i)}, \ldots, v_{\sigma_{k-1}}^{(i)})$ for $0 \le i \le p-1$. Technically, in equation (3), \vec{v}_i simply represents the coordinates $v_1^{(i)}, \ldots, v_{\sigma_{k-1}}^{(i)}$. We observe that $\vec{v}_0 = \vec{v}_1 = \cdots = \vec{v}_{p-1}$ based on how B'_k and \vec{v} are defined. We also observe that $\vec{v}_i \in \mathbf{row}^*(B_{k-1})$. By the inductive hypothesis, $\|\vec{v}_i\| = p^{k-1}$, therefore, $\|\vec{v}\| = p^k$.

We now show the result holds for $\vec{w} \in \mathbf{row}^*(B_k) - \mathbf{row}^*(B'_k)$. Let \vec{u} be the last row in B_k , i.e., $\vec{u} = (0, \ldots, 0, 1, \ldots, 1, \ldots, p - 1, \ldots, p - 1, 1)$. We observe that $\|\vec{u}\| = \sigma_k - \sigma_{k-1} = p^k$, thus, the result holds when $\vec{w} = \vec{u}$. To illustrate our argument, we next consider the special case where $\vec{w} = \vec{v} + \vec{u}$ for some $\vec{v} \in \mathbf{row}^*(B'_k)$. Again, we slightly abuse notation and write $\vec{u} = (\vec{0}, \vec{1}, \ldots, (p-1)\vec{1}, 1)$, where \vec{c} (or $\vec{c1}$) represents the σ_{k-1} -dimensional vector (c, \ldots, c) . Then we can write $\vec{v} + \vec{u} = (\vec{v}_0 + \vec{0}, \vec{v}_1 + \vec{1}, \ldots, \vec{v}_{p-1} + (p-1)\vec{1}, 1)$. Since we are working modulo p, a coordinate of $\vec{v}_j + j\vec{1}$ is congruent to 0 if and only if the corresponding coordinate of \vec{v}_j is congruent to p - j. Thus, we can count the total number of coordinates that are congruent to 0 in $\vec{v} + \vec{u}$ as follows

$$\left(\begin{array}{c}
\text{Total } \# \text{ of } 0\text{-coordinates} \\
\text{in } \vec{v} + \vec{u}
\end{array}\right) = \sum_{j=0}^{p-1} (\# \text{ of } (p-j)\text{-coordinates in } \vec{v}_j).$$
(4)

Since $\vec{v}_0 = \vec{v}_1 = \cdots = \vec{v}_{p-1}$, equation (4) reduces to

$$\left(\begin{array}{c} \text{Total } \# \text{ of 0-coordinates} \\ \text{in } \vec{v} + \vec{u} \end{array}\right) = \left(\begin{array}{c} \text{Total } \# \text{ of coordinates} \\ \text{in } \vec{v}_0 \end{array}\right) = \sigma_{k-1}.$$

Thus, $\|\vec{v} + \vec{u}\| = \sigma_k - \sigma_{k-1} = p^k$. In general, $\vec{w} \in \mathbf{row}^*(B_k) - \mathbf{row}^*(B'_k)$ satisfies $\vec{w} = \vec{v} + c\vec{u}$ for some $\vec{v} \in \mathbf{row}^*(B'_k)$ and $c \not\equiv 0 \pmod{p}$. In this case, $\vec{w} = (\vec{v}_0 + c\vec{0}, \vec{v}_1 + c\vec{1}, \dots, \vec{v}_{p-1} + c(p-1)\vec{1}, 1)$, and equation (4) becomes

$$\begin{pmatrix} \text{Total } \# \text{ of } 0\text{-coordinates} \\ \text{in } \vec{w} \end{pmatrix} = \sum_{j=0}^{p-1} (\# \text{ of } (p-cj)\text{-coordinates in } \vec{v}_j),$$
(5)

where arithmetic is modulo p. Since $\vec{v}_0 = \vec{v}_1 = \cdots = \vec{v}_{p-1}$, we obtain

$$\left(\begin{array}{c} \text{Total } \# \text{ of } 0\text{-coordinates} \\ \text{in } \vec{w} \end{array}\right) = \sum_{j=0}^{p-1} (\# \text{ of } (p-cj)\text{-coordinates in } \vec{v}_0).$$

Since p is prime and $c \not\equiv 0 \pmod{p}$, then $\{p, p-c, p-2c, \dots, p-(p-1)c\}$ is a equivalent to $\{0, 1, \dots, p-1\}$ modulo p, thus,

$$\left(\begin{array}{c} \text{Total $\#$ of 0-coordinates}\\ \text{in \vec{w}} \end{array}\right) = \left(\begin{array}{c} \text{Total $\#$ of coordinates}\\ \text{in \vec{v}_0} \end{array}\right) = \sigma_{k-1}.$$

Therefore, $\|\vec{w}\| = \sigma_k - \sigma_{k-1} = p^k$, and we can conclude that for each $\vec{v} \in \mathbf{row}^*(B_k)$, $\|\vec{v}\| = p^k$.

Since B_k has σ_k columns, Lemma 2 implies that $\lambda(n) \leq p^k$ when $n = \sigma_k$ for some nonnegative integer k. We would like a similar upper bound on $\lambda(n)$ for all positive integers n. Thus, we provide the following proposition.

Proposition 2. If $n = \sum_{j=0}^{k} b_j \sigma_j$, then

$$\lambda(n) \le \sum_{j=0}^k b_j p^j.$$

Proof of Proposition 2. We will construct a matrix M with n columns such that $c(M) = \sum_{j=0}^{k} b_j p^j$. The matrix M will essentially be a block matrix with b_j copies of B_j for $0 \le j \le k$. However, the number of rows of B_j does not equal the number of rows of B_ℓ when $j \ne \ell$. Thus, for $0 \le j \le k$, we define the $(k+1) \times \sigma_j$ matrix $B_j^{(k)}$ where the first j rows of $B_j^{(k)}$ match the first j rows of B_j and the last k+1-j rows of $B_j^{(k)}$ all equal the last row of B_j . Thus, $B_0^{(k)}$ is a $(k+1) \times 1$ column of 1's, and for $1 \le j \le k$,

where the last row is repeated (k+1) - j times. After comparing $B_j^{(k)}$ with B_j , it is easy to see that $\mathbf{row}^*(B_j^{(k)}) = \mathbf{row}^*(B_j)$.

Let n be a positive integer such that $n = \sum_{j=0}^{k} b_j \sigma_j$. Let M be the $(k+1) \times n$ matrix defined as a block matrix with b_j copies of $B_j^{(k)}$ for $0 \le j \le k$, where the blocks appear in a single row in nondecreasing order according to their lower index, i.e.,

$$M = \left[\underbrace{B_0^{(k)} \cdots B_0^{(k)}}_{b_0} \middle| \underbrace{B_1^{(k)} \cdots B_1^{(k)}}_{b_1} \middle| \cdots \middle| \underbrace{B_k^{(k)} \cdots B_k^{(k)}}_{b_k} \right].$$

Let $\vec{v} \in \mathbf{row}^*(M)$. Then we can (essentially) write

$$\vec{v} = (\vec{v}_1^{(0)}, \dots, \vec{v}_{b_0}^{(0)}, \vec{v}_1^{(1)}, \dots, \vec{v}_{b_1}^{(1)}, \dots, \vec{v}_1^{(k)}, \dots, \vec{v}_{b_k}^{(k)})$$

where $\vec{v}_i^{(j)} \in \mathbf{row}^*(B_j)$ for $0 \le j \le k$ and $1 \le i \le b_j$. Moreover, for $1 \le i \le b_j$, we have $\vec{v}_i^{(j)} = \vec{v}_{b_i}^{(j)}$. Thus,

$$\|\vec{v}\| = \sum_{j=0}^{k} b_j \|\vec{v}_{b_j}^{(j)}\|.$$

Because $\vec{v}_{b_j}^{(j)} \in \mathbf{row}^*(B_j)$, Lemma 2 implies $\|\vec{v}_{b_j}^{(j)}\| = p^j$, therefore,

$$\|\vec{v}\| = \sum_{j=0}^k b_j p^j.$$

Thus, $c(M) = \sum_{j=0}^{k} b_j p^j$, and $\lambda(n) \le \sum_{j=0}^{k} b_j p^j$.

Thus, we can combine Propositions 1 and 2 with Claim 1 to obtain the following corollary. Corollary 2. Let $n \in \mathbb{Z}^+$. Suppose $n < \sigma_{k+1}$. Then

$$n = \sum_{j=0}^{k} b_j \sigma_j$$

where $0 \leq b_j \leq p$ for $0 \leq j \leq k$, and if $b_j = p$, then $b_i = 0$ for i < j. Moreover,

$$\lambda(n) = \sum_{j=0}^{k} b_j p^j.$$

Corollary 3. The sequence $\lambda(n)$ satisfies the meta-Fibonacci recurrence relation

$$\lambda(n) = \sum_{i=1}^{p} \lambda(n-i+1-\lambda(n-i)).$$

Proof of Corollary 3. We refer to Corollary 32 in [4], which implies that a sequence which is defined by the meta-Fibonacci recurrence relation (2) is also defined by the recurrence relation

$$\lambda(n) = p^k + \lambda(n - \sigma_k), \tag{6}$$

for $\sigma_k \leq n < \sigma_{k+1}$. Based on Corollary 2, it is clear that $\lambda(n)$ satisfies recurrence (6). Therefore, $\lambda(n)$ satisfies the meta-Fibonacci recurrence (2).

References

- [1] B.W. Conolly, Meta-Fibonacci sequences, Chapter XII in S. Vajda, *Fibonacci & Lucas Numbers, and the Golden Section*, Ellis Horwood Limited, 1989.
- [2] D. R. Hofstadter, Metamagical Themas, Basic Books, NY, 1985.
- [3] B. Jackson, F. Ruskey. Meta-Fibonacci sequences, binary trees and extremal compact codes, *Electronic J. Combin.*, **13** (2006), #R26.
- [4] F. Ruskey, C. Deugau. The Combinatorics of certain k-ary meta-Fibonacci sequences, J. Integer Sequences, 12 (2009), Article 09.4.3, 36 pp.