A Combinatorial Problem Solved by a Meta-Fibonacci Recurrence Relation

Ramin Naimi Eric Sundberg
Mathematics Department
Occidental College
Los Angeles, CA
\{rnaimi, sundberg\}@oxy.edu
Mathematics Subject Classification: 05A15

February 11, 2019

Abstract

We present a natural, combinatorial problem whose solution is given by the metaFibonacci recurrence relation $a(n)=\sum_{i=1}^{p} a(n-i+1-a(n-i))$, where p is prime. This combinatorial problem is less general than those given in [3] and [4], but it has the advantage of having a simpler statement.

1 Introduction

Let M be a matrix with entries in \mathbb{Z}_{2}, such that every column contains at least one 1 . We want to pick a subset of the rows such that when they are added together modulo 2 , their sum \vec{s} has as many 1's as possible. If M has n columns, what is the largest number of 1's we can guarantee \vec{s} to have? For example, if $n=5$, we can always find a set of rows whose sum \vec{s} contains at least four 1's. Let $\lambda(n)$ denote the largest number of 1's \vec{s} can be guaranteed to have for any M with n nonzero columns. We will show that $\lambda(n)$ satisfies the recurrence relation

$$
\begin{equation*}
\lambda(n)=\lambda(n-\lambda(n-1))+\lambda(n-1-\lambda(n-2)) . \tag{1}
\end{equation*}
$$

More generally, for p prime, let $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$ satisfy $v_{i} \in \mathbb{F}_{p}$ for $1 \leq i \leq n$. Let $\operatorname{supp}(\vec{v})=$ $\left\{i \in[n]: v_{i} \neq 0\right\}$ and let $\|\vec{v}\|=|\operatorname{supp}(\vec{v})|$, i.e., $\|\vec{v}\|$ is the number of nonzero terms in \vec{v}. Let M be an $m \times n$ matrix whose entries are in \mathbb{F}_{p}. Let $\operatorname{row}(M)$ be the rowspace of M, i.e., the set of all linear combinations of the row vectors of M over the field \mathbb{F}_{p}. Let $c(M)$ denote the capacity of M, which we define as follows,

$$
c(M)=\max _{\vec{v} \in \operatorname{row}(M)}\|\vec{v}\| .
$$

For each integer $n \geq 1$, let $\lambda_{p}(n)$ be the minimum possible capacity of an \mathbb{F}_{p}-matrix consisting of n nonzero columns (i.e., no column equals $\overrightarrow{0}$). Restated, let

$$
\mathcal{M}_{n}^{*}=\left\{M \in \mathbb{F}_{p}^{m \times n}: 1 \leq m \leq p^{n} \text { and no column of } M \text { equals } \overrightarrow{0}\right\},
$$

then

$$
\lambda_{p}(n)=\min _{M \in \mathcal{M}_{n}^{*}} c(M)
$$

We will see that λ_{p} satisfies the recurrence relation

$$
\begin{equation*}
\lambda_{p}(n)=\sum_{i=1}^{p} \lambda_{p}\left(n-i+1-\lambda_{p}(n-i)\right) . \tag{2}
\end{equation*}
$$

This type of recurrence relation is called a meta-Fibonacci relation.
Meta-Fibonacci sequences have been studied by various authors, dating at least as far back as 1985, when Hofstadter [2] apparently coined the term "meta-Fibonacci." These are integer sequences defined by "nested, Fibonacci-like" recurrence relations, such as relation (1), which was studied by Conolly [1], and (2). Generalizations of (2) were shown in [3] and [4] to be solutions to certain combinatorial problems involving k-ary infinite trees, and compositions of integers. The "matrix capacity" problem described above is a different combinatorial problem whose solution is also given by relation (2). This combinatorial problem is "natural" in the sense that it arose while the first named author was working on a problem in spatial graph theory. It was only later that we learned (through the OEIS A046699) that it can be characterized as a meta-Fibonacci sequence.

2 Main Result

We begin with a lemma which allows us to produce a lower bound on $\lambda_{p}(n)$. For the remainder of this paper, instead of writing λ_{p}, we will simply write λ. For a matrix M, let $\operatorname{row}^{*}(M)=\operatorname{row}(M)-\{\overrightarrow{0}\}$.
Lemma 1. Let M be an \mathbb{F}_{p}-matrix with n nonzero columns, i.e., $M \in \mathcal{M}_{n}^{*}$. Let $\vec{v} \in$ $\operatorname{row}^{*}(M)$. If

$$
p \lambda(n-\|\vec{v}\|)>\|\vec{v}\|
$$

then there is a vector $\vec{z} \in \operatorname{row}^{*}(M)$ such that $\|\vec{z}\|>\|\vec{v}\|$.
Proof. Let M be an \mathbb{F}_{p}-matrix with n nonzero columns. Let $\vec{v} \in \operatorname{row}^{*}(M)$, and let $k=\|\vec{v}\|$. Let $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$. W.l.o.g., suppose $v_{i} \neq 0$ for $1 \leq i \leq k$ and $v_{i}=0$ for $k+1 \leq i \leq n$. Let $\vec{w} \in \operatorname{row}^{*}(M)$ be such that $w_{i} \neq 0$ for at least $\lambda(n-k)$ coordinates i, where $k+1 \leq i \leq n$. In other words, if we let $\vec{w}_{L}=\left(w_{1}, \ldots, w_{k}\right)$ and $\vec{w}_{R}=\left(w_{k+1}, \ldots, w_{n}\right)$, then $\left\|\vec{w}_{R}\right\| \geq \lambda(n-k)$. Since $\|\vec{w}\|=\left\|\vec{w}_{L}\right\|+\left\|\vec{w}_{R}\right\|$, if $\left\|\vec{w}_{L}\right\| \geq(p-1) \lambda(n-k)$, then $\|\vec{w}\| \geq p \lambda(n-k)>\|\vec{v}\|$, and we are done. So we may assume that $\left\|\vec{w}_{L}\right\|<(p-1) \lambda(n-k)$.

Our goal will be to prove that there exists a nonzero constant c such that $\left\|c \vec{w}_{L}+\vec{v}_{L}\right\|>k-$ $\lambda(n-k)$, where $\vec{v}_{L}=\left(v_{1}, \ldots, v_{k}\right)$. Once we establish that such a constant exists, then we will be done, because we will have $\|c \vec{w}+\vec{v}\|=\left\|c \vec{w}_{L}+\vec{v}_{L}\right\|+\left\|\vec{w}_{R}\right\|>(k-\lambda(n-k))+\lambda(n-k)=k$.

For $1 \leq a \leq p-1$, let $S_{a}=\left\{i \in[k]: a w_{i}+v_{i}=0\right\}$. Since $v_{i} \neq 0$ for $1 \leq i \leq k$, then $S_{a} \subseteq \operatorname{supp}\left(\vec{w}_{L}\right)$. Thus, if $a w_{i}+v_{i}=0=b w_{i}+v_{i}$, then $w_{i} \neq 0$, which allows us to conclude that $a=b$. Therefore, if $a \neq b$, then $S_{a} \cap S_{b}=\emptyset$. Since $\bigcup_{a=1}^{p-1} S_{a} \subseteq \operatorname{supp}\left(\vec{w}_{L}\right)$ and the S_{a} are pairwise disjoint, we have

$$
\sum_{a=1}^{p-1}\left|S_{a}\right| \leq\left|\operatorname{supp}\left(\vec{w}_{L}\right)\right|=\left\|\vec{w}_{L}\right\|<(p-1) \lambda(n-k)
$$

Therefore, the average value of $\left|S_{a}\right|$ is strictly less than $\lambda(n-k)$, and if we let $c \in[p-1]$ be such that $\left|S_{c}\right|$ is minimum, then $\left|S_{c}\right|<\lambda(n-k)$. Thus, $\left\|c \vec{w}_{L}+\vec{v}_{L}\right\|=k-\left|S_{c}\right|>k-\lambda(n-k)$, and as noted above, we are done. Specifically, $\|c \vec{w}+\vec{v}\|>\|\vec{v}\|$.

It is easy to check that the following corollary holds.
Corollary 1. If $1 \leq n \leq p$, then $\lambda(n)=n$.
For an integer $k \geq 0$, let $\sigma_{k}=\sum_{j=0}^{k} p^{j}$.
Proposition 1. Suppose

$$
n=\sum_{j=\ell}^{k} b_{j} \sigma_{j}
$$

where $b_{k} \geq 1$, and $0 \leq b_{j} \leq p-1$ for $j \neq \ell$, and $1 \leq b_{\ell} \leq p$. Then

$$
\lambda(n) \geq \sum_{j=\ell}^{k} b_{j} p^{j}
$$

Proof of Proposition 1. We proceed by induction on k. When $k=0$, then $n=b_{0} \sigma_{0}=b_{0}$. Since $1 \leq b_{0} \leq p$, then $\lambda(n)=b_{0}$ by Corollary 1, thus, $\lambda(n)=b_{0} p^{0}$ and the result holds. Now suppose $k \geq 1$. Our inductive hypothesis will be if

$$
n=\sum_{j=\ell}^{m} b_{j} \sigma_{j}
$$

where $b_{m} \geq 1$, and $0 \leq b_{j} \leq p-1$ for $j \neq \ell$, and $1 \leq b_{\ell} \leq p$, and $m<k$, then

$$
\lambda(n) \geq \sum_{j=\ell}^{m} b_{j} p^{j}
$$

Let M be an \mathbb{F}_{p}-matrix with n nonzero columns. Suppose $\vec{v} \in \operatorname{row}^{*}(M)$ with

$$
\|\vec{v}\|<\sum_{j=\ell}^{k} b_{j} p^{j}
$$

Then

$$
\begin{aligned}
n-\|\vec{v}\|>n-\sum_{j=\ell}^{k} b_{j} p^{j} & =\sum_{j=\ell}^{k} b_{j} \sigma_{j}-\sum_{j=\ell}^{k} b_{j} p^{j} \\
& =\sum_{j=\ell}^{k} b_{j}\left(\sigma_{j}-p^{j}\right) \\
& =\sum_{j=\ell}^{k} b_{j} \sigma_{j-1},
\end{aligned}
$$

where we define $\sigma_{-1}=0$ to handle the case $j=0$, since $\sigma_{0}-p^{0}=0$. Thus,

$$
n-\|\vec{v}\| \geq \sum_{\ell-1 \leq j \leq k-1} b_{j+1} \sigma_{j}+1
$$

We want to determine a lower bound on $p \lambda\left(\sum_{j=\ell-1}^{k-1} b_{j+1} \sigma_{j}+1\right)$ that allows us to conclude that $p \lambda(n-\|\vec{v}\|)>\|\vec{v}\|$ so that we may use Lemma 1 . We consider the case where $b_{\ell}=p$ and the case where $1 \leq b_{\ell} \leq p-1$ separately.

Suppose $b_{\ell}=p$. Then

$$
\begin{aligned}
\sum_{\ell-1 \leq j \leq k-1} b_{j+1} \sigma_{j}+1 & =\sum_{\ell \leq j \leq k-1} b_{j+1} \sigma_{j}+b_{\ell} \sigma_{\ell-1}+1 \\
& =\sum_{\ell \leq j \leq k-1} b_{j+1} \sigma_{j}+\left(p \sigma_{\ell-1}+1\right) \\
& =\sum_{\ell \leq j \leq k-1} b_{j+1} \sigma_{j}+\sigma_{\ell} \\
& =\sum_{\ell+1 \leq j \leq k-1} b_{j+1} \sigma_{j}+b_{\ell+1} \sigma_{\ell}+\sigma_{\ell} \\
& =\sum_{\ell+1 \leq j \leq k-1} b_{j+1} \sigma_{j}+\left(b_{\ell+1}+1\right) \sigma_{\ell} .
\end{aligned}
$$

Notice that our sum satisfies all of the criteria for the inductive hypothesis. Specifically, the coefficient of its lowest sigma-term σ_{ℓ} is $b_{\ell+1}+1$, which satisfies $1 \leq b_{\ell+1}+1 \leq p$; the coefficient of σ_{j} is b_{j+1} and $0 \leq b_{j+1} \leq p-1$ for $j \neq \ell$; the coefficient of the largest sigma-term σ_{k-1} is b_{k}, which satisfies $b_{k} \geq 1$; and finally, the index of its largest sigma term is $k-1$ which is strictly less than k. Therefore, by the inductive hypothesis,

$$
\begin{aligned}
p \cdot \lambda\left(\sum_{\ell+1 \leq j \leq k-1} b_{j+1} \sigma_{j}+\left(b_{\ell+1}+1\right) \sigma_{\ell}\right) & \geq p\left(\sum_{\ell+1 \leq j \leq k-1} b_{j+1} p^{j}+\left(b_{\ell+1}+1\right) p^{\ell}\right) \\
& =\sum_{\ell+1 \leq j \leq k-1} b_{j+1} p^{j+1}+\left(b_{\ell+1}+1\right) p^{\ell+1} \\
& =\sum_{\ell \leq j \leq k-1} b_{j+1} p^{j+1}+p \cdot p^{\ell} \\
& =\sum_{\ell+1 \leq j \leq k} b_{j} p^{j}+p \cdot p^{\ell} \\
& =\sum_{\ell \leq j \leq k} b_{j} p^{j},
\end{aligned}
$$

where the last equality holds because $b_{\ell}=p$. Since λ is a nondecreasing function, our previous work implies

$$
\begin{aligned}
p \lambda(n-\|\vec{v}\|) & \geq p \cdot \lambda\left(\sum_{\ell+1 \leq j \leq k-1} b_{j+1} \sigma_{j}+\left(b_{\ell+1}+1\right) \sigma_{\ell}\right) \\
& \geq \sum_{\ell \leq j \leq k} b_{j} p^{j}>\|\vec{v}\| .
\end{aligned}
$$

Thus, by Lemma 1 , there is a vector $\vec{z} \in \operatorname{row}^{*}(M)$ such that $\|\vec{z}\|>\|\vec{v}\|$.
Now suppose $1 \leq b_{\ell} \leq p-1$. Recall that our sum is

$$
\sum_{\ell-1 \leq j \leq k-1} b_{j+1} \sigma_{j}+1=\sum_{\ell-1 \leq j \leq k-1} b_{j+1} \sigma_{j}+1 \cdot \sigma_{0}
$$

In this case, the smallest sigma-term is σ_{0}, and its coefficient is $b_{1}+1$, where $b_{1}=0$ if $\ell \geq 2$. We note that our sum satisfies all of the criteria for the inductive hypothesis. Since each b_{j} satisfies $0 \leq b_{j} \leq p-1$, then $1 \leq b_{1}+1 \leq p$; when $j \geq 1$, the coefficient of each σ_{j} is b_{j+1} and $0 \leq b_{j+1} \leq p-1$; the coefficient of the largest sigma-term σ_{k-1} is b_{k}, which satisfies $b_{k} \geq 1$; and finally, the index of its largest sigma term is $k-1$ which is strictly less than k.

When $\ell \geq 2$, the coefficient of σ_{0} is 1 , and we apply the inductive hypothesis to obtain

$$
\begin{aligned}
p \cdot \lambda\left(\sum_{\ell-1 \leq j \leq k-1} b_{j+1} \sigma_{j}+1\right) & \geq p\left(\sum_{\ell-1 \leq j \leq k-1} b_{j+1} p^{j}+1\right) \\
& =\sum_{\ell-1 \leq j \leq k-1} b_{j+1} p^{j+1}+p \\
& =\sum_{\ell \leq j \leq k} b_{j} p^{j}+p .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
p \lambda(n-\|\vec{v}\|) & \geq p \cdot \lambda\left(\sum_{\ell-1 \leq j \leq k-1} b_{j+1} \sigma_{j}+1\right) \\
& \geq \sum_{\ell \leq j \leq k} b_{j} p^{j}+p>\|\vec{v}\| .
\end{aligned}
$$

When $\ell \in\{0,1\}$, our sum is $\sum_{j=0}^{k-1} b_{j+1} \sigma_{j}+1$, and we apply the inductive hypothesis to obtain

$$
\begin{aligned}
p \cdot \lambda\left(\sum_{0 \leq j \leq k-1} b_{j+1} \sigma_{j}+1\right) & =p \cdot \lambda\left(\sum_{1 \leq j \leq k-1} b_{j+1} \sigma_{j}+\left(b_{1}+1\right)\right) \\
& \geq p\left(\sum_{1 \leq j \leq k-1} b_{j+1} p^{j}+b_{1}+1\right) \\
& =\sum_{1 \leq j \leq k-1} b_{j+1} p^{j+1}+b_{1} p+p \\
& =\sum_{1 \leq j \leq k} b_{j} p^{j}+p .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
p \lambda(n-\|\vec{v}\|) & \geq p \cdot \lambda\left(\sum_{0 \leq j \leq k-1} b_{j+1} \sigma_{j}+1\right) \\
& \geq \sum_{1 \leq j \leq k} b_{j} p^{j}+p \\
& >\sum_{\ell \leq j \leq k} b_{j} p^{j}>\|\vec{v}\| .
\end{aligned}
$$

Thus, by Lemma 1 , there is a vector $\vec{z} \in \operatorname{row}^{*}(M)$ such that $\|\vec{z}\|>\|\vec{v}\|$. Therefore $\lambda(n) \geq$ $\sum_{j=\ell}^{k} b_{j} p^{j}$.

Now we show that every $n \geq 1$ can be written in the form described in Proposition 1.
Claim 1. Let $n \in \mathbb{Z}^{+}$. Suppose $n<\sigma_{k+1}$. Let $n_{k+1}=n$, and for $0 \leq j \leq k$, assuming n_{j+1} is defined, let b_{j} be the largest integer such that $b_{j} \sigma_{j} \leq n_{j+1}$, and let $n_{j}=n_{j+1}-b_{j} \sigma_{j}$. Then for $0 \leq j \leq k$, we have $0 \leq n_{j+1} \leq p \sigma_{j}$ and $0 \leq b_{j} \leq p$. Moreover,

$$
n=\sum_{j=0}^{k} b_{j} \sigma_{j}
$$

and if $b_{j}=p$, then $b_{i}=0$ for $i<j$.
Proof of Claim 1. Suppose $n \in \mathbb{Z}^{+}$and $n<\sigma_{k+1}$. Then $n \leq \sigma_{k+1}-1=p \sigma_{k}$. Let $n_{k+1}=n$, and for $0 \leq j \leq k$, assuming n_{j+1} is defined, let b_{j} be the largest integer such that $b_{j} \sigma_{j} \leq n_{j+1}$, and let $n_{j}=n_{j+1}-b_{j} \sigma_{j}$. We proceed by induction on $k-j$. Assume $0 \leq n_{j+1} \leq p \sigma_{j}$ and let b_{j} and n_{j} be defined as above. Since $0 \leq n_{j+1}$, then $b_{j} \geq 0$. Since $n_{j+1} \leq p \sigma_{j}$ and $b_{j} \sigma_{j} \leq n_{j+1}$, then $b_{j} \sigma_{j} \leq p \sigma_{j}$. Thus, since $\sigma_{j} \geq 1$, we have $b_{j} \leq p$. Since $b_{j} \sigma_{j} \leq n_{j+1}$ and $n_{j}=n_{j+1}-b_{k} \sigma_{k}$, then $n_{j} \geq 0$. Since $n_{j+1}<\left(b_{j}+1\right) \sigma_{j}$, then $n_{j+1}-b_{j} \sigma_{j}<\sigma_{j}$, i.e., $n_{j} \leq \sigma_{j}-1=p \sigma_{j-1}$. Therefore, by induction, $0 \leq n_{j+1} \leq p \sigma_{j}$ and $0 \leq b_{j} \leq p$ for $0 \leq j \leq k$.

Now suppose $b_{j}=p$. Since $b_{j} \sigma_{j} \leq n_{j+1} \leq p \sigma_{j}$, then $n_{j+1}=p \sigma_{j}$ and $n_{j}=n_{j+1}-b_{j} \sigma_{j}=0$. Moreover, $b_{i}=0$ and $n_{i}=0$ for all $i<j$.

To see that $n=\sum_{j=0}^{k} b_{j} \sigma_{j}$, observe that $b_{j} \sigma_{j}=n_{j+1}-n_{j}$ for $0 \leq j \leq k$, because of the definition of n_{j}. Thus,

$$
\sum_{j=0}^{k} b_{j} \sigma_{j}=\sum_{j=0}^{k}\left(n_{j+1}-n_{j}\right)=n_{k+1}-n_{0}=n-n_{0} .
$$

Since $0 \leq n_{1} \leq p \sigma_{0}=p$, then, by definition, $b_{0}=n_{1}$ and $n_{0}=n_{1}-b_{0} \sigma_{0}=n_{1}-n_{1}(1)=0$. Thus, $\sum_{j=0}^{k} b_{j} \sigma_{j}=n$

With Proposition 1 and Claim 1, we have established a lower bound on $\lambda(n)$ for all $n \geq 1$. We need to prove the corresponding upper bound. We will do so by constructing a matrix with n columns whose capacity equals the lower bound given in Proposition 1. We begin by constructing such a matrix for certain values of n, namely, when $n=\sigma_{k}$ for some $k \geq 0$.

For each integer $k \geq 0$, we define a $(k+1) \times \sigma_{k}$ matrix B_{k}, recursively, as follows. The matrix B_{0} is the 1×1 matrix whose sole entry is 1 . For $k \geq 1, B_{k}$ can be defined as a block matrix with a "row" consisting of p copies of B_{k-1} followed by a $k \times 1$ column of 0 's, then one more row of dimensions $1 \times \sigma_{k}$ with its first σ_{k-1} entries equal to 0 (below the first B_{k-1}), then σ_{k-1} entries equal to 1 (below the next B_{k-1}), \ldots, then σ_{k-1} entries equal to $p-1$ (below the last B_{k-1}), and one last entry equal to 1 , i.e.,

$$
B_{k}=\left[\begin{array}{c|c|c|c|c}
& & & 0 \\
B_{k-1} & B_{k-1} & \cdots & B_{k-1} & \vdots \\
& & & & 0 \\
\hline 0 \ldots 0 & 1 \ldots 1 & \cdots & (p-1) \ldots(p-1) & 1
\end{array}\right]
$$

For $k \geq 1$, let B_{k}^{\prime} be the $k \times \sigma_{k}$ matrix obtained from B_{k} by removing its last row, i.e.,

$$
B_{k}^{\prime}=\left[\begin{array}{c|c|c|c|c}
& \\
B_{k-1} & B_{k-1} & \ldots & B_{k-1} & \vdots \\
\vdots
\end{array}\right] .
$$

Lemma 2. For each $\vec{v} \in \operatorname{row}^{*}\left(B_{k}\right),\|\vec{v}\|=p^{k}$.
Proof. We proceed by induction on k. When $k=0$, the result is trivial. Let $k \geq 1$. Assume the result for $j<k$. Let $\vec{v} \in \operatorname{row}^{*}\left(B_{k}\right)$. We first consider the case where $\vec{v} \in \operatorname{row}^{*}\left(B_{k}^{\prime}\right)$. Then we can write

$$
\vec{v}=\left(v_{1}^{(0)}, \ldots, v_{\sigma_{k-1}}^{(0)}, v_{1}^{(1)}, \ldots, v_{\sigma_{k-1}}^{(1)}, \ldots, v_{1}^{(p-1)}, \ldots, v_{\sigma_{k-1}}^{(p-1)}, 0\right)
$$

To shorten notation, we will write

$$
\begin{equation*}
\vec{v}=\left(\vec{v}_{0}, \vec{v}_{1}, \ldots, \vec{v}_{p-1}, 0\right) \tag{3}
\end{equation*}
$$

where $\vec{v}_{i}=\left(v_{1}^{(i)}, \ldots, v_{\sigma_{k-1}}^{(i)}\right)$ for $0 \leq i \leq p-1$. Technically, in equation (3), \vec{v}_{i} simply represents the coordinates $v_{1}^{(i)}, \ldots, v_{\sigma_{k-1}}^{(i)}$. We observe that $\vec{v}_{0}=\vec{v}_{1}=\cdots=\vec{v}_{p-1}$ based on how B_{k}^{\prime} and \vec{v} are defined. We also observe that $\vec{v}_{i} \in \operatorname{row}^{*}\left(B_{k-1}\right)$. By the inductive hypothesis, $\left\|\vec{v}_{i}\right\|=p^{k-1}$, therefore, $\|\vec{v}\|=p^{k}$.

We now show the result holds for $\vec{w} \in \operatorname{row}^{*}\left(B_{k}\right)-\operatorname{row}^{*}\left(B_{k}^{\prime}\right)$. Let \vec{u} be the last row in B_{k}, i.e., $\vec{u}=(0, \ldots, 0,1, \ldots, 1, \ldots, p-1, \ldots, p-1,1)$. We observe that $\|\vec{u}\|=\sigma_{k}-\sigma_{k-1}=p^{k}$, thus, the result holds when $\vec{w}=\vec{u}$. To illustrate our argument, we next consider the special case where $\vec{w}=\vec{v}+\vec{u}$ for some $\vec{v} \in \operatorname{row}^{*}\left(B_{k}^{\prime}\right)$. Again, we slightly abuse notation and write $\vec{u}=(\overrightarrow{0}, \overrightarrow{1}, \ldots,(p-1) \overrightarrow{1}, 1)$, where \vec{c} (or $c \overrightarrow{1})$ represents the σ_{k-1}-dimensional vector (c, \ldots, c). Then we can write $\vec{v}+\vec{u}=\left(\vec{v}_{0}+\overrightarrow{0}, \vec{v}_{1}+\overrightarrow{1}, \ldots, \vec{v}_{p-1}+(p-1) \overrightarrow{1}, 1\right)$. Since we are working modulo p, a coordinate of $\vec{v}_{j}+j \overrightarrow{1}$ is congruent to 0 if and only if the corresponding coordinate of \vec{v}_{j} is congruent to $p-j$. Thus, we can count the total number of coordinates that are congruent to 0 in $\vec{v}+\vec{u}$ as follows

$$
\begin{equation*}
\binom{\text { Total \# of 0-coordinates }}{\text { in } \vec{v}+\vec{u}}=\sum_{j=0}^{p-1}\left(\# \text { of }(p-j) \text {-coordinates in } \vec{v}_{j}\right) . \tag{4}
\end{equation*}
$$

Since $\vec{v}_{0}=\vec{v}_{1}=\cdots=\vec{v}_{p-1}$, equation (4) reduces to

$$
\binom{\text { Total \# of 0-coordinates }}{\text { in } \vec{v}+\vec{u}}=\binom{\text { Total \# of coordinates }}{\text { in } \vec{v}_{0}}=\sigma_{k-1} \text {. }
$$

Thus, $\|\vec{v}+\vec{u}\|=\sigma_{k}-\sigma_{k-1}=p^{k}$. In general, $\vec{w} \in \operatorname{row}^{*}\left(B_{k}\right)-\operatorname{row}^{*}\left(B_{k}^{\prime}\right)$ satisfies $\vec{w}=\vec{v}+c \vec{u}$ for some $\vec{v} \in \operatorname{row}^{*}\left(B_{k}^{\prime}\right)$ and $c \not \equiv 0(\bmod p)$. In this case, $\vec{w}=\left(\vec{v}_{0}+c \overrightarrow{0}, \vec{v}_{1}+c \overrightarrow{1}, \ldots, \vec{v}_{p-1}+\right.$ $c(p-1) \overrightarrow{1}, 1)$, and equation (4) becomes

$$
\begin{equation*}
\binom{\text { Total \# of 0-coordinates }}{\text { in } \vec{w}}=\sum_{j=0}^{p-1}\left(\# \text { of }(p-c j) \text {-coordinates in } \vec{v}_{j}\right), \tag{5}
\end{equation*}
$$

where arithmetic is modulo p. Since $\vec{v}_{0}=\vec{v}_{1}=\cdots=\vec{v}_{p-1}$, we obtain

$$
\binom{\text { Total \# of 0-coordinates }}{\text { in } \vec{w}}=\sum_{j=0}^{p-1}\left(\# \text { of }(p-c j) \text {-coordinates in } \vec{v}_{0}\right) .
$$

Since p is prime and $c \not \equiv 0(\bmod p)$, then $\{p, p-c, p-2 c, \ldots, p-(p-1) c\}$ is a equivalent to $\{0,1, \ldots, p-1\}$ modulo p, thus,

$$
\binom{\text { Total \# of 0-coordinates }}{\text { in } \vec{w}}=\binom{\text { Total \# of coordinates }}{\text { in } \vec{v}_{0}}=\sigma_{k-1} .
$$

Therefore, $\|\vec{w}\|=\sigma_{k}-\sigma_{k-1}=p^{k}$, and we can conclude that for each $\vec{v} \in \operatorname{row}^{*}\left(B_{k}\right)$, $\|\vec{v}\|=p^{k}$.

Since B_{k} has σ_{k} columns, Lemma 2 implies that $\lambda(n) \leq p^{k}$ when $n=\sigma_{k}$ for some nonnegative integer k. We would like a similar upper bound on $\lambda(n)$ for all positive integers n. Thus, we provide the following proposition.
Proposition 2. If $n=\sum_{j=0}^{k} b_{j} \sigma_{j}$, then

$$
\lambda(n) \leq \sum_{j=0}^{k} b_{j} p^{j}
$$

Proof of Proposition 2. We will construct a matrix M with n columns such that $c(M)=$ $\sum_{j=0}^{k} b_{j} p^{j}$. The matrix M will essentially be a block matrix with b_{j} copies of B_{j} for $0 \leq j \leq k$. However, the number of rows of B_{j} does not equal the number of rows of B_{ℓ} when $j \neq \ell$. Thus, for $0 \leq j \leq k$, we define the $(k+1) \times \sigma_{j}$ matrix $B_{j}^{(k)}$ where the first j rows of $B_{j}^{(k)}$ match the first j rows of B_{j} and the last $k+1-j$ rows of $B_{j}^{(k)}$ all equal the last row of B_{j}. Thus, $B_{0}^{(k)}$ is a $(k+1) \times 1$ column of 1 's, and for $1 \leq j \leq k$,

$$
B_{j}^{(k)}=\left[\begin{array}{c|c|c|c|c}
B_{j-1} & B_{j-1} & \cdots & B_{j-1} & 0 \\
& & & & 0 \\
\hline 0 \ldots 0 & 1 \ldots 1 & \cdots & (p-1) \ldots(p-1) & 1 \\
\hline 0 \ldots 0 & 1 \ldots 1 & \cdots & (p-1) \ldots(p-1) & 1 \\
\hline \vdots & \vdots & \cdots & \vdots & \vdots \\
\hline 0 \ldots 0 & 1 \ldots 1 & \cdots & (p-1) \ldots(p-1) & 1
\end{array}\right]
$$

where the last row is repeated $(k+1)-j$ times. After comparing $B_{j}^{(k)}$ with B_{j}, it is easy to see that $\operatorname{row}^{*}\left(B_{j}^{(k)}\right)=\operatorname{row}^{*}\left(B_{j}\right)$.

Let n be a positive integer such that $n=\sum_{j=0}^{k} b_{j} \sigma_{j}$. Let M be the $(k+1) \times n$ matrix defined as a block matrix with b_{j} copies of $B_{j}^{(k)}$ for $0 \leq j \leq k$, where the blocks appear in a single row in nondecreasing order according to their lower index, i.e.,

$$
M=[\left.\begin{array}{lll}
\underbrace{B_{0}^{(k)}}_{b_{0}} \cdots \cdots & B_{0}^{(k)}
\end{array}|\underbrace{B_{1}^{(k)}}_{b_{1}} \cdots \cdots B_{1}^{(k)}| \cdots \right\rvert\, \underbrace{\left.\begin{array}{lll}
B_{k}^{(k)} & \cdots & B_{k}^{(k)}
\end{array}\right] . . . ~}_{b_{k}}
$$

Let $\vec{v} \in \operatorname{row}^{*}(M)$. Then we can (essentially) write

$$
\vec{v}=\left(\vec{v}_{1}^{(0)}, \ldots, \vec{v}_{b_{0}}^{(0)}, \vec{v}_{1}^{(1)}, \ldots, \vec{v}_{b_{1}}^{(1)}, \ldots, \vec{v}_{1}^{(k)}, \ldots, \vec{v}_{b_{k}}^{(k)}\right)
$$

where $\vec{v}_{i}^{(j)} \in \operatorname{row}^{*}\left(B_{j}\right)$ for $0 \leq j \leq k$ and $1 \leq i \leq b_{j}$. Moreover, for $1 \leq i \leq b_{j}$, we have $\vec{v}_{i}^{(j)}=\vec{v}_{b_{j}}^{(j)}$. Thus,

$$
\|\vec{v}\|=\sum_{j=0}^{k} b_{j}\left\|\vec{v}_{b_{j}}^{(j)}\right\| .
$$

Because $\vec{v}_{b_{j}}^{(j)} \in \operatorname{row}^{*}\left(B_{j}\right)$, Lemma 2 implies $\left\|\vec{v}_{b_{j}}^{(j)}\right\|=p^{j}$, therefore,

$$
\|\vec{v}\|=\sum_{j=0}^{k} b_{j} p^{j} .
$$

Thus, $c(M)=\sum_{j=0}^{k} b_{j} p^{j}$, and $\lambda(n) \leq \sum_{j=0}^{k} b_{j} p^{j}$.
Thus, we can combine Propositions 1 and 2 with Claim 1 to obtain the following corollary. Corollary 2. Let $n \in \mathbb{Z}^{+}$. Suppose $n<\sigma_{k+1}$. Then

$$
n=\sum_{j=0}^{k} b_{j} \sigma_{j}
$$

where $0 \leq b_{j} \leq p$ for $0 \leq j \leq k$, and if $b_{j}=p$, then $b_{i}=0$ for $i<j$. Moreover,

$$
\lambda(n)=\sum_{j=0}^{k} b_{j} p^{j} .
$$

Corollary 3. The sequence $\lambda(n)$ satisfies the meta-Fibonacci recurrence relation

$$
\lambda(n)=\sum_{i=1}^{p} \lambda(n-i+1-\lambda(n-i)) .
$$

Proof of Corollary 3. We refer to Corollary 32 in [4], which implies that a sequence which is defined by the meta-Fibonacci recurrence relation (2) is also defined by the recurrence relation

$$
\begin{equation*}
\lambda(n)=p^{k}+\lambda\left(n-\sigma_{k}\right) \tag{6}
\end{equation*}
$$

for $\sigma_{k} \leq n<\sigma_{k+1}$. Based on Corollary 2, it is clear that $\lambda(n)$ satisfies recurrence (6). Therefore, $\lambda(n)$ satisfies the meta-Fibonacci recurrence (2).

References

[1] B.W. Conolly, Meta-Fibonacci sequences, Chapter XII in S. Vajda, Fibonacci \& Lucas Numbers, and the Golden Section, Ellis Horwood Limited, 1989.
[2] D. R. Hofstadter, Metamagical Themas, Basic Books, NY, 1985.
[3] B. Jackson, F. Ruskey. Meta-Fibonacci sequences, binary trees and extremal compact codes, Electronic J. Combin., 13 (2006), \#R26.
[4] F. Ruskey, C. Deugau. The Combinatorics of certain k-ary meta-Fibonacci sequences, J. Integer Sequences, 12 (2009), Article 09.4.3, 36 pp.

