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IRMA, 7 rue René Descartes, 67084 Strasbourg Cedex

January 24, 2019

Abstract

This paper is an introduction to the Monstrous Moonshine correspondence aiming at an undergraduate level.
We review first the classification of finite simple groups and some properties of the monster M, and then the
theory of classical modular functions and modular forms, in order to define Klein’s J-invariant. Eventually we
turn to the correspondence itself, the historical framework in which it appeared, the ideas that were developped
in its proof, and its status nowadays. I’m very thankful to A. Thomas and S. Tornier for their useful feedback.

1 Finite simple groups and the monster

Why finite simple groups ? Let’s recall some general definitions and facts about groups.
A group G is a set endowed with an associative inner law that has a neutral element e ∈ G, and such that

every element of G has an inverse. A subgroup H of G is a non-empty subset that is closed under multiplication
and inverses. In that case one writes H ≤ G. Any subgroup H of G defines a partition of G into left and right
H-orbits; the left (resp., right) H-orbit of a g ∈ G is denoted gH (resp. Hg). The set of left (resp., right) orbits
is written G/H (resp., H\G). A priori, the left and right orbits for a g ∈ G do not coincide. However, there are
as many left H-orbits in G as right H-orbits. This number is called the index of H in G.

A subgroup H of G is said to be normal (one writes H ✂G) if the following holds:

∀g ∈ G, gH = Hg.

In that case, the sets G/H ≃ H\G can be endowed with a group structure. The group G/H is called the quotient
group of G by H . A group G always have two normal subgroups that are said to be trivial : the singleton {e},
and G itself. They respectively yield the quotient groups G/{e} = G and G/G = {e}.

In the cases where G has a non-trivial normal subgroup H , the knowledge of the latter can be useful to study
the structure of G since some of it can be retrieved from the structure of H and G/H , which are two ”smaller”
groups. We’re led to the definition of simple groups, as the ones that have no non-trivial normal subgroups, and
thus cannot be broken into smaller pieces, in the following sense.

A composition series for a group G is a finite sequence

{e} = G0 ✂G1 ✂ · · ·✂Gn = G

for n ≥ 1 an integer, such that for any 1 ≤ i ≤ n, one has Gi−1 ✂ Gi and such that each factor Gi/Gi−1 is
simple. Groups do not always admit composition series (Z is an easy example), however every finite group admits
a composition series.

Besides, a group G, even finite, may have more than one composition series. For instance, the cyclic group
C12 fits whithin:

{e}✂ C3 ✂ C6 ✂ C12 ,

{e}✂ C2 ✂ C6 ✂ C12 ,

and {e}✂ C2 ✂ C4 ✂C12 .

Fortunately, the Jordan-Hölder theorem states that any two composition series for a finite group G have the
same factors, up to permutation. The set of factors for C12, for example, is always {C2, C2, C3}.

Two non-isomorphic groups may have the same factors though. For instance, and for p a prime, the dihedral
group Dp (the group of symmetries of a regular p-gon) and the cyclic group C2p both have {C2, Cp} as factors.

This situation is similar in many ways to the pursuit of building structures with small plastic bricks. Given
a single set of bricks of different shapes and different colours, one can built many objects by assembling them
together differently. This is the brick-interpretation of the fact that the factors do not characterise a single group.

The Jordan-Hölder Theorem also admits a brick-counterpart, as the fact that even if there are many ways to
build the same object, all the possible methods use the same initial set of elementary bricks.

Any such game always has some catalogue that lists the existing elementary bricks, hence extending the
metaphor one may wonder if it is possible to do the same with finite simple groups. It turns out that it is
possible, and this catalogue is one of the greatest mathematical achievements of the last century.
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The classification of finite simple groups The origins of group theory go back to 1832, as Galois
introduces permutation groups and normal subgroups, and proves that the groups An (of even permutations on a
set of n elements (for n ≥ 5)) and PSL2(Fp) (for p ≥ 5) are simple. However, the notion of abstract group as the
one we gave above was only formulated by Cayley around 1854. The Sylow theorems, that are cornerstones of
the theory of finite groups, were published in 1872. Twenty years later, as Hölder proves a theorem constraining
the order of non-abelian finite simple groups, he asks for a classification of the latter.

The first half of the 20th century sees the development of a bunch of new concepts in finite group theory.
Then the Feit-Thompson theorem (announced in 1963) gives deep information on the generic structure of any
non-abelian finite simple group, and allows the exploration of new landscapes to study and classify finite simple
groups. For the first time in the theory of finite groups, the proof needs much more than a few pages to be
written down, and the ideas developed within it revealed themselves to be very useful as such. In 1972, Gorenstein
proposed a program to achieve the classification of finite simple groups. The classification was completed in 2004
with a publication of a long paper by Aschbacher and Smith (even if in fact, a small oversight elsewhere in the
classification was corrected in 2008). Of course, one can find much more detailed accounts of the history of the
classification of finite simple groups, see [Sol01] for example.

Theorem 1 (Classification of the finite simple group). Let G be a finite simple group. Then G is either:

• a member of one of 18 infinite families.

• one of the 26 sporadic groups.

Amongst the infinite families, two of them are elementary: the sequences (Cp)p prime of cyclic groups of prime
order, and (An)n≥5 of alternating permutation groups. The 16 other families are said to be of Lie type, and
are grouped together according to their structure. For example, there are the Chevalley groups that form a set
of nine infinite families carrying fancy names such as (Bn(q)) (for n > 1 and q = pα, for p a primer number),
or E7(q) (again for q = pα, for p a primer number). Four more families are gathered together as the Steinberg
groups, and there is one family of Suzuki groups and two of Ree groups (plus the Tits group).

The 26 sporadic cases are the only finite simple groups that do not belong to any of the infinite families
mentioned above. Some of them are relatively small (in terms of their order, that is, the number of their
elements), with the smallest one being the Mathieu group M11 that has 7920 elements, but there are also a
few mastodons. The next-to-biggest one is called the baby monster B and has around 4 × 1033 elements. It is
nevertheless far beyond the biggest one called the monster M, with order:

|M| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ∼ 8× 1053.

Rise of the monster While studying 3-transposition groups (leading for example to the discovery of the
sporadic groups Fi22, Fi23 and Fi′24) [Fis71], Fischer provided evidence suggesting the existence of the simple
finite group now known as the baby monster B. Even if the existence of the latter was only proved in 1977 by
Leon and Sims [LS77], Fischer (in 1973) and Griess (in 1976) predicted the monster group M as a simple finite
group containing a double cover of B. Just as its baby, the monster was only proven to exist about a decade
after it was predicted. However, its conjectural properties were enough to compute its order, as well as others
of its features.

Recall that for G a finite group and for γ ∈ G, the conjugacy class of γ in G is the set

C(γ) = {h ∈ G|h = gγg−1, g ∈ G} .

The conjugacy classes partition the group G. The monster, if any, was expected to have 194 conjugacy classes.
A (complex linear finite-dimensional) representation of G is a couple (ρ, V ) where V is a finite-dimensional

complex vector space, and ρ : G → GL(V ) is a group morphism. The group G is seen as a finite subgroup of
the group of invertible n× n matrices acting on V . The dimension of V is the dimension of the representation.
Every group has a trivial representation where V is a one-dimensional complex vector space and ρ is constant
and equal to 1, and also a regular representation, whose vector space is of dimension the order of the group,
with basis (eg)g∈G, and where ρ is the morphism assigning to each h ∈ G the matrix ρ(h) defined on the basis
according to

ρ(h)eg = ehg, ∀g ∈ G .

Every (finite-dimensional linear complex) representation of a finite group G is isomorphic to a direct sum of
special representations called irreducible representations. Hence, up to a change of basis in V , ρ is valued in
block-diagonal matrices whose sizes are dimensions of irreducible representations. There are as many irreducible
representations of a group G as conjugacy classes in G, and any piece of information about those irreducible
representations, such as their dimension, is a big step forward in the understanding of G. See [Ser77] or [FH04]
for a general introduction to representations.

Going back to the monster, under the assumption that the smallest non-trivial irreducible representation is
196883-dimensional (a numbered conjectured thanks to finite groups theoretical considerations by Conway and
Norton), the 194 irreducible dimensions were determined in 1978 by Fischer, Livingstone and Thorne through
clever computer calculations. This 194-uplet is encoded in the Online Encyclopaedia of Integer Sequences (OEIS)
under the number A001379. The first few terms are:

(rn)n=1..194 = (1, 196883, 21296876, 842609326, 18538750076, ...)
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2 Complex tori, rank-2 lattices and modularity

Isomorphism classes of complex tori A (full) lattice Λ in C is a subgroup of C isomorphic to Z
2, and such

that the real vector space that it generates is 2-dimensional (hence is the whole complex plane). Equivalently,
there exists ω1, ω2 ∈ C

× such that ω1/ω2 /∈ R and such that

Λ = Z · ω1 + Z · ω2 = {aω1 + bω2|a, b ∈ Z} ⊂ C.

Let Λ(ω1, ω2) be the lattice generated by ω1 and ω2.

0

ω1

ω2

ω′

1

A (compact) complex torus is a quotient C/Λ. Topologically indeed, C/Λ(ω1, ω2) is a torus, obtained as one
glues together the opposite sides of the parallelogram with vertices 0, ω1 and ω2, paying attention to preserve
the orientation of each side. The gluing of the first couple of edges yields a cylinder, and then the gluing of the
second, an objet that typically has the shape of the surface of a donut, that is, a torus.

There is a single topological torus, meaning that any torus can be mapped to a reference one by continuous
deformations that do not tear the surface up. These deformations are called homeomorphisms (the ancien greek
translation of transformations that preserve the shape). There is also a notion of complex isomorphism (also
called conformal isomorphism), that is more constraining than homeomorphism, since that on top of having
not to tear the surface up, they also have to preserve the angles at each point, as the surface is deformed.
Subsequently, there might be more than one complex torus (that are necessarily homeomorphic, but still not
conformally equivalent).

One can show that two complex tori C/Λ1 and C/Λ2 are conformally equivalent if and only if there exists an
α ∈ C

× such that Λ2 = αΛ1. One can assume (possibly after multiplying by ω−1
2 ) that the lattice we consider is

of the form Λτ = Λ(τ, 1) where τ = ω1/ω2. Moreover (possibly after exchanging τ and 1 and then multiplying
by τ−1), one can suppose that τ lives in the complex upper-half plane. The latter is called the Poincaré plane
and denoted H.

To sum up, we have defined a complex torus as an equivalence class of lattices in the complex plane, the
equivalence relation being the one induced by complex dilatation with non-zero factors. In each equivalence class
there is a lattice of the form Λτ for some τ ∈ H.

However, it could be that Λτ = Λτ ′ for two distinct τ, τ ′ ∈ H. As in the figure above, the couples (ω1, ω2)
and (ω′

1, ω2) generate the same lattice, it is reasonable not to think that the τ ∈ H characterise the equivalence
classes.

Consider a lattice Λ generated by the two couples (ω1, ω2) and (Ω1,Ω2). Then there are Ai, Bi, ai, bi ∈ Z,
for i ∈ {1, 2}, such that:

Ω1 = A1ω1 +B1ω2 and Ω2 = A2ω1 +B2ω2, as well as

ω1 = a1Ω1 + b1Ω2 and ω2 = a2Ω1 + b2Ω2.

This leads to:
A1a1 +B1a2 = A2b1 +B2b2 = 1, and

A1b1 +B1b2 = A2a1 +B2b1 = 0.

Hence the quadruples (A1, B1, A2, B2) and (a1, b1, a2, b2) form matrices with integer coefficients that are mutual
inverses (and that implies that their determinant is ±1). Equivalently, the transition matrices between the bases
of a lattice form the group SL2(Z).

Any basis of a lattice Λτ with τ ∈ H has the form (aτ + b, cτ + d), for some quadruple (a, b, c, d) ∈ Z
4 that

satisfies ad− bc = 1. Now:

C/Λτ ≃ C/Λ(τ, 1) ≃ C/Λ(aτ + b, cτ + d) ≃ C/Λ aτ+b
cτ+d

.

Two points τ, τ ′ ∈ H correspond to the same complex torus if and only if there is M =

(

a b
c d

)

∈ SL2(Z)

such that

M · τ =
aτ + b

cτ + d
= τ ′,
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and hence the isomorphism classes of complex tori are in bijection with the orbits of the action of SL2(Z) on H.
Actually, one can observe that −Id ∈ SL2(Z) acts trivially on H; subsequently one rather considers the

modular group PSL2(Z) obtained by identifying each matrix with its opposite in SL2(Z).

The moduli space M1 We have seen the natural action of the modular group on H defined by:

(

a b
c d

)

· τ =
aτ + b

cτ + d
.

This action is - by chance - quite nicely-behaved. It is indeed possible to choose a fundamental domain in H,
that is, a closed subset of H that is connected and simply-connected (i.e it has only one component, and no hole),
and that contains exactly one point of each orbit for this action of PSL2(Z) (except maybe on its boundary).
The iterates of this domain under PSL2(Z) tesselate the upper-half plane H. The fundamental domain ∆ given
in the next figure is a widespread conventional choice.

0

i ρρ2

∆ H

(τ ∈ ∆) ⇔ |τ | ≥ 1 and −
1

2
≤ Re(τ) ≤

1

2

i

ρ = ρ2

M1

cusp

The set of orbits M1 = H/PSL2(Z) has a natural topology (shape), that one gets by gluing the two vertical
sides of ∆ together (both going up), as well as the two arcs (ρ2, i) and (ρ, i) (in that order, meaning that
ρ = e2πi/3 is identified with ρ2). The resulting space has a cusp going to infinity, as well as two corners, but
if one adds a point at the cusp so the surface closes there, and smoothens the latter at the folding points, it is
homeomorphic to a sphere. This space M1 is called the moduli space of complex tori, as its points are in bijection
with isomorphism classes of complex tori. It is a quite interesting fact that the set of isomorphism classes of
complex tori has a shape (and moreover, M1 even has a complex structure induced by the upper-half plane H).

Modular functions and modular forms One may wonder if there are any complex functions on H that
are invariant under the action of PSL2(Z), that is, functions f that satisfy:

f(τ ) = f(M · τ ) = f(
aτ + b

cτ + d
)

for any M = Mat(a, b, c, d) ∈ PSL2(Z). Since PSL2(Z) is generated by the two matrices:

T =

(

1 1
1 0

)

and S =

(

0 −1
1 0

)

,

(meaning that any element in PSL2(Z) can be decomposed as a product of S’s and positive powers of T ), the
conditions on f for it to be invariant under PSL2(Z) become:

f(τ + 1) = f(τ ) and f(
−1

τ
) = f(τ ).

Such a (meromorphic) function (in H and at the cusp) is called a modular function.
In practise, it is quite difficult to brute-force the study of modular functions. The salvation here comes from

the release of some of the hypotheses that one demands for the modular functions.

A modular form f of weight 2k (for k ∈ N) is a (holomorphic) function (in H and at the cusp) that satisfies:

f(τ ) = (cτ + d)2kf(
aτ + b

cτ + d
)

for any M = Mat(a, b, c, d) ∈ PSL2(Z). The set Mk of modular forms of weight 2k obviously has the structure
of a complex vector space. Moreover, the product of two modular forms of respective weights 2k and 2l is a
modular form of weight 2(k + l), thus

M =
⊕

k≥0

Mk

is a ring with unit.
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It is quite easy to construct nice and non-trivial examples of modular forms. For example, the lattices Λτ

induce series that can be shown to be modular forms. For example, let k ∈ N≥2. The k-th Eisenstein G2k series
defined as follows is a well-defined modular form of weight 2k:

G2k(τ ) =
∑

ω∈Λτ\{0}

1

ω2k
.

The general theory of modular forms yields the nice result that:

M = C[G4, G6].

Now, one can build modular functions from modular forms. The easiest non-trivial choice (since the lcd of 4
and 6 is 12) is to look at the vector space M12 which is the Mk with the smallest k whose dimension is strictly
bigger than 1. Klein’s J-invariant is defined as:

J(τ ) = 1728
g2(τ )

3

g2(τ )3 − 27g3(τ )2
,

where g2 = 60G4 and g3 = 140G6. This J is a modular function, and interestingly any modular function is a
rational fraction of J . Equivalently, the ring (field) of modular functions is C(J).

q-expansions Both modular forms and functions have to satisfy f(τ + 1) = f(τ ). This periodicity condition
allows a decomposition in Fourier series, in terms of q = e2πiτ . The transformation τ 7→ q(τ ) maps H to the
punctured unit disk, and of course any function f defined as a series of q is invariant under τ 7→ τ + 1.

Quite miraculously, the coefficients of the Fourier series of some important modular objects (functions or
forms) are integers. For example (and for k ∈ N≥2):

G2k(τ ) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞
∑

n=1

σ2k−1(n)q
n

where σk(n) =
∑

d|n dk. The coefficients of the q-expansion of J are also integers, but it is harder to understand
the meaning of those. Do they count something ? Those coefficients are anyways pretty interesting because of
their very definition, and their (infinite) sequence in referred to as A000521 in the OEIS. The first few terms of
the latter are:

J(τ ) =

∞
∑

n=−1

c(n)qn =
1

q
+ 744 + 196884q + 21493760q2 + 864299970q3 + 20245856256q4 + ...

In the sequel, we will write J̃ for the normalised J-function J − 744.
For a general introduction to the theory of modular functions and modular forms, see [Mil97] for example.

3 Monstrous Moonshine

First observations and Thompson’s conjecture Even if the J-invariant (known since the 19th century)
and the monster group (intuited at the beginning of the 70’s) do not seem to be related at all, these two objects
are intimately tied together. The correspondence between them has been called Monstrous Moonshine. In 1978,
John McKay noted that:

196884 = 196883 + 1

Keeping the notations of the first two sections, this equality has to be understood as c(2) = r1 + r2. The size
of the numbers involved makes this equality quite thrilling, but of course it could be a mere coincidence, just as
most of the people originally thought. A few months later though, Thompson came out with the following new
observations [Tho79a]:

c(3) = r1 + r2 + r3,

c(4) = 2r1 + 2r2 + r3 + r4,

c(5) = 3r1 + 3r2 + r3 + 2r4 + r5,

c(6) = 4r1 + 5r2 + 3r3 + 2r4 + r5 + r6 + r7,

and he subsequently proposed the following conjecture:

Conjecture 1 (Thompson’s conjecture). There is a (somehow) natural infinite-dimensional graded represen-

tation of the monster group (ρ♮, V
♮ =

⊕

i≥−1

V ♮
i ), such that each graded part V ♮

i is finite dimensional, and such

that:
J̃(τ ) =

∑

i≥−1

dim(V ♮
i )q

i.

Equivalently, the elements of M act naturally as (infinite) matrices on an infinite-dimensional graded vector
space (these matrices are block-diagonal with every block of finite size), and the graded-dimension of V ♮ is the
q-expansion of the normalised J-function.
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Conway-Norton’s Monstrous Moonshine Let us briefly return to representations of finite groups. We
have defined a representation of a finite group G as a pair (ρ, V ) where V is a finite-dimensional vector space
and ρ and group morphism from G to GL(V ). For any such representation, the character of (ρ, V ) is:

χ(ρ,V ) : G → C

g 7→ Tr(ρ(g))
.

By cyclicality of the trace (and since ρ is a morphism of groups), χ(ρ,V ) is constant on each conjugacy class.
Functions G → C with that property are called class functions.

If CC(G) denotes the set of conjugacy classes in G, the set of class functions is CCC(G). The following result
is a cornerstone of the theory of characters of finite groups (again, see [Ser77] or [FH04] for a more more precise
introduction to that topic).

Theorem 2. 1. The characteristic functions of the conjugacy classes of G form an orthogonal basis of CCC(G).

2. The set of class functions C
CC(G) of a finite group G is endowed with a natural hermitian product, and the

characters of the irreducible representations form an orthonormal basis of CCC(G).

The transition matrix from the basis of characteristic functions to the basis of irreducible characters is called
the character table of G. Computing the character table of a given finite group G is the holy grail of the character
theory of G.

Since the dimension of a representation is nothing else but the trace of the identity element ρ(e), Thompson
suggested to study the series:

T[g] =
∑

i≥−1

Tr(ρM(g)|V ♮
i
)qi =

1

q
+

∞
∑

n=0

Hn([g])q
n,

that now carry the name of McKay-Thompson series. There is one such series for each conjugacy class [g] of M.
In the formula above, g ∈ M is any representative of [g]. The class-functions Hn were called the Head characters
of M, even if at that point nobody knew for sure that they really were characters of representations of M.

We already mentioned the 1978 calculation of Fischer, Livingstone and Thorne. In fact, they did not only
compute the dimensions of the irreducible representations ofM, but obtained these as a corollary of the knowledge
of the whole character table of the monster, the main aim of their work. Using this very deep piece of information,
Conway and Norton extended in 1979 Thompson’s conjecture [CN79] to the following.

Conjecture 2 (Conway-Norton’s Monstrous Moonshine). There is a (somehow) natural infinite-dimensional
graded representation (ρM, V

♮ =
⊕

V ♮
i ) of the monster group, with finite dimensional graded parts V ♮

i , and such
that for each conjugacy class [g] of the monster, the series T[g] is the q-expansion of the normalised Hauptmodul
of some subgroup Γ[g] of PSL2(R) commensurable with PSL2(Z).

This requires some explanations. First, two subgroups G and H of PSL2(R) are said to be commensurable if
their intersection has finite index in both G and H . When [g] = {e}, the group Γ{e} is of course PSL2(Z), and
the functions on the upper-half plane that are PSL2(Z)-invariant (the modular functions) can all be expressed
as rational functions of J (or, equivalently, J̃). This property of J̃ , together with the fact that it is normalised,
makes it the normalised Hauptmodul for PSL2(Z). Some subgroups of PSL2(R) commensurable with PSL2(Z)
also have normalised Hauptmoduln defined in the same way: every modular function for that group is a rational
function of the Hauptmodul. The groups for which this is the case are said to be of genus zero.

Conway and Norton not only proposed this conjecture, but also computed a huge amount of evidence for
it. First, using Thompson’s work, as well as the character table of M, they could determine empirically all the
groups that would be the ones appearing in the correspondence (if their conjecture was valid). For example, to
the class 2A of the group M (2 means that it is a conjugacy class of elements of order 2 and A distinguishes such
classes; there is for instance another class of involutions judiciously named 2B), the data produced by Thompson
was enough so they could guess that it corresponds to a group Γ0(2) called the Hecke congruence subgroup of
level 2 of PSL2(Z).

They also showed that instead of the 194 expected McKay-Thompson series, there are only 172 different ones
(since for any g ∈ M, the classes [g] and [g−1] share the same series). Moreover, linear relations between the
series even lowers (down to 163) the dimension of the space that they generate.

Besides, they computed Tr(ρM(g)|V ♮
i
) for all g ∈ M and i ≤ 10, and verified that the functions

G → C

g 7→ Tr(ρM(g)|V ♮
i
)

are indeed characters of some representations of M. Their paper [CN79] quickly became the main reference in
that topic. The term moonshine also first appeared in it, meaning ”crazy idea”, as the first feeling one more or
less normally has when thinking to such a possible link between the monster group and the J-invariant.
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String theory, vertex operators algebras and the moonshine Even if the monster has been first
conjectured in the first half of the 70’s, its uniqueness was only proved in 1979 by Thompson [Tho79b] (assuming
that M (if any) would have a representation of dimension 196883, as conjectured a while earlier by Conway and
Norton). Moreover, one has to wait until 1982 for Griess to prove its existence [Gri82], by explicitly constructing
it as the automorphism group of a 196884-dimensional commutative, non-associative algebra now called the
Griess algebra.

In 1979, Atkin, Fong and Smith performed a huge computer calculation [Smi85] to show that the class
functions Hn of M are really characters of the monster group. Using powerful results of finite-group theory such
as Brauer’s characterisation of characters, they could reduce the infinite number of verifications the conjecture
demands, to a finite one. It was still lengthy and tedious though, especially on the IBM 370/158 computer they
were using.

Around that time, Frenkel, Lepowsky and Meurman were developing another approach of M using what had
been called vertex operators representations of affine Lie algebras [FLM85]. This method strongly relies on the
existence of very symmetrical even unimodular lattices LE8

≃ Z
8 and Λ ≃ Z

24, that are respectively the root
lattice of E8 and the Leech lattice (the latter was also quite central in Griess’ construction of the monster). Both
lattices are related to the q-expansion of J , and through them one can construct a particular vertex operator
algebra (an algebra whose multiplication depends on a parameter instead of being defined in a single way, together
with additional axioms) whose automorphism group is exactly M. This monster vertex algebra is graded and
the graded-dimension is exactly the q-expansions of J̃ . In particular, it contains a version of the Griess algebra
as its second graded part. Hence the module whose existence had been confirmed by Atkin, Fong and Smith
was now constructed explicitly. See [FLM88] for more details on vertex operator algebras, and in particular the
introduction that gives a very nice summary of the historical framework, as well as of the ideas.

Later on, it was realised that these vertex algebras play a very central role in a specific field of theoretical
physics, called string theory. This theory first appeared (under the name dual resonance theory) as an attempt
to explain strong interactions (that bind the nucleons of an atom’s nucleus together, and explain the behaviour
of some particles called hadrons), before being demoted to the benefit of another theory called quantum chro-
modynamics.

Despite this discomfiture, Yoneda, Scherk and Schwarz realised around 1973-1974 that string theory could
be an interesting approach to quantum gravity, and the theoretical physics community regained interest in it. In
string theory, the vibration modes of a tiny string (either closed or open) embedded in a target space (interpreted
as the space-time) are the particles of the theory. There are different types of strings theories, depending on
which kind of strings one uses (either closed strings only, or open and closed strings together) or which kind of
geometries are allowed, as strings move through the target-space (with or without an orientability constraint).
However, the theory is not necessarily mathematically consistent, and for it to be so, some constraints (that
typically depend on the type of the theory) have to be fulfilled. An easy way to satisfy some of these is to fix the
dimension of the target space. That having been done, the shape of the target space still impacts the way strings
vibrate in it, and vertex operators as well as chiral algebras (the physics counterpart of vertex operator algebras)
encode the dependence of the vibration modes on the geometry of the target-space. The construction of Frenkel,
Lepowsky and Meurman can a posteriori be understood as the vertex operator algebra of a bosonic string theory
with target space a specific Z2-orbifold associated with the Leech lattice. Once again, the introduction of [FLM88]
gives a nice historical account of the early years of string theory, and explains some of the links between string
theory and the Monstrous Moonshine. The first chapter of the classical textbook [GSW87] is also a very nice
and accessible introduction to the ideas of string theory.

Borcherd’s proof of Conway and Norton’s conjecture Starting form the vertex operator algebra that
Frenkel, Lepowsky and Meurman had constructed, Borcherds used the 1972 Goddard-Thorn no-ghost theorem
of string theory to construct an infinite dimensional Lie algebra. He called it the monster Lie algebra (see
[Bor86]). Borcherds built a general theory of the mathematical objects of that type (called generalised Kac-
Moody algebras) and derived denominator identities and twisted denominator identities for those, mimicking the
more classical case of Kac-Moody algebras. In particular, these identities applied to the monster Lie algebra are
related to the coefficients of the McKay-Thompson series. At that point, the proof of the Monstrous Moonshine
could be completed in a finite number of verifications, that Conway and Norton had already partly done. Hence
Borcherds achieved the proof of the monstrous moonshine correspondence in 1992 [Bor92].

Moonshine nowadays

Borcherds’ proof of Conway and Norton’s original conjecture has shed intense light on the structure of M and
also on the modular side of the Monstrous Moonshine. For instance, the Koike-Norton-Zagier formula:

p−1
∏

m,n∈Z, m>0

(1− pmqn)c(mn) = J(σ)− J(τ )

arose as the denominator identity for the monster Lie algebra and taught relationships between the coefficients
of J that were at that time still unknown. As before q = e2πiτ (and similarly p = e2πiσ) and the c(n) are the
coefficients of the q-expansion of J . There are of course other consequences of the moonshine, see [DGO15a] for
some of those.
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The Monster also led to the discovery of two new sporadic groups, as quotients of some of its subgroups. In
fact, 20 sporadic groups (out of the 26) are subquotients of M. Robert Griess dubbed the set they form the happy
family, and the six remaining ones the pariah groups [Gri82]. The Monstrous Moonshine induces moonshines for
all the groups that are subquotients of the monster, and this observation led to a set of conjectures gathered in
1987 under the name of generalised moonshine by Norton. The proof of those conjectures has been completed
by Carnahan in 2016. The question whether the pariah groups also admit some kind of moonshine was already
asked in [CN79]. It turned out recently that the pariah O’Nan O′N admits moonshine-like properties linking it
to arithmetic [DMO18]. The pariah J1 (Janko 1), as a subgroup of O′N , admits subsequently the same type of
correspondences.

Moreover, new types of ”moonshines” have been discovered. The most famous is probably the umbral
moonshine correspondence, conjectured in 2010 [CDH12] as a mysterious representation of the Mathieu sporadic
group M24 in terms of elliptic geni of K3 surfaces, and proved in 2015 [DGO15b].

Sporadic groups, and in particular the monster, are without doubt very interesting mathematical objects.
There are still a lot of unexplained exciting coincidences that relate them to other fields in mathematics. For
example, another observation of McKay’s (that became famous as McKay’s E8 observation) relates the order
of the elements one may obtain by multiplying together two elements of the class 2A in the monster, and the
Dynkin diagram of the affine algebra Ê8. There are other hints letting one hope for a link between the three
biggest sporadic groups (M, B and Fi′24) and the three biggest exceptional finite-dimensional semi-simple Lie
algebras (E8,E7 and E6) [HM15]. However, these hints still look like coincidences... just as McKay’s original
observation firstly!

Exceptional objects in mathematics have always been fascinating, because of their mere existence, that is
already incredible enough to be amazed. Their study surely is an amazing fountain of knowledge, and it is very
likely that we are not done being surprised.
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