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Abstract
We present a natural, combinatorial problem whose solution is given by the meta-
Fibonacci recurrence relation a(n) = > a(n — i+ 1 — a(n — 7)), where p is prime.

This combinatorial problem is less general than those given in [3] and [4], but it has
the advantage of having a simpler statement.

1 Introduction

Let M be a matrix with entries in Z,, such that every column contains at least one 1. We
want to pick a subset of the rows such that when they are added together modulo 2, their
sum § has as many 1’s as possible. If M has n columns, what is the largest number of 1’s we
can guarantee § to have? For example, if n = 5, we can always find a set of rows whose sum
S contains at least four 1’s. Let A(n) denote the largest number of 1’s § can be guaranteed
to have for any M with n nonzero columns. We will show that \(n) satisfies the recurrence
relation

An)=An—-An—-1))+A(n—1—-An-—2)). (1)
More generally, for p prime, let ¢ = (v, ..., v,) satisfy v; € F, for 1 < i <n. Let supp(?v) =
{i € [n] : v; # 0} and let ||¥]| = |supp(?)|, i.e., ||¥]| is the number of nonzero terms in ¥. Let

M be an m x n matrix whose entries are in F,,. Let row (M) be the rowspace of M, i.e., the
set of all linear combinations of the row vectors of M over the field F,,. Let ¢(M) denote the
capacity of M, which we define as follows,

M) = Ul|.
o(M) = max 7]
For each integer n > 1, let A,(n) be the minimum possible capacity of an [F,-matrix consisting

of n nonzero columns (i.e., no column equals 0). Restated, let

My ={M € F"" : 1 <m < p" and no column of M equals 6},
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then

Ap(n) = Jmin. c(M).

We will see that )\, satisfies the recurrence relation

Ap(n) = Z)\p(n—i+1 — M\(n—1)). (2)

This type of recurrence relation is called a meta-Fibonacci relation.

Meta-Fibonacci sequences have been studied by various authors, dating at least as far
back as 1985, when Hofstadter [2] apparently coined the term “meta-Fibonacci.” These
are integer sequences defined by “nested, Fibonacci-like” recurrence relations, such as rela-
tion (1), which was studied by Conolly [1], and (2). Generalizations of (2) were shown in
[3] and [4] to be solutions to certain combinatorial problems involving k-ary infinite trees,
and compositions of integers. The “matrix capacity” problem described above is a differ-
ent combinatorial problem whose solution is also given by relation (2). This combinatorial
problem is “natural” in the sense that it arose while the first named author was working
on a problem in spatial graph theory. It was only later that we learned (through the OEIS
A046699) that it can be characterized as a meta-Fibonacci sequence.

2 Main Result

We begin with a lemma which allows us to produce a lower bound on A,(n). For the
remainder of this paper, instead of writing \,, we will simply write A. For a matrix M, let
row*(M) = row(M) — {0}.

Lemma 1. Let M be an F,-matriz with n nonzero columns, i.e., M € M. Let v €
row*(M). If

pA(n — [|7])) > [|7],
then there is a vector Z € row* (M) such that ||Z]| > ||V

Proof. Let M be an F,-matrix with n nonzero columns. Let ¢ € row*(M), and let k = ||7]].
Let ¥ = (vy,...,v,). W.lo.g., suppose v; # 0 for 1 <i<kandv;=0fork+1<i<n. Let
w € row*(M) be such that w; # 0 for at least A(n — k) coordinates i, where £+ 1 <1i < n.
In other words, if we let W, = (wy, ..., wg) and Wr = (W1, ..., w,), then ||Wg| > A(n—k).
Since ||| = ||| + ||@r]|, if [|WL]| > (p— 1)A(n — k), then ||d|| > pA(n— k) > ||7||, and we
are done. So we may assume that [|@.| < (p — 1)A\(n — k).

Our goal will be to prove that there exists a nonzero constant ¢ such that ||cwi, +0|| > k—
A(n—k), where v, = (vy,...,v;). Once we establish that such a constant exists, then we will
be done, because we will have ||ct/+0|| = ||cW, + 0L ||+ ||Wr|| > (k—A(n—k))+A(n—k) = k.

For1 <a<p-—1,let S, ={i € [k] : aw; +v; = 0}. Since v; # 0 for 1 < i < k, then
Sa C supp(wy). Thus, if aw; + v; = 0 = bw; + v;, then w; # 0, which allows us to conclude
that a = b. Therefore, if a # b, then S, NS, = (). Since Ufb;i Sa. € supp () and the S, are
pairwise disjoint, we have

p—1
D 1Sl < [supp(n)| = @l < (p = DA(n — k).

a=1
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Therefore, the average value of |S,| is strictly less than A(n — k), and if we let ¢ € [p — 1] be
such that |S,| is minimum, then [S,.| < A(n—k). Thus, ||, +0L|| = k—|S.| > k—A(n—k),
and as noted above, we are done. Specifically, ||cif + ¢]| > ||7]|. O

It is easy to check that the following corollary holds.
Corollary 1. If 1 <n <p, then A\(n) = n.
For an integer k > 0, let 0}, = Z?:o .

Proposition 1. Suppose
k
n = Z bjO'j,
j=¢

where by > 1, and 0 < b; <p—1 forj#{, and 1 <b, <p. Then

Proof of Proposition 1. We proceed by induction on k. When k = 0, then n = byoy = by.
Since 1 < by < p, then A(n) = by by Corollary 1, thus, A(n) = bop® and the result holds.
Now suppose k£ > 1. Our inductive hypothesis will be if

m

n = ijO’j,

=0
where b,, > 1, and 0 <b; <p—1for j # ¢, and 1 < b, < p, and m < k, then
NOEDW
=0

Let M be an F,-matrix with n nonzero columns. Suppose ¥ € row*(M) with

k
17 <> bp.
j=¢

Then
k . k k '
n— 0 >n=>Y bp =Y bjo; - by
=t =t =t
k .
= bi(o; =)
=t

k
= § bjoj-1,
j=t



where we define o_; = 0 to handle the case j = 0, since oy — p” = 0. Thus,

n—=ol> Y biao+ 1L
0-1<j<k-1
We want to determine a lower bound on pA (Zf;l}—l bjt10; + 1) that allows us to conclude

that pA(n — ||9]|) > ||¥]| so that we may use Lemma 1. We consider the case where b, = p
and the case where 1 < by < p — 1 separately.
Suppose by = p. Then

Z bj+10'j +1= Z bj+10'j + sz’g_l +1

—1<j<k—1 0<j<k—1

= Z bjt10j + (poe—1 + 1)

1<j<k—1

= Z bj+10'j + oy

1<j<k—1

= E bj110; + bey100 + 0y
(1< <k—1

= Z bj+10’j + (bg+1 + 1)0’@.
1+1<j<k-1
Notice that our sum satisfies all of the criteria for the inductive hypothesis. Specifically,
the coefficient of its lowest sigma-term o, is byy1 + 1, which satisfies 1 < by + 1 < p; the
coefficient of 0 is b; 41 and 0 < b1 < p—1for j # ¢; the coefficient of the largest sigma-term
o1 is by, which satisfies b, > 1; and finally, the index of its largest sigma term is k — 1
which is strictly less than k. Therefore, by the inductive hypothesis,

P'A< > @+Wﬁ+(WHfFU®>EEP< > @+ﬂﬂ+(WHf%Uﬁ>

4+1<j<k—1 (+1<j<k—1

= Y b T+ (e +
0+1<j<k—1
= > b4y
(<j<k-1
= > btpp
(+1<j<k
I
(<j<k

where the last equality holds because b, = p. Since A\ is a nondecreasing function, our
previous work implies

PM”—HWDZP~X< > @H¢r+@ur+ww>
H1<<h-1

> > b > ||

0<j<k



Thus, by Lemma 1, there is a vector 2’ € row*(M) such that ||Z]| > [|7]|.
Now suppose 1 < by < p — 1. Recall that our sum is

Z bj+10j+1 = Z bj+10j+1 - 00-

0-1<j<k—1 —1<j<k—1

In this case, the smallest sigma-term is oy, and its coefficient is by + 1, where by = 0 if £ > 2.
We note that our sum satisfies all of the criteria for the inductive hypothesis. Since each b;
satisfies 0 < b; < p —1, then 1 < b; +1 < p; when j > 1, the coefficient of each o; is bj;4
and 0 < bj11 < p — 1; the coefficient of the largest sigma-term o4_; is by, which satisfies
br. > 1; and finally, the index of its largest sigma term is k — 1 which is strictly less than k.
When ¢ > 2, the coefficient of o is 1, and we apply the inductive hypothesis to obtain

p-A( Z bj+10j+1>2p< Z bj+1pj+1>

(—1<j<k—1 (—1<j<k—1
_ 1
= E biv1ip’ +p
1—1<j<k—1

= Z bjp’ +p.

0<j<k

Thus,

zﬂW—WﬂDZP~A< > %H%+4>

0—1<j<k—1
> " b +p > 7).

1<j<k

When ¢ € {0,1}, our sum is Z;:é bjy10; + 1, and we apply the inductive hypothesis to
obtain

P‘)\< Z bj+10j+1>=p-)\< Z bj+10j+(bl+1)>

0<j<k—1 1<j<k—-1
2]9( Z bj+1pj+bl+1>
1<j<k—1
= Z b+ bip+p

1<j<k—1

= Z b]pj —l—p.

1<j<k



Thus,

pAn— 7)) = p- A( > bj+laj+1>
0<j<k—1
> ijpj—l—p

1<j<k

> > b > .

<j<k

Thus, by Lemma 1, there is a vector z € row*(M) such that ||Z]| > ||¢]|. Therefore A(n) >
Z] =/ ]p] D

Now we show that every n > 1 can be written in the form described in Proposition 1.

Claim 1. Let n € Z". Suppose n < oj41. Let ngqy =n, and for 0 < j <k, assuming nji,
is defined, let b; be the largest integer such that bjo; < njiy, and let nj = nj —bjo;. Then
for 0 <3 <k, we have 0 < n;yy < poj and 0 < b; < p. Moreover,

k
n = E bjO'j,
Jj=0

and if b; = p, then b; =0 fori < j.

Proof of Claim 1. Suppose n € Z* and n < o;x,1. Then n < 041 — 1 = poy. Let nyy1 = n,
and for 0 < j < k, assuming n;44 is defined, let b; be the largest integer such that bjo; < njyq,
and let n; = n;41 — bjo;. We proceed by induction on k — j. Assume 0 < n;; < po; and
let b; and n; be defined as above. Since 0 < n,;yq, then b; > 0. Since n;y1 < po; and
bjo; < njyi, then bjo; < po;. Thus, since o; > 1, we have b; < p. Since bjo; < njiy
and n; = n;y1 — byog, then n; > 0. Since n;i1 < (b; + 1)oj, then n; — bjo; < 0y, ie,
n; < o; —1 = poj_;. Therefore, by induction, 0 < n;y; <poj and 0 < b; <pfor 0 < j < k.

Now suppose b; = p. Since bjo; < nji; < poj, then nj1 = po; and n; = n;y —bjo; = 0.
Moreover, b; = 0 and n; = 0 for all 7 < j.

To see that n = Z?:o bjo;, observe that bjo; = nji1 —n; for 0 < j < k, because of the
definition of n;. Thus,

gba]—g (Nj41 — ny) = N1 — Np =N — Ng.
7=0

Since 0 < ny < pog = p, then, by definition, by = ny and ng = ny — byog = ny — ny(1) = 0.
T‘hU.S7 Z?:O bjO'j =N [

With Proposition 1 and Claim 1, we have established a lower bound on A\(n) for all n > 1.
We need to prove the corresponding upper bound. We will do so by constructing a matrix
with n columns whose capacity equals the lower bound given in Proposition 1. We begin by
constructing such a matrix for certain values of n, namely, when n = o}, for some k£ > 0.



For each integer k > 0, we define a (k + 1) X o} matrix By, recursively, as follows. The
matrix By is the 1 x 1 matrix whose sole entry is 1. For k£ > 1, Bj can be defined as a
block matrix with a “row” consisting of p copies of By_; followed by a k& x 1 column of 0’s,
then one more row of dimensions 1 X o, with its first o;_; entries equal to 0 (below the first
By_1), then o1 entries equal to 1 (below the next By_1), ..., then o4 entries equal to
p — 1 (below the last By_1), and one last entry equal to 1, i.e.,

0

B — | Br-1|Br1]| - By

0
0..0]1...1 |- |(p—1)...(p—1)] 1

For k > 1, let By, be the k X o) matrix obtained from By by removing its last row, i.e.,

0
B,=| Br-1|Bg-1|---| Bp1

Lemma 2. For each ¥ € row*(By), ||v]| = p*.

Proof. We proceed by induction on k. When k = 0, the result is trivial. Let £ > 1. Assume
the result for j < k. Let U € row*(By). We first consider the case where U € row™(B,).
Then we can write

U= (Ugo)a~~->U((,?c)71,v§1),...,vé?ﬁl,...,y?_l)’“. pP=1) 0).

To shorten notation, we will write

17:(170,’(71,...,17;,,_1,()), (3)
where v; = (vf’,...,véﬁz*) for 0 < i < p — 1. Technically, in equation (3), ¥; simply
represents the coordinates vgl), e ,U((fgfl. We observe that ) = ) = --- = 7,_1 based

on how Bj, and ¥ are defined. We also observe that 0; € row*(By_;). By the inductive
hypothesis, ||| = p*~!, therefore, ||7]| = p*.

We now show the result holds for @ € row*(By) —row*(B},). Let @ be the last row in By,
ie,@=(0,...,0,1,...,1,...,p—1,...,p—1,1). We observe that ||i|| = op — op_1 = pF,
thus, the result holds when w = 4. To illustrate our argument, we next consider the special
case where @ = U + 4 for some U € row*(B},). Again, we slightly abuse notation and write
U= (5, 1., (p— 1)1,1), where & (or cf) represents the o,_j-dimensional vector (c,.. ., c).
Then we can write 7+@ = (Ty+0, 7, +1, . .. ,Up_1+(p—1)f, 1). Since we are working modulo p,
a coordinate of 7; + 41 is congruent to 0 if and only if the corresponding coordinate of U; is
congruent to p — j. Thus, we can count the total number of coordinates that are congruent
to 0 in ¥+ @ as follows

D i = Z(# of (p — j)-coordinates in ;). (4)

J=0

< Total # of O-coordinates ) =
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Since vp = ) = -+ - = U,_1, equation (4) reduces to
Total # of O-coordinates \ [ Total # of coordinates | o
in v+ u o in 7, T Tkl
Thus, ||27+ || = o — op_1 = p*. In general, W € row*(B;) — row *(By,) satisfies W = v + cu

for some 7 € row*(B,) and ¢ # 0 (mod p). In this case, @ = (Ty + ¢0, T + ¢, ..., Tp_q +
¢(p—1)I,1), and equation (4) becomes

-1
Total # of 0-coordinates 4 . . o
( - ) = ZO(# of (p — ¢j)-coordinates in ), (5)
‘]:
where arithmetic is modulo p. Since Uy = ¥} = - -+ = ¥,_;, we obtain
-1
Total # of 0-coordinates % . . -
( . ) = Z(# of (p — ¢j)-coordinates in ).

=0
Since p is prime and ¢ Z 0 (mod p), then {p,p —c,p —2¢,...,p — (p — 1)c} is a equivalent
to {0,1,...,p — 1} modulo p, thus,
Total # of O-coordinates \ [ Total # of coordinates \
in W a in 7 — k-l

Therefore, ||W| = op — ox_1 = pF, and we can conclude that for each 7 € row*(By),

9] = p*. O

Since By has o columns, Lemma 2 implies that A(n) < p¥ when n = o, for some
nonnegative integer k. We would like a similar upper bound on \(n) for all positive integers
n. Thus, we provide the following proposition.

Proposition 2. Ifn = Z?:o bjo;, then

k
j=0

Proof of Proposition 2. We will construct a matrix M with n columns such that ¢(M) =
Z?:o b;jp’. The matrix M will essentially be a block matrix with b; copies of B; for 0 < j < k.
However, the number of rows of B; does not equal the number of rows of By when j # (.

Thus, for 0 < j < k, we define the (k + 1) x 0; matrix B ) where the first j rows of B(
match the first j rows of B; and the last £+ 1 — j rows of B](- all equal the last row of B;.
Thus, B is a (k+ 1) x 1 column of 1’s, and for 1 < j < k,

0
Bj 1| Bj1]|-- Bj_4 :
0
BY = |0 011 [(p-D...(p—1] 1
0.0 1. 1] |(p=-0. (p-1]1
| 0...0 | 1...1 p—1...(0—-1] 1 |




where the last row is repeated (k+ 1) — j times. After comparing B](-k) with Bj, it is easy to

see that row*(Bj(k)) =row*(B;).

Let n be a positive integer such that n = Z?:o bjo;. Let M be the (k + 1) x n matrix

defined as a block matrix with b; copies of Bj(k) for 0 < j < k, where the blocks appear in a
single row in nondecreasing order according to their lower index, i.e.,

k k k k k k
M:[B(p e B9 B® B9 BB B}g)],

bo b1 by

Let ¥ € row*(M). Then we can (essentially) write

— 0 0 1 1 k k
= (@, 50 F0 D, )

where 272-(” € row"(B;) for 0 < j < kand 1 < ¢ < b;. Moreover, for 1 < i < b;, we have
79 = 5. Thus,

k
S 1.70)
ol =3 bl
j=0

Because 172? € row*(B;), Lemma 2 implies ||27§i)|| = p/, therefore,

k
17 => b
j=0

Thus, ¢(M) = S5 b;p?, and A(n) < Z?:o b;p. O
Thus, we can combine Propositions 1 and 2 with Claim 1 to obtain the following corollary.

Corollary 2. Let n € Z*. Suppose n < oy41. Then
k
n = Z bjO'j,
=0
where 0 < b; < p for 0 <5 <k, and if b; = p, then b; =0 for i < j. Moreover,
k
An)=> b
=0
Corollary 3. The sequence \(n) satisfies the meta-Fibonacci recurrence relation
p
An) = An—i+1-An—1i).
i=1

Proof of Corollary 3. We refer to Corollary 32 in [4], which implies that a sequence which
is defined by the meta-Fibonacci recurrence relation (2) is also defined by the recurrence
relation

A(n) = p* + An — o), (6)
for o, < n < op41. Based on Corollary 2, it is clear that A(n) satisfies recurrence (6).
Therefore, A\(n) satisfies the meta-Fibonacci recurrence (2). O
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