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NONCOMMUTATIVE CYCLIC ISOLATED SINGULARITIES

KENNETH CHAN, ALEXANDER YOUNG, JAMES J. ZHANG

Abstract. The question of whether a noncommutative graded quotient sin-
gularity AG is isolated depends on a subtle invariant of the G-action on A,
called the pertinency. We prove a partial dichotomy theorem for isolatedness,
which applies to a family of noncommutative quotient singularities arising from
a graded cyclic action on the (−1)-skew polynomial ring. Our results general-
ize and extend some results of Bao, He and the third-named author and results
of Gaddis, Kirkman, Moore and Won.

0. Introduction

Auslander [Au] proved that if G is a small finite subgroup of GLn(C), acting
linearly on the symmetric algebra over C (namely, the commutative polynomial
ring) R := C[C⊕n], with fixed subring RG, then the natural map

R#G → EndRG(R)

is an isomorphism of graded algebras. Here R#G denotes the skew group algebra
associated to the G-action on R and the hypothesis of G being small means that G
does not contain any pseudo-reflections (e.g. G is a finite subgroup of SLn(C)). This
theorem plays an important role in the McKay correspondence, relating representa-
tions of G and those of RG; and in the special case of dimension two, further relating
configuration of the exceptional fibers in the minimal resolution of SpecRG. The
noncommutative version of this theorem of Auslander is an important ingredient in
establishing a noncommutative McKay correspondence, see [CKWZ1, CKWZ2] for
some recent developments. In [BHZ1, BHZ2], a numerical invariant was introduced
for a semisimple Hopf algebra action on a (not necessarily commutative) algebra R
with finite Gelfand-Kirillov dimension (or GKdimension for short). The pertinency
of a Hopf algebra H-action on R [BHZ1, Definition 0.1] is defined to be

p(R,H) := GKdim(R)−GKdim(R#H/(e0))

where (e0) is the two-sided ideal of the smash product R#H generated by the
element e0 := 1#

∫
, where

∫
denotes an integral of H . One of the main results in

[BHZ1, BHZ2] is the following.

Theorem 0.1. [BHZ1, Theorem 0.3] Let R be a noetherian, connected graded,
Artin-Schelter regular, Cohen-Macaulay algebra of GKdimension at least 2. Let
H be a semisimple Hopf algebra acting on R inner-faithfully and homogeneously.
Then the following are equivalent:

(1) p(R,H) ≥ 2.
(2) The natural map R#H → EndRH (R) is an isomorphism of graded algebras.
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The above theorem is useful for studying quotient singularities RH and for con-
necting the representation theory of H and that of RH . Several groups of re-
searchers have computed the pertinency p(R,H) in different situations. A lower
bound of the pertinency for the cyclic permutation action on the (−1)-skew poly-
nomial rings and for the group actions on the universal enveloping algebra of some
Lie algebras was given in [BHZ1, BHZ2]; in [GKMW], the authors computed the
pertinency for many new examples; the authors in [HZ] introduced a new method
of computing pertinency by using pertinent sequences; the paper [CKZ] provided a
lower bound of the pertinency for group coactions on noetherian graded down-up
algebras.

Although many of these ideas can be applied to the Hopf algebra setting, in this
paper we only consider group actions, namely, H is a group algebra over a finite
group G. When G is acting on an algebra R, we usually assume that this action is
inner-faithful.

In algebraic geometry, singularities have been studied extensively. We recall the
following basic result. When a small finite subgroup G ⊆ GLn(C) acts naturally
on the vector space V := C⊕n, the quotient V/G := Spec(C[V ]G) has isolated
singularities if and only if G acts freely on V \ {0}, see [MSt, Lemma 2.1], [Fu,
Corollary to Lemma 2] and [MU1, p.7359].

In noncommutative algebraic geometry, Ueyama gave the following definition of
a graded isolated singularity [Ue, Definition 2.2]. Let B be a noetherian connected
graded algebra. Then B is a graded isolated singularity if the associated noncommu-
tative projective scheme tails B (in the sense of [AZ]) has finite global dimension.
Let R be a noetherian Artin-Schelter regular algebra and G a finite subgroup of
the graded algebra automorphism group Autgr(R). Mori-Ueyama [MU1, Theorem
3.10] proved that if p(R,G) ≥ 2, then RG is a graded isolated singularity if and only
if p(R,G) = GKdimR (which is the largest possible). This result was extended to
the Hopf algebra setting, namely, replacing G by a semisimple Hopf algebra, in
[BHZ1]. The first few examples of graded isolated singularities in the noncom-
mutative setting were given in [Ue, Theorem 1.4, Examples 3.1, 4.7 and 5.5] by
mimicking the commutative criterion of free action of G on V \{0}. More examples
of graded isolated singularities were given in [CKWZ1, CKWZ2, BHZ2, GKMW].
One example of graded isolated singularities in dimension three was given in [CKZ,
Lemma 2.11(1)]. A more interesting example is [Ue, Examples 5.4] or [KKZ1, Ex-
ample 3.1], where the G-action on the degree one piece of the regular algebra R
is not free. We call such a graded isolated singularity non-conventional [Definition
10.1].

Since Mori-Ueyama’s condition of maximal pertinency is not easy to check in
general, we only obtain some special examples of graded isolated singularities in high
GKdimension [BHZ2]. It would be nice to understand exactly when the pertinency
is maximal, but it seems extremely difficult to achieve this goal. The main object of
this paper is to calculate a family of pertinencies all together, using induction. As a
consequence, we obtain new examples of graded isolated singularities in arbitrarily
large GKdimension.

We now fix some notation. Let k be an algebraically closed field of characteristic
zero. Let n be an integer ≥ 2. The algebra that we are interested in is the (−1)-skew
polynomial ring

k−1[x] := k−1[x0, . . . , xn−1]
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that is generated by {x0, . . . , xn−1} and subject to the relations

xixj = (−1)xjxi

for all i 6= j. Let Cn be the cyclic group of order n acting on k−1[x] by permuting the
generators of the algebra cyclically, namely, Cn is generated by σ = (012 · · ·n− 1)
of order n that acts on the generators by

σ ∗ xi = xi+1

for all i ∈ Zn := Z/nZ. We have two results which establish a partial dichotomy.

Theorem 0.2. Let A := k−1[x] and G := Cn. If n = 2apb for some prime p ≥ 7
and integers a, b ≥ 0, then p(A,G) = GKdim(A) = n. As a consequence, AG is a
graded isolated singularity.

Remark 0.3. (1) Theorem 0.2 is a generalization of [Ue, Examples 5.4] (when
n = 2) and [BHZ1, Theorem 5.7(4)] (when n = 2a for some a ≥ 1).

(2) Although [Ue, Examples 5.4] and [BHZ1, Theorem 5.7(4)] have already
provided examples of non-conventional graded isolated singularities of a
similar type, Theorem 0.2 is still quite surprising and counter-intuitive.

Note that σ |V (where V = ⊕n−1
i=0 kxi) has eigenvalues {1, ξ, ξ

2, . . . , ξn−1}
where ξ is a primitive nth root of unity. In particular, there is an eigenvalue
of σ on V that is 1 (which is not a primitive nth root of unity) with

eigenvector
∑n−1

i=0 xi in V , or equivalently, the isolated singularity is non-
conventional.

(3) In fact, almost all graded isolated singularities considered in this paper
will be non-conventional. One aim of this paper is to show that non-
conventional graded isolated singularities are common in the noncommuta-
tive setting.

(4) The proof of Theorem 0.2 is very involved, using several steps of reduction
and induction. We hope to have a more conceptual proof in the future.

When p = 3 or 5, Theorem 0.2 fails.

Theorem 0.4. Let A := k−1[x] and G := Cn. If either 3 or 5 divides n, then
p(A,G) < GKdim(A) = n. Consequently, AG is not a graded isolated singularity.

Combining the above two theorems, if n = 2apb for some prime number p, then
ACn is a graded isolated singularity if and only if p 6= 3, 5. It is not obvious to us
why the primes 3 and 5 are different from other primes in this situation. Based on
the above two results we make a conjecture.

Conjecture 0.5. Let A := k−1[x] and G := Cn. Then AG is a graded isolated
singularity if and only if n is not divisible by 3 and 5.

The above conjecture holds for n less than 77 following Theorems 0.2 and 0.4.

Corollary 0.6. If n < 77, then Conjecture 0.5 holds.

Theorem 8.7 provides further evidence for Conjecture 0.5. For general n we have
the following lower bound. Let

(E0.6.1) φ2(n) = {k | 0 ≤ k ≤ n− 1 with gcd(k, n) = 2w for some w ≥ 0}.

Theorem 0.7. Let A := k−1[x] and G := Cn. Then p(A,G) ≥ |φ2(n)|.
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Note that Theorem 0.7 is an improvement of [BHZ1, Theorem 5.7] when n is
even. Combining Theorems 0.2, 0.4, 0.7 and further analysis, we have the following
table of pertinencies.

Proposition 0.8. Let p = p(A,Cn). Then

n 2 3 4 5 6 7 8 9 10 11 12 13 14
p 2 2 4 4 5 7 8 8 9 11 ∈ [8, 11] 13 14

where the notation ∈ [8, 11] means that 8 ≤ p ≤ 11.

By Proposition 0.8, the integer 12 is the smallest n where that the exact value
of p(A,Cn) is unknown. It would be nice to have exact values of p(A,Cn) for all n.
In particular, we ask:

Question 0.9. Retain the above notation.

(1) If n is divisible by either 3 or 5, what is the exact value of p(A,Cn)?
(2) Does the sequence, from Proposition 0.8,

(E0.9.1) 2, 2, 4, 4, 5, 7, 8, 8, 9, 11...

match up with any other sequences in literature? The On-Line Encyclope-
dia of Integer Sequences website

https://oeis.org/
does not give any sequences that match up with (E0.9.1)

Graded isolated singularities have various special properties. Ueyama and Mori-
Ueyama investigated certain properties of graded isolated singularities from the
viewpoint of derived categories and representation theory. As an immediate con-
sequence of [Ue, MU1, MU2], we have the following. We refer to [Ue, MU1, MU2]
for undefined terms in the next corollary.

Corollary 0.10. Suppose n = 2apb for some prime p ≥ 7 and integers a, b ≥ 0.
Then the following hold.

(1) tails AG ∼= tails A#G.
(2) A is a (n−1)-cluster tilting object in the category of graded maximal Cohen-

Macaulay modules over AG.
(3) The derived category Db(tails AG) has a tilting object.
(4) The derived category Db(tails AG) has a Serre functor.

This paper is organized as follows. We provide background material in Section 1.
Theorem 0.7 is proven in Section 2. In Section 3, we give some preliminary results
and Theorem 0.4 is proven in Section 4. We continue some preparation in Sections
5 and 6. The main result, Theorem 0.2, is proven in Section 7. In Section 8, we
discuss some partial results when n = p1p2. Proposition 0.8 is proven in Section
9. In Section 10, we construct more examples of non-conventional graded isolated
singularities. The final section contains some questions and comments.

Acknowledgments. The authors thank Jason Bell, Ken Goodearl, Zheng Hua,
Lance Small, Agata Smoktunowicz and Robert Won for many useful conversations
on the subject and thank Jason Bell for the proof of Lemma 10.6. J.J. Zhang was
partially supported by the US National Science Foundation (No. DMS-1700825).
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1. Preliminaries

Throughout let k be a base field that is algebraically closed of characteristic zero.
All objects are k-linear.

An algebra R is called connected graded if R =
⊕

n≥0 Rn satisfying RiRj ⊆ Ri+j

for all i, j and 1 ∈ R0 = k. We say R is locally finite if dimk Rn < ∞ for all n. In
this paper all connected graded algebras will be locally finite.

We refer to [KL, MR] for the definition of the Gelfand-Kirillov dimension (or
GKdimension) of an algebra or a module. When R is connected graded and finitely
generated, its GKdimension is equal to

(E1.0.1) GKdim(R) = lim sup
n→∞

logn(

n∑

i=0

dimk Ri).

Observe that GKdim(R) = 0 if and only if dimk R < ∞. For q ∈ k×, the
q-polynomial ring

kq[x1, . . . , xm] := k〈x1, . . . , xm〉/(xixj − qxjxi | i < j)

has GKdimension m (equal to the number of generators). If B is either a subalgebra
or a homomorphic image of an algebra R, then GKdim(B) ≤ GKdim(R).

Let B be a noetherian connected graded algebra. If M is a finitely generated
graded right B-module, then we have a formula similar to (E1.0.1), see [SZ, p.1594],

(E1.0.2) GKdim(M) = lim sup
n→∞

logn(
∑

i≤n

dimk Mi).

Let c be a homogenous central element of B of positive degree. If M is a finitely
generated left graded B-module, it follows from (E1.0.2) that

(E1.0.3) GKdimM ≥ GKdimM/cM ≥ GKdimM − 1.

Definitions of other standard concepts such as Artin-Schelter regularity, Aus-
lander regularity, Cohen-Macaulay property are omitted as these can be found in
many papers such as [Le, CKWZ1, MSm].

For the first nine sections we consider noncommutative cyclic singularities arising
from the action of the cyclic group on the (−1)-skew polynomial ring as follows.

Let n be a fixed integer≥ 2. Let n := {0, . . . , n−1}. Note that n can be identified
with the additive group Zn. Let x be the set {x0, . . . , xn−1} or {xi | i ∈ Zn} and A
be the (−1)-skew polynomial ring k−1[x] as defined in the introduction. Then A is
a graded k-algebra with deg(xi) = 1 for each i and we denote Aj the k-subspace of
degree j elements of A. It is well-known that A is noetherian, Artin-Schelter regular,
Auslander regular and Cohen-Macaulay of global dimension and GKdimension n.
Let σ be the cycle (012 · · ·n − 1) which generates the cyclic group Cn of order n
as a subgroup of the symmetric group Sn (considering Sn as a set of bijections of
n := {0, . . . , n − 1}). As abstract groups, we have Zn

∼= Cn. The action of Cn on
A is determined by its action on generators

σ ∗ xi = xi+1, ∀ i ∈ n = Zn.

The skew group algebra A#Cn with respect to this action consists of all linear
combinations of elements a#g with a ∈ A and g ∈ Cn, with multiplication given
by

(a#g)(a′#g′) = ag(a′)#gg′,

extended linearly to all of A#Cn. We omit # if no confusion occurs.
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The skew group algebra can be presented in the standard way,

A#Cn
∼=

k〈x, σ〉

(xixj + xjxi, σn, σxi − xi+1σ)
.

We now describe a different presentation of the above skew group algebra, using
eigenvectors of the σ-action, which we will use for the rest of the paper.

Since the action of Cn on A is graded, the generating subspaceA1 is a Cn-module.
Let ω be a primitive nth root of unity and Mωj be the simple (hence 1-dimensional)
Cn-module where σ acts by multiplication by ωj. The σ-action on A1 has minimal
polynomial p(X) = Xn − 1, so we can decompose A1 as a Cn-module as follows

(E1.0.4) A1
∼=

n−1⊕

γ=0

Mωγ

For γ = 0, . . . , n− 1, define the following elements of A1 ⊆ A#Cn

(E1.0.5) bγ :=
1

n

n−1∑

i=0

ωiγxi.

The following calculation shows that bγ is a ω−γ-eigenvector of σ,

(E1.0.6) σ ∗ bγ =
1

n

n−1∑

i=0

ωiγxi+1 = ω−γbγ .

In other words, we have kbγ ∼= M−γ as Cn-modules, so the basis {b0, . . . , bn−1}
gives the Cn-module decomposition of A1 in (E1.0.4). We also define the following
idempotent elements

eα :=
1

n

n−1∑

i=0

(ωασ)i

in kCn ⊆ A#Cn. Let b := (b0, . . . , bn−1) and e := (e0, . . . , en−1). Define the graded
commutator, denoted by [·, ·], for any homogeneous elements u, v ∈ A#Cn (or u, v
in another graded algebra) by

[u, v] = uv − (−1)deg(u)deg(v)vu.

We have the following Lemma.

Lemma 1.1. Suppose deg(bi) = 1 and deg(ei) = 0 for all i ∈ Zn. The graded
algebra A#Cn can be presented as follows

A#Cn
∼=

k〈b, e〉

(eαbγ − bγeα−γ , eiej − δijei, [b0, bk]− [bl, bk−l])

where δij is the Kronecker delta and indices are taken modulo n.

Proof. Let bi be defined as in (E1.0.5) and let

rkl = [b0, bk]− [bl, bk−l].

We first show that the map

ι : k〈b〉/(rkl) → k−1[x]

is well-defined and is an isomorphism. By (E1.0.6) the elements b0, . . . , bn−1 are
eigenvectors for the σ-action on A1 with distinct eigenvalues, hence this is a basis
for A1, so ι is an isomorphism in degree 1. To see that ι is well-defined as an algebra
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map, note that the graded commutator of bγ and bδ depends only on the sum of γ
and δ,

(E1.1.1) [bγ , bδ] =
1

n2

n−1∑

i,j=0

ωiγ+jδ[xi, xj ] =
2

n2

n−1∑

i=0

ωi(γ+δ)x2
i

So the relations rkl go to zero in k−1[x]. To show that ι is an algebra isomorphism,
we count the number of independent quadratic relations in b and show that this
number is equal to

(
n
2

)
.

For any fixed k, the only linear relations among Rk := {rk0, rk1, . . . , rk,n−1} are
rk0 = rkk = 0 and rkl = rk,k−l. Define a C2-action on Rk by rkl 7→ rk,k−l. Then
the number of independent relations in Rk is equal to |Rk/C2| − 1.

Case 1: For odd n, the C2-action has exactly one fixed point rkl where 2l = k
mod n. Therefore |Rk/C2| = (n+ 1)/2. The relations in Rk are independent from
the relations in Rk′ for distinct k, k′. Since k ranges from 0 to n − 1, the total
number of independent relations is equal to

n(|Rk/C2| − 1) =

(
n

2

)
.

Case 2: Let n be even. For odd k, the C2-action has no fixed points. Therefore
|Rk/C2| = n/2. If k is even, then the C2-action has two fixed points, coming from
the two solutions of 2l = k mod n. Therefore |Rk/C2| = n/2 + 1. By considering
the odd and even cases separately, we get that the total number of independent
relations is equal to

∑

k odd

(|Rk/C2| − 1) +
∑

k even

(|Rk/C2| − 1) =
n

2

(n
2
− 1

)
+

n

2

(n
2

)
=

(
n

2

)
.

Therefore ι is an algebra isomorphism.
The isomorphism

kCn
∼= k〈e〉/(eiej − δijei)

is well-known. The relations between b and e are obtained as follows

eαbγ =
1

n

n−1∑

i=0

(ωασ)ibγ =
bγ
n

n−1∑

i=0

ω(α−γ)iσi = bγeα−γ .

By using the facts

σi =
∑

α

ω−αieα

and

xj =
∑

γ

ω−γjbγ

for i, j ∈ Zn, it is easy to check that the set of relations

{eαbγ = bγeα−γ | α, γ ∈ Zn}

is equivalent to the set of relations

{σixj = xj+iσ
i | i, j ∈ Zn}.

This completes the proof. �
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We define the elements

(E1.1.2) cj := [bk, bj−k]

for all j ∈ Zn. Equation (E1.1.1) shows that the definition of cj does not depend
on k, and while they are central elements of A, they are not central in A#Cn. By
the relations in Lemma 1.1, we have

eαcj = cjeα−j

for all α, j ∈ Zn. As above, we denote by c = (c0, c1, . . . , cn−1). Recall that, for a
vector i = (i0, i1, . . . , in−1) ∈ Nn,

|i|1 = |i0|+ |i1|+ · · ·+ |in−1|.

We will use the following notation

bi := bi10 bi11 · · · b
in−1

n−1 ,

ci := ci10 ci11 · · · c
in−1

n−1 .

Proposition 1.2. For each r ≥ 0, the set

Br = {bicj | i ∈ {0, 1}n, j ∈ Nn, |i|1 + 2|j|1 = r}

is a k-linear basis for Ar.

Proof. The generating function for Br, namely, g(t) =
∑

r≥0 |Br|tr is

(1 + t)n
1

(1− t2)n
=

1

(1− t)n
,

which agrees with the Hilbert series of A. It remains to show that Br spans Ar for
each r.

Since b generates A, the set {bt1 · · · btr | for different ts} spans Ar. Using the
relation cj = [bk, bj−k] and the fact that cj are central, we can ensure that bt1 · · · btr
is in the linear span of Br, as required. �

We can extend the above basis for Ar to a basis for (A#Cn)r by adjoining the
n idempotent elements coming from kCn. Therefore

Br × e = {zej | z ∈ Br, j = 0, . . . n− 1}

and
e× Br = {ejz | z ∈ Br, j = 0, . . . n− 1}

are both k-linear bases for (A#Cn)r. The following is an immediate consequence
of Proposition 1.2.

Corollary 1.3. Retain the above notation.

(1) The union B =
⋃

r∈N
Br is a k-linear basis for A.

(2) Both e× B and B × e are k-linear bases for A#Cn.
(3) A#Cn is a finitely generated left and right module over the commutative

subring k[c] ⊆ A.

Let (e0) ⊂ A#Cn denote the two sided ideal generated by the idempotent e0.
We will be concerned with computing the GKdimension of the quotient algebra

E := (A#Cn)/(e0).

Since e0 is the integral of the group algebra kCn, we obtain that

p(A,Cn) = GKdimA−GKdimE.
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Let

(E1.3.1) Φn := {k | cNk

k ∈ (e0) for some Nk ≥ 0}.

The following lemma is easy.

Lemma 1.4. Retain the above notation.

(1) Let C be the quotient ring k[c]/(cNk

k ; k ∈ Φn). Then GKdimC ≤ n− |Φn|.
(2) The algebra E is a finitely generated right module over C. As a consequence,

GKdimE ≤ GKdimC ≤ n− |Φn|.

(3) k ∈ Φn if and only if, for each α, eαc
N
k ∈ (e0) for N ≫ 0.

Proof. (1) This is true because {cNk

k | k ∈ Φn} is a regular sequence of k[c].
(2) The first assertion follows from Proposition 1.2 (or Corollary 1.3(2)). The

consequence follows from [MR, Proposition 8.3.2].
(3) If cNk ∈ (e0), then clearly eαc

N
k ∈ (e0) for all α. The converse follows from

the fact 1 =
∑

α eα. �

In the next few sections we provide upper and lower estimates for GKdimE.

2. An upper bound on GKdimE

This section is a warm-up for more complicated computations to be done in later
sections. Fix n ∈ N, define the following functions on Zn. Let k be in Zn. For
every α ∈ Zn,

fk(α) := α− k,

gk(α) := 2α− k.

Let Sk be the multiplicative semigroup of EndZ(Zn) generated by fk and gk.

Lemma 2.1. For each s ∈ Sk we have eαc
N
k ∈ (e0) + (es(α)) for N ≫ 0.

Proof. We have two simple calculations

eαc
N
k = ckeα−kc

N−1
k = ckefk(α)c

N−1
k , and

eαc
N
k = eα(bαbk−α + bk−αbα)c

N−1
k

= bαe0c
N−1
k bk−α + bk−αe2α−kc

N−1
k bα

= bαe0c
N−1
k bk−α + bk−αegk(α)c

N−1
k bα,

which imply that eαc
N
k ∈ (efk(α)) and that eαc

N
k ∈ (e0) + (egk(α)). Since s is

generated by fk and gk, the claim follows. �

For fixed α, it is easy to see that

Sk(α) = {2sα+ tk mod n | s, t ≥ 0} ⊆ Zn.

Lemma 2.2. Let k ∈ Zn be fixed. If 0 ∈ Sk(α) for every α, then k ∈ Φn.

Proof. For each α, pick s ∈ Sk so that s(α) = 0. By Lemma 2.1, eαc
N
k ∈ (e0) +

(es(α)) = (e0). The assertion follows by Lemma 1.4(3). �

Recall from (E0.6.1) that

φ2(n) = {k | 0 ≤ k ≤ n− 1, gcd(k, n) = 2w for some w ≥ 0}.

Proposition 2.3. Retain the above notation.
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(1) If k = 2wq < n such that q is odd and (n, q) = 1, then k ∈ Φn. Equivalently,
φ2(n) ⊆ Φn.

(2) |Φn| ≥ |φ2(n)|.
(3) GKdim(E) ≤ n− |φ2(n)|. As a consequence,

(3a) If n = 2j, then GKdimE = 0.
(3b) If n is an odd prime, then GKdimE ≤ 1.

Proof. Let n be a positive integer such that n = 2mp where p is odd. Then let
|n|2 = m.

(1) By Lemma 2.2, we need to show that, for every α, there is an s ∈ Sk such
that s(α) = 0. Write α = 2rβ where r = |α|2. Recall that k = 2wq < n such that
(p, q) = 1 where w = |k|2. We have two cases, depending on the relative magnitudes
of r and w.

Case 1: If r ≥ w, then there exists j such that α = jk in Zn (j = 2r−wq−1β
where q−1 exists in Zn), so

f j
k(α) = α− jk = 0 in Zn.

So we take s = f j
k .

Case 2: If r < w, then

gw−r
k (α) = 2w−rα− (2w−r − 1)k,

hence |gw−r
k (α)|2 ≥ w. This reduces to the first case.

Hence, in both cases, there is an s ∈ Sk such that s(α) = 0 as required.
(2) This is an immediate consequence of part (1).
(3) The main assertion follows from part (2) and Lemma 1.4(2). Two conse-

quences are special cases of the main assertion. �

It is easy to see that Theorem 0.7 is equivalent to Proposition 2.3(3).

3. Preparation, part one

Recall that E = (A#Cn)/(e0). In this section, we reduce the problem of com-
puting GKdimE to that of a right quotient module of A. Let ēk denote the image
of the idempotent ek in E. This gives a right module decomposition

E = ē1E ⊕ · · · ⊕ ēn−1E,

and it follows that

(E3.0.1) GKdim(E) = max
1≤j≤n−1

GKdim(ējE).

For each j, we have the following isomorphism of right A#Cn-modules

(E3.0.2) ējE ∼=
ej(A#Cn)

ej(A#Cn) ∩ (e0)
.

Using the basis e × B for A#Cn we obtain immediately the right A-module
isomorphism ej(A#Cn) ∼= A by eja 7→ a with inverse given by a 7→ eja. We will
use this isomorphism to identify ej(A#Cn) with A below.

In the following, it will be useful to decompose A according to the characters
of the Cn-action, or equivalently, as modules over the invariant subring ACn . Let
Rj be the k-subspace of A spanned by the basis consisting of the elements bicj

where (i + j) · v = j mod n and v := (0, 1, . . . , n − 1). Since B is an eigenbasis
with respect to the σ-action, we have that R0 is the invariant subring ACn and Rj
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is the Mω−j -isotypic component of the Cn-action on A. This gives an R0-module
decomposition

A ∼= R0 ⊕R1 ⊕ · · · ⊕Rn−1.

We next find a finite generating set for Rj .

Lemma 3.1. For each j = 1, . . . , n − 1, define Bj to be the set of elements bicj

satisfying

(i) (i + j) · v = j mod n, and

(ii) for each nontrivial bi′cj
′

with i′ ≤ i and j′ ≤ j we have bi′cj
′

6∈ R0.

Then Bj generates Rj as a right R0-submodule of A.

Proof. By definition, the elements bicj satisfying (i) generate Rj . Now suppose
bicj satisfies (i) but not (ii), that is, there exist some nontrivial i′ ≤ i and j′ ≤ j

such that bi′cj
′

∈ R0. If i′ = 0, then we can write it as bicj−j′cj
′

. If i′ 6= 0, then
using the commutation relations (E1.1.2), we can move the bi′ terms, one at a time,
to the right side of the expression so that

bicj = bi−i′cj−j′bi′cj
′

+
∑

k,l

λk,lb
kcl

where each k in the summation above satisfies k < i and λk,l ∈ k. In particular, we
have expressed bicj as an R0-linear combination of terms in B whose b-exponent
vector is strictly less than i. By induction on the b-exponent vector, we obtain the
result. �

Lemma 3.2. Retain the above notation. Suppose 1 ≤ j ≤ n−1 and 0 ≤ k ≤ n−1.

(1) The intersection ej(A#Cn) ∩ (e0) considered as a right ideal in A is gen-
erated by Bj.

(2) For N ≥ 0, cNk ∈ BjA if and only if ejc
N
k ∈ (e0).

(3) k ∈ Φn if and only if, for each j, ejc
N
k ∈ (e0) for some N ≫ 0; and if and

only if, for each j, cNk ∈ BjA for some N ≫ 0.

Proof. (1) Using the fact A#Cn =
∑

iAei =
∑

i eiA, one sees that every element
f ∈ (e0) := (A#Cn)e0(A#Cn) can be written as a linear combination of terms
ue0v where u, v ∈ B. Without loss of generality let f = ue0v where u, v ∈ B. If, in
addition, f ∈ ej(A#Cn), then

f = ejf = ejue0v = uej−γe0v =

{
ue0v j = γ

0 j 6= γ

where u ∈ Rγ . Hence we can assume that j = γ and u ∈ Rj = BjR0 by Lemma
3.1. Since elements of R0 commute with e0, we can actually assume that u ∈ Bj .
Finally, ue0v = ejuv since u ∈ Bj .

(2) This follows from part (1).
(3) This follows from part (2) and Lemma 1.4(3). �

Identify ej(A#Cn) with A and combining Lemma 3.2 and (E3.0.2), we get

(E3.2.1) ējE ∼= A/BjA = A/RjA.

We can say more: Lemma 3.4 below finds a sufficient condition for when these
quotients are isomorphic.
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Definition 3.3. Let λ ∈ Z be an integer with gcd(λ, n) = 1. Let fλ : A −→ A be
the algebra map determined by

fλ(bi) = bλi

for all i ∈ Zn. To see this is an algebra homomorphism, note that

fλ([b0, bj]− [br, bj−r]) = [b0, bλj ]− [bλr, bλj−λr].

Since λ is invertible in Zn, fλ is an algebra automorphism of A. It is easy to check
that fλ(xi) = xai where a = λ−1 in Zn.

Lemma 3.4. For any positive integer λ with gcd(λ, n) = 1, we have the following
isomorphism of k-vector spaces

ējE ∼= ēλjE.

In particular, if n is prime, then for each j = 2, . . . , n− 1, we have ē1E ∼= ējE.

Proof. Let fλ : A −→ A be the algebra isomorphism defined in Definition 3.3. Now

fλ(Rj) = Rλj ,

hence

ējE ∼= A/RjA ∼= A/RλjA ∼= ēλjE

as k-vector spaces. �

Since GKdimension of a finitely generated A-module is only dependent on its
Hilbert series (E1.0.2), we have the following immediate consequences.

Corollary 3.5. Retain the above notation.

(1) For any 0 < j < n, we have the following lower bound for GKdim(E)

GKdim(E) ≥ GKdim(A/BjA).

(2) We have

GKdim(E) = max
j

GKdim(A/BjA)

where j ranges over positive integers less than n that divide n.
(3) If n is prime, then

GKdim(E) = GKdim(A/B1A).

For the rest of this section we will consider two distinct values of n, with one
a factor of the other, and arguments will involve two particular natural algebra
homomorphisms between the (−1)-skew polynomial rings of these different dimen-
sions.

We fix two integers m and n such that m divides n. Let A (resp. Ã) denote
the (−1)-skew polynomial ring of dimension n (respectively, m). Usually we use

˜ to denote the corresponding notation for the algebra Ã. For example, since
we use b for the generating set for A (see (E1.0.5)), then we use b̃ to denote the

corresponding generating set for Ã. Recall from the proof of Lemma 1.1, the algebra
A is determined completely by the set of relations of the form

(E3.5.1) rkl : [b0, bk]− [bl, bk−l] = 0

for all k, l ∈ Zn. Similarly for the algebra Ã.
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Definition 3.6. Suppose m divides n. There is a surjective homomorphism

πn,m : A → Ã

determined by sending bj 7→ b̃j , where in the b̃ variables the indices are taken
modulo m. Since m divides n, πn,m maps any relation of A of the form (E3.5.1) to

a relation of Ã. Therefore πn,m is an algebra homomorphism. The surjectivity of
πn,m follows from the fact that it is surjective in degree 1.

Lemma 3.7. Suppose that m divides n. Then GKdim(E) ≥ GKdim(Ẽ).

Proof. Let R̃j ⊂ Ã, for j = 0, . . . ,m− 1, be defined as in the beginning of Section

3 for the algebra Ã with m variables. Since πn,m(Rj) ⊂ R̃j , for j = 0, . . . ,m − 1,

we get a surjective homomorphism A/RjA → Ã/R̃jÃ. Then

GKdim(Ẽ) =
m−1
max
j=1

{GKdim Ã/R̃jÃ} ≤
m−1
max
j=1

{GKdimA/RjA} ≤ GKdim(E).

�

Lemma 3.7 will be used in the proof of Theorem 0.4.
For the proof the main result (Theorem 0.2), we need to consider another ho-

momorphism. As before, let m and n be two integers such that m divides n. Write
q = n/m.

Definition 3.8. Suppose m divides n and write q = n/m. Let

θm,n : Ã → A

be an algebra homomorphism determined by θm,n(b̃i) = bqi for all i ∈ Zm. Since

θm,n maps the relation r̃kl of Ã of the form (E3.5.1) to rqk,ql of A, θm,n is an algebra
homomorphism.

We have the following easy lemma.

Lemma 3.9. Suppose that m divides n and write q = n/m. Let N be a positive
integer. Then

(1) θm,n(R̃j) ⊆ Rqj for all j ∈ Zm.
(2) θm,n(c̃j) = cqj for all j ∈ Zm.

(3) If c̃Ni ∈ R̃jÃ for some i, j ∈ Zm and N ≥ 0, then cNqi ∈ RqjA.

4. Proof of Theorem 0.4

We first show that for n = 3, 5 the GKdimension of A/B1A is equal to 1. Hence
the GKdimension of E is also equal to 1 by Corollary 3.5(3). It turns out that we
can use these two cases to infer that the GKdimension of E is positive whenever 3
or 5 divides n.

Proposition 4.1. Let n = 3.

(1) B1A ∼= (b1A+ c1A) as right A-modules.
(2) GKdim(A/B1A) = 1.
(3) GKdim(E) = 1.

Proof. (1) Recall that the definition of Bj is given in Lemma 3.1. By definition one
can easily check that B1 = {b1, c1, c22, b2c2}. Note that c2 = 2b21 so c22 = 4b41 and
b2c2 = 2b21b2, hence B1A = b1A+ c1A.
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(2) Since c1 is central in A the quotient W = A/(c1) has the structure of a
k-algebra with GKdim(W ) = GKdim(A)− 1 = 2. Then A/B1A ∼= W/b1W , so

GKdimA/B1A = GKdim(W/b1W ) ≥ GKdim(W )− 1 = 1.

On the other hand, b1W ⊇ c2W . Then

GKdimA/B1A = GKdim(W/b1W ) ≤ GKdim(W/c2W ) = GKdim(W )− 1 = 1.

The assertion follows.
(3) The assertion follows from Corollary 3.5(3) and part (2). �

Proposition 4.2. Let n = 5.

(1) B1A ⊆ I where I = (b1A+ b2A+ c1A+ c2A+ c3A+ c4A).
(2) GK(A/I) = 1.
(3) GKdim(E) = GKdim(A/B1A) = 1.

Proof. (1) An element bicj ∈ B1 with j 6= 0 is clearly in I. To verify the inclusion,
it suffices to show that if bi ∈ B1 with i ∈ {0, 1}n then bi ∈ I. There are two such
elements b1 and b2b4 and these are both in I.

(2) Let J be the two sided ideal of A generated by central elements c1, c2, c3, c4.
Let βj (resp. γ0) denote the image of bj (resp. c0) in A/J . Then A/J is a finitely
generated left k[b0]-module. Since A/J has no β0-torsion, it is actually a free module
over k[β0]. Moreover, β0 skew-commutes with the other βi’s, so a k[β0]-basis for
A/J is given by squarefree monomials (with respect to the lexicographical ordering)
in β1, . . . , β4. Using this basis, we see that

A/I ∼=
A/J

β1(A/J) + β2(A/J)
∼= k[γ0]⊕ k[γ0]β3 ⊕ k[γ0]β4 ⊕ k[γ0]β3β4.

Hence GK(A/I) = 1.
(3) By part (1), the map A/B1A → A/I is surjective, so GKdim(A/B1A) ≥ 1.

By Proposition 2.3(3b), GKdim(E) ≤ 1. Combining with Corollary 3.5(3), we have
GKdim(E) = GKdim(A/B1A) = 1. �

Now we are ready to prove Theorem 0.4.

Proof of Theorem 0.4. Retain notation as in Lemma 3.7. Take m = 3 or 5 (two

different cases). By Proposition 4.1(3) and 4.2(3), GKdim(Ẽ) = 1. By Lemma 3.7,
GKdim(E) ≥ 1. Hence p(A,G) ≤ n − 1. By [MU1, Theorem 3.10], AG is not a
graded isolated singularity. �

5. Preparation, part two

In Section 7 we will prove Theorem 0.2. We need to do several reduction steps,
some of which are given in this section. First we fix some convention throughout
the rest of the paper.

Convention 5.1. Let n denote a fixed integer ≥ 2. Letters such as i, j, k denote
elements in Zn. Usually these take values in [0, 1, 2, . . . , n − 1]. However 0 is
identified with n. If we use induction, the induction process starts with 1 and ends
with n (then n is identified with 0). So, when we use induction on the integer i it
will take values in [1, 2, . . . , n].

In Section 5, we only use i and j.
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Some ideas in this section have appeared in previous sections, but we will do
finer analysis. In order to prove Theorem 0.2, we seek to show that for every j
with 1 ≤ j < n, the k-vector space A/BjA is finite dimensional. It is necessary and
sufficient to show that for every i, the element cNi ∈ BjA for some N ≥ 0.

Definition 5.2. Retain notation above.

(1) We say ci is nilpotent in A/BjA if cNi ∈ BjA for some N ≥ 0. In this case

we write i ∈ Ψ
[n]
j .

(2) We say n is admissible if, for every all i and j, i ∈ Ψ
[n]
j , or equivalently,

GKdimE = 0, see Lemma 5.3(1) below.

Note that it is automatic that i ∈ Ψ
[n]
0 . Therefore usually we only consider the

case when 1 ≤ j ≤ n− 1. We start with some initial analysis and easy reductions.

Lemma 5.3. Retain notation above.

(1) n is admissible if and only if GKdim(E) = 0. In this case, p(A,G) = n.

(2) If i ∈ Ψ
[n]
j for all i and all divisors j | n with 1 ≤ j < n, then n is

admissible.
(3) If m is a factor of n and n is admissible, then m is admissible.

Proof. (1) The assertion follows from (E3.0.1), (E3.2.1) and the fact that

GKdim(A/BjA) = 0 if and only if i ∈ Ψ
[n]
j for all i.

(2) This is Corollary 3.5(2).
(3) This follows from part (1) and Lemma 3.7. �

Lemma 5.4. Retain notation above.

(1) If n = mq and i ∈ Ψ
[m]
j , then iq ∈ Ψ

[n]
jq .

(2) Let j be a divisor of n. If gcd(i, n) = gcd(i, j), or gcd(i, n)|j, then i ∈ Ψ
[n]
j .

Proof. (1) This is Lemma 3.9(3).
(2) Let q = gcd(i, n). Then q = gcd(i, j) = gcd(i, j, n). By part (1), we might

assume that q = 1. In this case, i is invertible in Zn. Let s be the inverse of i in
Zn. Then there is a t := js such that j = ti in Zn. In this case cti ∈ Rj = BjA as
desired. �

Parts (1) to (3) of the next lemma are in fact a slightly different version of
Lemma 2.1.

Lemma 5.5. Retain notation above.

(1) If i ∈ Ψ
[n]
2j−i, then i ∈ Ψ

[n]
j .

(2) If i ∈ Ψ
[n]
j−i, then i ∈ Ψ

[n]
j .

(3) If i ∈ Ψ
[n]
2sj+ti for some integers s, t ≥ 0, then i ∈ Ψ

[n]
j .

(4) Suppose that every proper divisor of n is admissible. If gcd(i, n) is even,

then i ∈ Ψ
[n]
j .
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Proof. (1) If cNi ∈ B2j−iA, then we can show cN+1
i ∈ BjA as follows:

cN+1
i = cic

N
i = (bjbi−j + bi−jbj)c

N
i

= bj(bi−jc
N
i ) + (bi−jc

N
i )bj

∈ Bj(bi−jc
N
i ) + (bi−jB2j−iA)bj

⊆ RjA = BjA.

(2) By definition, we have cNi ∈ Bj−iA for some N > 0. Then

cN+1
i = cic

N
i ∈ ciBj−iA ⊆ BjA.

The assertion follows.
(3) Applying the statement of (2) multiple times, we have that i ∈ Ψ

[n]
2sj−i. By

part (1), we have i ∈ Ψ
[n]
2s−1j . The assertion follows by induction on s.

(4) Let i = 2i′ and n = 2n′. Since n′ is admissible, i′ ∈ Ψ
[n′]
j−i′ . By Lemma 5.4(1),

i ∈ Ψ
[n]
2j−i. The assertion follows from part (1). �

6. Preparation, part three

Recall from (E1.3.1) that

Φn := {k | cNk

k ∈ (e0) for some Nk ≥ 0}.

For each k ∈ Φn, there exists Nk ≥ 0 such that cNk

k = 0 in E = (A#Cn)/(e0). It is
easy to see that the set Φn satisfies the condition in the following definition.

Definition 6.1. A subset of Φ ⊆ Zn is called special if k ∈ Φ if and only if λk ∈ Φ
for all invertible elements λ ∈ Zn. In this case, the ideal cΦ := 〈ck | k ∈ Φ〉 of A is
called the special ideal of A associated to Φ.

Here are some examples of special subsets:

(1) Φ = ∅ (in which case, cΦ = 0).
(2) Φ = Φn as in (E1.3.1).
(3) Φ = φ2(n) as in (E0.6.1).
(4) Φ = {1, 2, . . . , n− 1}.
(5) Φ = {0, 1, 2, . . . , n− 1} (in which case, cΦ = {ck | 0 ≤ k ≤ n− 1}).

Fix one special ideal cΦ of A, and write A = A/cΦ. Clearly, Cn acts on A. Let E
be the algebra (A#Cn)/(e0). The following lemma shows that it is useful to pass
into the quotient rings.

Lemma 6.2. Retain the notation above and suppose that Φ = Φn. Then

GKdimE = GKdimE.

Proof. Since E is noetherian,

GKdimE = max
p

GKdimE/p

where the max runs over all prime ideals p of E. Since ck, for each k ∈ Φn, is normal
and nilpotent in E, we have ck ∈ p for each prime p. Hence E/p is annihilated by
the ideal cΦ. As a consequence,

GKdimE/p = GKdimE/p⊗A/cΦ ≤ GKdimE ⊗A/cΦ = GKdimE.

This implies that GKdimE ≤ GKdimE. It is clear that GKdimE ≥ GKdimE.
The assertion follows. �
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Next we repeat some arguments in Section 3. Going back to a general fixed
special ideal (not necessarily associated to Φn), by abuse of notation, let ēk also
denote the image of the idempotent ek in E. Then we have a right E-module
decomposition

E = ē1E ⊕ · · · ⊕ ēn−1E

and it follows that

GKdim(E) = max
1≤j≤n−1

GKdim(ējE).

For any j, we have the following isomorphism of right A#Cn-modules

ējE ∼=
ej(A#Cn)

ej(A#Cn) ∩ (e0)
.

We recycle the letters xi, bi, ci for A (with some of ci = 0 in A). There is a right
A-module isomorphism ej(A#Cn) ∼= A by eja 7→ a with inverse given by a 7→ eja.

So we will identify ej(A#Cn) with A below.

Let Bj (respectively, B, Bj) be defined as in Proposition 1.2 (respectively, Corol-

lary 1.3, Lemma 3.1) after removing all {ck | k ∈ Φ}. Let Rj be the Mω−j -isotypic

component of the Cn-action on A. We have an R0-module decomposition

A ∼= R0 ⊕R1 ⊕ · · · ⊕Rn−1

where R0 = (A)Cn . The following is an A-version of Lemma 3.2.

Lemma 6.3. Retain the notation above. We are working in the algebra A#Cn.

(1) The intersection ej(A#Cn) ∩ (e0) considered as a right ideal in A is gen-

erated by Bj.

(2) For N ≥ 0, we have cNk ∈ BjA if and only if ejc
N
k ∈ (e0).

(3) If there is an integer N ≥ 0 such that, for each j, we have ejc
N
k ∈ (e0),

then cNk = 0 in E. If, in addition, we have Φ = Φn, then cNk = 0 in E, or

equivalently, ck = 0 in E.

Proof. For (1) and (2), see the proof of Lemma 3.2.
(3) Since 1 =

∑
ej , we have cNk ∈ (e0). This means that cNk = 0 in E.

Now assume Φ = Φn. Since ck is normal, ck ∈ q for every prime ideal q of E.
By the proof of Lemma 6.2, every prime quotient E/p of E is isomorphic to E/q
for some prime ideal q of E. This implies that ck is zero in E/p, consequently, ck
is nilpotent in E, or cN

′

i = 0 in E for some N ′. The assertion follows. �

We also have the A-versions of Lemma 3.4 and Corollary 3.5. The statements
are the following and proofs are omitted.

Lemma 6.4. For any positive integer λ with gcd(λ, n) = 1, we have the following
isomorphism of k-vector spaces

ējE ∼= ēλjE.

In particular, if n is prime, then for each j = 2, . . . , n− 1, we have ē1E ∼= ējE.

Lemma 6.5. Retain the above notation.

(1) For any 0 < j < n, we have the following lower bound for GKdimE

GKdimE ≥ GKdim(A/BjA).
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(2) We have

GKdimE = max
j

GKdim(A/BjA)

where j ranges over positive integers less than n that divide n.
(3) If n is prime, then

GKdimE = GKdim(A/B1A).

One advantage of working with A is that

(E6.6.1) bibk−i = bibk−i + bk−ibi − bk−ibi = ck − bk−ibi = −bk−ibi

for all k ∈ Φ.
Similar to Definition 5.2(1), we say ci ∈ A is nilpotent in A/BjA if cNi ∈ BjA

for some N ≥ 0. In this case we write i ∈ Ψ
[n]

j . Now we are ready to take care of
Theorem 0.2 when n is prime.

Proposition 6.6. Suppose n ≥ 2 is neither 3 nor 5.

(1) Suppose Φ ⊇ {1, . . . , n− 1}. Then 0 ∈ Ψ
[n]

1 .
(2) If n is prime, then GKdimE = 0. Consequently, n is admissible.

Proof. (1) We start with the trivial observation that if u, v ∈ B1A, then [u, v] ∈
B1A. The strategy is to start with b1 ∈ B1A and apply a sequence of graded
commutations with selected elements of B1A to obtain cn−1

0 ∈ B1A. Note that in

A, we have [bi, bj] = 0 unless i+ j = 0 mod n.

Claim 1: Suppose that 0 ≤ j ≤ n− 1 and 2j + 1 6= 0 mod n (or 2j + 1 6= n). If
cs0bj ∈ B1A for some s, then cs+1

0 bj+1 ∈ B1A

Proof of Claim 1: First of all, bj+1bn−j ∈ B1A (which is not central). Since

2j + 1 6= 0 mod n, bjbj+1 = −bj+1bj in A (E6.6.1). We obtain

−[cs0bj, bj+1bn−j] = −cs0bjbj+1bn−j + cs0bj+1bn−jbj

= cs0(bj+1bjbn−j + bj+1bn−jbj)

= cs0bj+1c0 = cs+1
0 bj+1.

The assertion follows.

Claim 2: Suppose otherwise that 2j + 1 = 0 mod n, so that 2j + 1 = n. If
cs0bj ∈ B1A, then cs+2

0 bj+2 ∈ B1A.
Proof of Claim 2: Under the hypothesis of j, we have that n is odd and that
bj+1bj+2bn−1 ∈ B1A. Given that n 6= 3, 5, we have n ≥ 7, and consequently,

j + 2 = (n+ 3)/2 < n− 1,

so that the indices in bj+1bj+2bn−1 are strictly increasing. This gives the following

commutator computation in B1A,

[cs0bj, bj+1bj+2bn−1] = cs0(bjbj+1bj+2bn−1 + bj+1bj+2bn−1bj)

= cs0(bjbj+1bj+2bn−1 + bj+1bjbj+2bn−1)

= cs+1
0 bj+2bn−1.

We apply the one additional commutator to get

[[cs0bj , bj+1bj+2bn−1], b1] = [cs+1
0 bj+2bn−1, b1] = cs+2

0 bj+2.

Therefore, if cs0bj ∈ B1A and 2j + 1 = n, then cs+2
0 bj+2 ∈ B1A.
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Claim 3: cn−1
0 ∈ B1A.

Proof of Claim 3: Starting with b1, we can apply Claim 1 (n − 2)-times to
get cn−2

0 bn−1 ∈ B1A whenever n is even. Hence cn−1
0 = [cn−2

0 bn−1, b1] ∈ B1A as
required.

If n is odd, we apply Claim 1 (j0 − 1)-times to get cj0−1
0 bj0 ∈ B1A where

j0 = n−1
2 . Next we apply Claim 2 to get cj0+1

0 bj0+2 ∈ B1A. Then apply Claim 1

again (j0 − 2)-times to get cn−2
0 bn−1 ∈ B1A. Finally we have

cn−1
0 = [cn−2

0 bn−1, b1] ∈ B1A

as desired.
The assertion follows from Claim 3.
(2) Now n is a prime integer 6= 3, 5. By Proposition 2.3(1), {1, . . . , n− 1} ⊆ Φn,

so the hypothesis of part (1) holds when taking Φ = Φn. By part (1), 0 ∈ Ψ
[n]

1 .
Since ck = 0 in A for all k 6= 0 mod n, we have that cNk = 0 in B1A for all k. This

implies that GKdim(A/B1A) = 0. By Lemma 6.5(2), GKdimE = 0. The assertion
follows from Lemma 6.2. �

Proposition 6.6(2) is one of the initial steps in the proof of Theorem 0.2 and
Proposition 6.6(1) is a step of reduction. The following technical lemma is needed
for the proof of the proposition below.

Lemma 6.7. Suppose i and j satisfy the following conditions:

(1) i is an (odd) integer with 0 ≤ i ≤ n− 1 and gcd(i, n) > 1,
(2) 2 ≤ j ≤ n− 1 such that gcd(i, j, n) = 1.

Then there is an integer t ≥ 0 such that gcd(j + ti, n) = 1.

Proof. Let n = pn1

1 · · · pns
s · · · pnr

r for some 1 ≤ s ≤ r, where {pi} are the prime
factors of n and nu ≥ 1 for all 1 ≤ u ≤ r. The ordering of the prime and the integer

s are chosen so that j = pj11 · · · p
js−1

s−1 j
′ where gcd(j′, n) = 1 and jw ≥ 1 for all

1 ≤ w ≤ s− 1. Since we assume that gcd(i, j, n) = 1, we can write i = piss · · · pirr i′

where gcd(i′, n) = 1 with iv ≥ 0 for all s ≤ v ≤ r. Let t = ps · · · pr. Then it is easy
to see that each pu, for 1 ≤ u ≤ r, does not divide j+ti. Thus gcd(j+ti, n) = 1. �

Proposition 6.8. Let n ≥ 2 and denote Φ = Φn. Suppose that

(a) every proper factor of n is admissible, and that

(b) for each 0 ≤ i ≤ n− 1, i ∈ Ψ
[n]

1 .

Then n is admissible.

Proof. By Lemmas 6.2 and 6.3, and the ideas in Lemma 3.4, it suffices to show that

i ∈ Ψ
[n]

j for all 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − 1 with j | n. We use induction on
j and then on i. The minimal possible j is 1, in which the assertion follows from
hypothesis (b). Now assume that j > 1.

If gcd(i, n) = 1, or i = 2wq with q odd and gcd(q, n) = 1, then the assertion
follows from Proposition 2.3(1). This shows that the assertion holds for i = 1. So
we can assume that i ≥ 2 and proceed with induction on i.

Suppose i is even and write i = 2i′. If n is even, then i′ ∈ Ψ
[n/2]
j by hypothesis

(a). By Lemma 3.9(3), i ∈ Ψ
[n]
2j . Consequently, i ∈ Ψ

[n]

2j . By the A-version of

Lemma 5.5(3), i ∈ Ψ
[n]

j . If n is odd, then by the induction hypothesis, i′ ∈ Ψ
[n]

j .
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Applying the automorphism f2 in Definition 3.3, we obtain that i ∈ Ψ
[n]

2j . By the

A-version of Lemma 5.5(3), we have i ∈ Ψ
[n]

j .
For the rest of proof we assume that i is odd and gcd(i, n) > 1. If gcd(i, j, n) =:

q > 1, write n = qn′, i = qi′ and j = qj′. By hypothesis (a), i′ ∈ Ψ
[n′]
j′ . By Lemma

3.9(3), i ∈ Ψ
[n]
j . Consequently, i ∈ Ψ

[n]

j . The other alternative is gcd(i, j, n) = 1.

By Lemma 6.7, there is a t ≥ 0 such that gcd(j + ti, n) = 1. By hypothesis (b),

i′ ∈ Ψ
[n]

1 for all i′. Let λ be j + ti, which is invertible in Zn by Lemma 6.7, and
let fλ be the (A-version of the) algebra automorphism defined as in Definition 3.3.

Pick i′ = iλ−1 in Zn. Then, after applying fλ, i
′ ∈ Ψ

[n]

1 becomes i ∈ Ψ
[n]

j+ti. By the

A-version of Lemma 5.5(3), i ∈ Ψ
[n]

j for all i. Thus we have finished the inductive
step and the whole proof. �

7. Proof of Theorem 0.2

The proof of Theorem 0.2 follows the strategy of Proposition 6.6. Let us recall
the argument for showing that some power of c0 is in B1A. Given an element
cs0bj ∈ B1A, depending on whether j satisfies a certain congruence, we applied

commutators to cs0bj to conclude that cs+1
0 bj+1 or cs+2

0 bj+2 is in B1A. Starting

with b1 and continuing in this way, we eventually reach cn−2
0 bn−1 ∈ B1A. Applying

[−, b1] to this gives cn−1
0 ∈ B1A.

In the more general situation of Theorem 0.2, we have to show that for each
divisor i of n, some power of ci is in Bi0A for all i0. Given an element csi bj ∈ Bi0A
we apply certain commutators to csi bj depending on congruences satisfied by i, j, i0
to conclude that other elements of the form cs

′

i bj′ are in Bi0A (see Lemmas 7.4 and
7.5). These congruences are described in Definition 7.1. Then we show that there
are indeed integers satisfying Definition 7.1 (see Lemma 7.2) and that we eventually

reach cs
′

0 bi−i0 (see Lemma 7.6), so that applying [−, bi0 ] gives what we want. The
final induction steps needed for the proof of Theorem 0.2 are given in Proposition
7.7 and Corollary 7.8.

To simplify notation, let

Λi,i0 := {j | bjc
t
i(= ctibj) ∈ Bi0A, for some t ≥ 0}.

It is clear that i0 ∈ Λi,i0 . Write

iξ = i0 + ξ(i0 − i)

and

īξ = (−ξ)(i0 − i)

for all integers ξ. Since i0 will be a fixed integer in most of proofs below, we hope
that the probability of serious confusion is not high. Let

Ξi,i0 := {ξ | iξ ∈ Λi,i0 and 0 ≤ ξ ≤
1

2
(mop(n)− 3)}.

where for n ≥ 2

mop(n) := the minimal odd prime factor of n.

It is clear that 0 ∈ Ξi,i0 .
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Let Z×
n be the invertible elements in Zn and S be the set of odd integers between

1 and n which are not in φ2(n) (E0.6.1). Then define

Ω2(n) :=
⋂

s∈S

(
Z×
n + s

)
(E7.0.1)

It is not hard to show that Ω2(n) ⊆ φ2(n).

Definition 7.1. Let n ≥ 2 be an integer. An integer i0 with 1 ≤ i0 ≤ n − 1 is
called n-special if

(1) i0 ∈ φ2(n). (This is also a consequence of (2) below.)

For all odd integers i 6∈ φ2(n) with 1 ≤ i ≤ n, the following hold.

(2) i0 − i is invertible in Zn.

Part (2) is just that i0 ∈ Ω2(n). Now fix any i as in part (2). For every 1 ≤ j ≤ n−1,
either

(3) 2j + (i0 − i) ∈ φ2(n),

or

(4) (If 2j + (i0 − i) 6∈ φ2(n), then) there is a ξ ∈ Ξi,i0 such that
(4(ξ)i) 2j + (ξ + 2)(i0 − i) ∈ φ2(n),
(4(ξ)ii) j − (ξ + 1)(i0 − i) ∈ φ2(n), and
(4(ξ)iii) j + i0 + 2(ξ + 1)(i0 − i) ∈ φ2(n).

For any ξ ∈ Ξi,i0 , conditions (4(ξ)i), (4(ξ)ii) and (4(ξ)iii) all together are
denoted by (4(ξ)).

Let Spl(n) denote the set of integers i0 that are n-special.

Lemma 7.2. Let n = 2apb where p is a prime ≥ 3.

(1) 2 ∈ Ω2(n).
(2) If p ≥ 7, then i0 = 2 is n-special.

Proof. (1) For every odd integer i 6∈ φ2(n), we have p | i. Therefore 2 and p do not
divide i0 − i = 2− i, so Definition 7.1(2) holds, and the assertion follows.

(2) Now assume p ≥ 7. Note that Definition 7.1(1) is obvious. Definition 7.1(2)
holds by part (1). For Definition 7.1(3,4), note that 0 ∈ Ξi,i0 . Note that, for every
i given in Definition 7.1(2), i 6∈ φ2(n). Hence i is divisible by p. When Definition
7.1(3) fails, namely, 2j + (i0 − i) (or equivalently, 2j + i0) is divisible by p, then
j + 1 = 1

2 (2j + i0) is divisible by p, that is, j = −1 mod p. By taking ξ = 0, we
have

2j + 2(2− i) = −2 + 4 = 2 6= 0 mod p,

j − (1)(2 − i) = −1− 2 = −3 6= 0 mod p,

j + 2 + 2(1)(2− i) = −1 + 2 + 4 = 5 6= 0 mod p.

This means that (4(0)i), (4(0)ii) and (4(0)iii) hold. Therefore i0 = 2 is n-special. �

We have another case when Ω2(n) is non-empty. The following lemma is not
needed for the proof of Theorem 0.2. It will be used in §8 (see Theorem 8.7).

Lemma 7.3. Let p1 and p2 be two distinct odd primes.

(1) If n = p1p2, then Ω2(n) 6= ∅.
(2) If n is either p1p

2
2n

′ or 2p1p2n
′ for some n′ ≥ 1, then Ω2(n) = ∅. As a

consequence, Spl(n) = ∅.
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Proof. (1) Let p1 < p2. Every integer m can be written uniquely as m = ap1 + bp2
where 0 ≤ a < p2. In particular, 1 = a1p1 + b1p2. If a1 is odd, we claim that
i0 = −1 ∈ Ω2(n). If a1 is even, we claim that i0 = 1 ∈ Ω2(n). Since the proofs are
very similar, we only consider the first case.

Suppose that i is an odd integer 1 ≤ i ≤ n that is not in φ2(n) such that
i − i0 = i + 1 is not invertible in Zn. Then i and i + 1 are divisible by different
prime factors. We need to consider two cases.

Case 1: p1 | i and p2 | i + 1. Write i = i′p1 (where i′ is odd as i is odd) and
i+ 1 = jp2. Then

−1 = i− (i+ 1) = i′p1 − jp2

where i′ is odd, which implies that

1 = (p2 − i′)p1 + (j − p1)p2.

Note that p2 − i′ is even, which contradicts the fact that a1 is odd.
Case 2: p2 | i and p1 | i + 1. Write i = i′p2 (where i′ is odd as i is odd) and

i+ 1 = jp1 (where j is even as i+ 1 is even). Then

−1 = i− (i + 1) = i′p2 − jp1,

which implies that

1 = jp1 − i′p2.

Note that j is even, which contradicts the fact that a1 is odd.
(2) Since p1 and p2 are distinct, 1 = ap1 + bp2. For every i0, one can write it as

i0 = cp1 + dp2

for some c, d with 0 ≤ c < p2. If c is odd, take i = cp1 < n, which is odd and not in
φ2(n). Then i0−i = dp2 is not invertible in Zn. If c is even, take i = (c+p2)p1 < n,
which is odd and not in φ2(n). Then i0 − i = (d − p1)p2 is not invertible in Zn.
This means that i0 6∈ Ω2(n) for every i0. �

The next two lemmas describe a family of partially defined maps Λi,i0 −→• Λi,i0 ,
where i0 and i satisfy hypotheses (1) and (2) of Definition 7.1.

Lemma 7.4. Retain the above notation.

(1) Let j ∈ Λi,i0 . If j satisfies hypothesis (3) of Definition 7.1, that is, 2j +
(i0 − i) ∈ φ2(n), then j + (i0 − i) ∈ Λi,i0 . In particular, we get a partially
defined map ω0 : Λi,i0 −→• Λi,i0 given by ω0(j) := j + (i0 − i).

(2) If iξ ∈ Λi,i0 and 2iξ + (i0 − i) = 2i0 + (2ξ + 1)(i0 − i) ∈ φ2(n), then
iξ+1 ∈ Λi,i0 .

(3) If 2iξ+(i0−i) = 2i0+(2ξ+1)(i0−i) ∈ φ2(n) for all 0 ≤ ξ < 1
2 (mop(n)−3),

then Ξi,i0 = [0, 1, . . . , 1
2 (mop(n)− 3)].

Proof. Part (2) is a special case of part (1) by taking j = iξ. Part (3) follows from
part (2) and induction. So we only prove part (1) below.

Let s = i − j and r = j − (i − i0). Then j + r = 2j − i + i0 is in φ2(n) by
the hypothesis. By Proposition 2.3(1), j + r ∈ Φn and bjbr = −brbj in A. We

start with bjc
t
i ∈ Bi0A for some t ≥ 0 (as j ∈ Λi,i0). By the choice of r, s, we have

brbs = bj−i+i0bi−j ∈ Bi0A.



NONCOMMUTATIVE CYCLIC ISOLATED SINGULARITIES 23

Consider the commutator [bjc
t
i, brbs], we have the following elements in Bi0A

−[bjc
t
i, brbs] = cti(−bjbrbs + brbsbj)

= cti(brbjbs + brbsbj)

= ctibrcj+s

= brc
t+1
i = bj+(i0−i)c

t+1
i .

The assertion follows. �

Lemma 7.5. Let ξ ∈ Ξi,i0 and j ∈ Λi,i0 . Suppose that ξ and j satisfy the hypotheses
(4(ξ)) in Definition 7.1. Then j + (ξ + 2)(i0 − i) ∈ Λi,i0 . In particular, we get a
partially defined map ωξ+1 : Λi,i0 −→• Λi,i0 given by ωξ+1(j) := j + (ξ + 2)(i0 − i).

Proof. Note that ξ ∈ Ξi,i0 means that iξ ∈ Λi,i0 where iξ = i0 + ξ(i0 − i).
Let a = i − j, c = j + (ξ + 2)(i0 − i) and d = −(ξ + 1)(i0 − i). By hypotheses

(4(ξ)i)-(4(ξ)iii), we have that c+ j, d+ j and iξ + c are in φ2(n). This means that

[bc, bj ] = 0 = [bd, bj ] = [bc, biξ ] in A.

Starting with bjc
t
i ∈ Bi0A for some t ≥ 0 (as j ∈ Λi,i0), we have the two sets of

equations in Bi0A. The first set is

[bjc
t
i, babcbd] = cti(bjbabcbd + babcbdbj)

= cti(bjbabcbd + babjbcbd)

= ctica+jbcbd

= ct+1
i bcbd.

In the above computation, note that babcbd = bi−jbj+(ξ+2)(i0−i)b−(ξ+1)(i0−i) ∈ Bi0 .
We also need bj to skew commute with bd and bc, and a + j = i. Since ξ ∈ Ξi,i0 ,

there is a t′ ≥ 0 such that biξc
t′

i ∈ Bi0A. The second set of equations is

[ct+1
i bcbd, biξc

t′

i ] = ct+1+t′

i (bcbdbiξ − biξbcbd)

= ct+t′+1
i (bcbdbiξ + bcbiξbd)

= ct+t′+1
i bccd+iξ

= ct+t′+2
i bc = ct+t′+2

i bj+(ξ+2)(i0−i).

Therefore j + (ξ + 2)(i0 − i) ∈ Λi,i0 and the assertion follows. �

We usually apply the above lemma with the additional hypothesis 2j+(i0− i) 6∈
φ2(n).

If i0 is n-special and i0−i ∈ Z×
n , then by Definition 7.1, the unions of the domains

of definition of ω0 and ωξ(i)+1 for ξ ∈ Ξi,i0 is equal to Λi,i0 . In other words, for any
j ∈ Λi,i0 there is some ωt which can be applied to j.

Lemma 7.6. Suppose that i0 is n-special. Then −(i0 − i) ∈ Λi,i0 . Consequently

cNi ∈ Bi0A for some N ≥ 0.

Proof. Suppose that īξ ∈ Λi,i0 for some ξ ∈ [0,M ], where M = 1
2 (mop(n) − 3).

Then 2īξ +(i0− i) = (1− 2ξ)(i0− i) ∈ φ2(n) since 2ξ− 1 is invertible if 0 ≤ ξ ≤ M .
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By Lemma 7.4(1) we have īξ is in the domain of definition of ω0, so ω0(̄iξ) = īξ−1 ∈
Λi,i0 . Repeating the argument gives ī−1 ∈ Λi,i0 .

Now, let r be the maximal integer such that īξ 6∈ Λi,i0 for every ξ ∈ {−1, 0, . . . , r}.
In other words, īr+1 ∈ Λi,i0 . Since i0 is n-special, either Lemma 7.4 or 7.5 applies.
That is, īr+1 is in the domain of definition of ωζ for some ζ ∈ [0,M +1]. Applying
any such ωζ gives ωζ (̄ir+1) = īr−ζ ∈ Λi,i0 . By maximality of r, we have r− ζ < −1
so r < ζ − 1 ≤ M . Thus we may apply the argument in the first paragraph to
conclude that ī−1 ∈ Λi,i0 .

The above shows that we always have ī−1 ∈ Λi,i0 under the hypotheses that i0
is n-special. Equivalently, bi−i0c

t
i ∈ Bi0A. Finally, c

t+1
i = [bi−i0c

t
i, bi0 ] ∈ Bi0A. �

Here is one of the main results of this section, which leads to Theorem 0.2.

Theorem 7.7. Let n ≥ 2. Suppose that

(1) every proper factor of n is admissible,
(2) there is an n-special integer i0.

Then, for each 0 ≤ i ≤ n− 1, i ∈ Ψ
[n]

1 .

Proof. By Definition 7.1(1), we can express the n-special integer i0 as the product
i0 = 2wg where w ≥ 0 with g odd and gcd(n, g) = 1. Since g is invertible in Zn, by
using the automorphism fg of A defined in Definition 3.3, the assertion is equivalent

to i ∈ Ψ
[n]

g for all 0 ≤ i ≤ n − 1. By the A-version of Lemma 5.5(3), it suffices to
show the following claim.

Claim: for each 0 ≤ i ≤ n− 1, i ∈ Ψ
[n]

i0 .
Proof of Claim: We prove the Claim by induction on i starting at i = 1 and
ending at i = n (which is also 0 in Zn). We consider several cases.

Case 1: i = 1.
The assertion follows from Proposition 2.3(1). For the inductive step, we assume

that i ≥ 2 and that i′ ∈ Ψ
[n]

i0 for all i′ < i.

Case 2: i is even.
If n is also even, it follows from Lemma 5.5(4) that i ∈ Ψ

[n]
i0
. Passing to the

quotient ring, we have i ∈ Ψ
[n]

i0 as desired.
If n is not even, then f2 in Definition 3.3 is an automorphism. Write i = 2i′ for

some 1 ≤ i′ < i. By the induction hypothesis, i′ ∈ Ψ
[n]

i0 . Applying f2, we obtain

that i = 2i′ ∈ Ψ
[n]

2i0 . By the A-version of Lemma 5.5(3), we have i ∈ Ψ
[n]

i0 . This
takes care of the case when i is even. For cases 3 and 4 below, we assume that i is
odd.

Case 3: i is odd and i ∈ φ2(n).
In this case, the assertion follows from Proposition 2.3(1) as ci = 0 in A.
The remaining case to consider is

Case 4: i is odd and i 6∈ φ2(n). By hypothesis, i0 is n-special. By Lemma 7.6,

i ∈ Ψ
[n]

i0
Hence we finished the inductive step and therefore we complete the proof of the

Claim. �
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Corollary 7.8. Let n ≥ 2. Suppose that

(1) every proper factor of n is admissible,
(2) Spl(n) 6= ∅, namely, there is an n-special integer i0.

Then n is admissible.

Proof. By Theorem 7.7, for each 0 ≤ i ≤ n − 1, we have i ∈ Ψ
[n]

1 . The assertion
then follows from Proposition 6.8. �

Now we are ready to show Theorem 0.2.

Proof of Theorem 0.2. In this case n = 2apb for some prime p ≥ 7. If (a, b) = (0, 1)
or (1, 0), the assertion follows from Proposition 6.6(2). This takes care of the initial
step for induction.

By Lemma 7.2, i0 = 2 is n-special, which is hypothesis (2) in Corollary 7.8.
Hypothesis (1) in Corollary 7.8 follows by induction. Hence we can conclude from
Corollary 7.8 that n is admissible. By definition, GKdim(E) = 0. Hence p(A,G) =
n and, by [MU1, Theorem 3.10], AG is a graded isolated singularity. �

Proof of Corollary 0.6. For each n < 77, n is either divisible by 3 or 5, or n is of
the form 2apb for some prime p ≥ 7. Hence the assertion follows by Theorem 0.2
and 0.4. �

Proof of Corollary 0.10. By Theorem 0.2 and [BHZ1, Theorem 5.7(1)], AG is a
graded isolated singularity. By [KKZ1, Theorem 1.5], AG is Gorenstein.

(1) This follows from [MU1, Corollary 2.6].
(2) This follows from [MU1, Theorem 3.15].
(3) This follows from [MU1, Theorem 3.14].
(4) This follows from [Ue, Theorem 1.3]. �

Below is a slightly more general result than Theorem 0.2.

Theorem 7.9. Let S be a set of integers n ≥ 2. Suppose that

(1) each n in S is not divisible by 3 or 5,
(2) every proper factor of n ∈ S is still in S.
(3) for each n ∈ S, Spl(n) 6= ∅.

Then every n ∈ S is admissible.

Proof. The assertion follows by induction on n ∈ S. Since each n in S is not
divisible by 3 or 5, the initial step follows from Proposition 6.6(2). Now we assume
that the assertion holds for all proper factors of n. The induction step follows from
hypothesis (3) and Corollary 7.8. �

8. Partial results when n = p1p2

In this section we give some partial answer to the case when n = p1p2 for pi
being distinct primes. Some lemmas works for the case when n = 2apb1p

c
2.

Another way of defining Ω2(n) (E7.0.1) is the following

Ω2(n) :=

{i0 ∈ Zn | if 1 ≤ i ≤ n is odd and i 6∈ φ2(n), then i0 − i ∈ Zn is invertible}.

As noted in Section 7, Ω2(n) ⊆ φ2(n).
In the rest of this section, let n be 2apb1p

c
2 where p1 and p2 are distinct odd

primes ≥ 7 and b, c ≥ 1. We start with a linear algebra fact.
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Lemma 8.1. Let i0 ∈ φ2(n) and i ∈ [1, . . . , n] such that p1 | i. If p2 divides both
c11i0 + c12i and c21i0 + c22i, then p2 divides

Det := det

(
c11 c12
c21 c22

)
= c11c22 − c12c21.

Proof. By easy linear algebra, p2 divides both Det i0 and Det i. Since p2 and i0 are
coprime, p2 divides Det. �

Lemma 8.2. Let i0 ∈ φ2(n) and i ∈ [1, . . . , n] be an odd integer not in φ2(n).
There is at most one integer

(E8.2.1) ξ ∈ [0, 1, . . . ,−1 +
1

2
(mop(n)− 3)]

such that 2iξ + (i0 − i) 6∈ φ2(n).

Proof. Without loss of generality, we can assume that p1 divides i. For each ξ in
(E8.2.1), p1 does not divide 2iξ + (i0 − i) = (2ξ + 3)i0 − (2ξ + 1)i, as

2ξ + 3 < mop(n) := min{p1, p2}.

If there are ξ1 and ξ2 in (E8.2.1) such that 2iξ1 +(i0 − i) and 2iξ2 +(i0 − i) are not
in φ2, then p2 must divide both 2iξ1 + (i0 − i) and 2iξ2 + (i0 − i) (or equivalently,
divide both (2ξ1 + 3)i0 − (2ξ1 + 1)i and (2ξ2 + 3)i0 − (2ξ2 + 1)i). By Lemma 8.1,
p2 divides Det, and an easy computation shows that

Det = det

(
2ξ1 + 3 2ξ1 + 1
2ξ2 + 3 2ξ2 + 1

)
= 4(ξ2 − ξ1).

By the choices of ξ1, ξ2 in (E8.2.1), p2 does not divide 4(ξ2 − ξ1), a contradiction.
The assertion follows. �

Lemma 8.3. Retain the hypothesis as in Lemma 8.2. Suppose that ξ in (E8.2.1)
is such that 2iξ + (i0 − i) 6∈ φ2(n), namely, Definition 7.1(3) fails for j = iξ. Then
Definition 7.1(4(0)) holds for j = iξ.

Proof. By Lemma 8.2, ξ is unique. It suffices to show that the following elements
in (4(0)i), (4(0)ii) and (4(0)iii) of Definition 7.1(4), when j = iξ, are in φ2:

2iξ + 2(i0 − i) = (2ξ + 4)i0 − (2ξ + 2)i = 2((ξ + 2)i0 − (ξ + 1)i),(E8.3.1)

iξ − (i0 − i) = ξi0 − (ξ − 1)i,(E8.3.2)

iξ + i0 + 2(i0 − i) = (ξ + 4)i0 − (ξ + 2)i.(E8.3.3)

Since i 6∈ φ2(n), either p1 or p2 divides i. Without loss of generality, we say
p1 divides i. By the proof of Lemma 8.2, we have p2 divides 2iξ + (i0 − i) =
(2ξ + 3)i0 − (2ξ + 1)i. Since mop(n) ≥ 7, all of ξ + 2, ξ, ξ + 4 are strictly less
than mod (n). Hence p1 does not divide elements in (E8.3.1)-(E8.3.3). We claim
that p2 does not divide elements in (E8.3.1)-(E8.3.3). If this is false, say, the
element in (E8.3.3) is divisible by p2, then p2 divides both (2ξ + 3)i0 − (2ξ + 1)i
and (ξ + 4)i0 − (ξ + 2)i. By Lemma 8.1, p2 divides Det, where

Det = det

(
2ξ + 3 2ξ + 1
ξ + 4 ξ + 2

)
= −2(ξ − 1).

However, by the choice of ξ in (E8.2.1), p2 does not divide Det, a contradiction.
The claim is proved.
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Finally, by the above, elements in (E8.3.1)-(E8.3.3) are not divisible by either p1
or p2. Hence these elements are in φ2(n). The assertion follows. �

Lemma 8.4. Retain the hypothesis as in Lemma 8.2. Then either

Ξi,i0 = [0, 1, 2, . . . ,
1

2
(mop(n)− 3)]

or

Ξi,i0 = [0, 1, 2, . . . , ξ, ξ̂ + 1, ξ + 2, . . . ,
1

2
(mop(n)− 3)].

The second case can happen only when there is a ξ in (E8.2.1) such that 2iξ +(i0−
i) 6∈ φ2(n).

By Lemma 8.2, ξ is Lemma 8.4 above is unique if it exists.

Proof of Lemma 8.4. If, for each ξ in (E8.2.1), 2iξ + (i0 − i) is in φ2(n), then, by
Lemma 7.4(3),

Ξi,i0 = [0, 1, 2, . . . ,
1

2
(mop(n)− 3)]

which is the first case.
To prove the lemma, we may assume that

Ξi,i0 6= [0, 1, 2, . . . ,
1

2
(mop(n)− 3)]

and that there is a ξ in (E8.2.1) such that 2iξ + (i0 − i) 6∈ φ2(n). By Lemma 8.2, ξ
is unique, namely, for all ξ′ 6= ξ in (E8.2.1), 2iξ′ + (i0 − i) is in φ2(n). By Lemma
7.4(2) and induction, 0, 1, 2, . . . , ξ ∈ Ξi,i0 . By Lemma 8.3, Definition 7.1(4(0)) holds
for j = iξ. By Lemma 7.5 (for a different ξ = 0 ∈ Ξi,i0 in the setting of Lemma
7.5),

j + 2(i0 − i) = iξ + 2(i0 − i) = iξ+2

is in Λi,i0 . If ξ + 2 ≤ 1
2 (mop(n) − 3), then ξ + 2 ∈ Ξi,i0 by definition. By Lemma

8.2, 2iξ′ + (i0 − i) ∈ φ2(n) for all

ξ + 2 ≤ ξ′ ≤ −1 +
1

2
(mop(n)− 3).

Using Lemma 7.4(2) and induction again, ξ+3, . . . , 1
2 (mop(n)−3) ∈ Ξi,i0 . Therefore

Ξi,i0 = [0, 1, 2, . . . , ξ, ξ̂ + 1, ξ + 2, . . . ,
1

2
(mop(n)− 3)].

This finishes the proof. �

Corollary 8.5. If mop(n) ≥ 11, then Ξi,i0 contains one of the following subsets

[0, 1, 2, 3], [0, 2, 3, 4], [0, 1, 3, 4], [0, 1, 2, 4].

Proof. The assertion follows from Lemma 8.4 and the fact 1
2 (mop(n)− 3) ≥ 4. �

Proposition 8.6. If mop(n) ≥ 17, then Definition 7.1(4) holds automatically. As
a consequence, Ω2(n) = Spl(n).

Proof. We start with the assumption that 2j + (i0 − i) 6∈ φ2(n). Without loss of
generality, we can assume that p1 divides 2j + (i0 − i). For simplicity, let j0 =
i0 − i. So j0 is not divisible by either p1 or p2. The assumption is that 2j + j0 is
divisible by p1. By Lemma 8.1 (replacing (i, i0) by (j, j0)), elements of the forms in
Definition 7.1(4(ξ)i) and (4(ξ)ii) for ξ = 0, 1, 2, 3, 4 are not divisible by p1 since the
corresponding Det is not divisible by p1 ≥ 17. Further, any two distinct elements
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of the form in Definition 7.1(4(ξ)i) and (4(ξ)ii) can not be divided by p2 either
(using the fact p2 ≥ 17). This implies that there is only one ξ, say ξ0 ∈ [0, 1, 2, 3, 4],
such that either (4(ξ0)i) or (4(ξ0)ii) fails. Removing ξ0 from the list Ξi,i0 , we still
have three integers {ξ1, ξ2, ξ3} ⊆ [0, 1, 2, 3, 4]∩Ξi,i0 such that Definition 7.1(4(ξs)i)
and (4(ξs)ii) hold for all s = 1, 2, 3. It remains to show that Definition 7.1(4(ξs)iii)
holds for one of s. Suppose on the contrary that Definition 7.1(4(ξs)iii) fails for
all three s. Then there are two s such that j + i0 + 2(ξs + 1)(i0 − i) is divisible
by the same prime factor, say p2. Applying Lemma 8.1 to these two element with
(j′, j0) = (j + i0, i0 − i), we obtain that p2 divides |Det | = 2|ξs1 − ξs2 | < mop(n).
This is impossible. Therefore Definition 7.1(4(ξs)iii) holds for one of s. Thus we
show that Definition 7.1(4) holds automatically.

The consequence is clear. �

Theorem 8.7. Suppose n = p1p2 where ps are prime ≥ 17. Then n is admissible.
As a consequence AG has a graded isolated singularity.

Proof. Since every proper factor of n is admissible by Theorem 0.2, hypothesis
of Corollary 7.8(1) holds. By Lemma 7.3(1), Ω2(n) 6= ∅. By Proposition 8.6,
Spl(n) 6= ∅. Hence hypothesis of Corollary 7.8(2) holds. The assertion now follows
from Corollary 7.8. �

9. Proof of Proposition 0.8

We start with n = 6 and 10.

Lemma 9.1. Retain the notation as in Theorem 0.4. If n = 6, then p(A,Cn) = 5.

Proof. First let Φ := Φ6 = {1, 2, 4, 5}. By Lemma 6.2, GKdimE = GKdimE. It
suffices to show that GKdimE = 1. By Theorem 0.4, it is enough to show that
GKdimE ≤ 1. By Lemma 6.5(2),

GKdimE = max
j

GKdim(A/BjA)

where j ranges over {1, 2, 3} (all positive integers less than 6 that divide 6).
Case 1: j = 3. Since c3 ∈ B3A, c3 = 0 in A/B3A. By the definition of

A, c1 = c2 = c4 = c5 = 0. Therefore ci = 0 for i = 1, 2, 3, 4, 5 in A/B3A.
Therefore A/B3A is a finitely generated module over k[c0], which implies that
GKdim(A/B3A) ≤ 1.

Case 2: j = 2. We need to show that GKdim(A/B2A) ≤ 1. By (E1.0.3), it is
enough to show the claim that

(E9.1.1) GKdim(A/(B2A+ c3A)) = 0.

Now we change Φ from {1, 2, 4, 5} to {1, 2, 3, 4, 5}. Re-cycle all notation such as A,
Bi, etc, for the new Φ, claim (E9.1.1) becomes

(E9.1.2) GKdim(A/B2A) = 0

with Φ = {1, 2, 3, 4, 5}. For the rest of the proof in Case 2, let Φ = {1, 2, 3, 4, 5}.
Note that we have the following elements in B2A:

b2, b3b5, b1b3b4.
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Taking commutators in B2A, we have the following computations in B2A:

[b3b5, b1b3b4] = b3b5b1b3b4 + b1b3b4b3b5

= b23(b5b1b4 − b1b4b5)

=
1

2
c20(b5b1 + b1b5)b4

=
1

2
c30b4,

[c30b4, b2] = c40.

Therefore c40 = 0 in A/B2A, and consequently, 0 ∈ Ψ2. By definition, ci = 0 in
A/B2A for all i = 1, 2, 3, 4, 5. Therefore (E9.1.2) holds.

Case 3: j = 1. We need to show that GKdim(A/B1A) ≤ 1 for Φ = {1, 2, 4, 5}.
Similar to the proof of Case 2, it is sufficient to show

GKdim(A/B1A) = 0

with new Φ = {1, 2, 3, 4, 5}. But this is Proposition 6.6(1).
Combining these three cases, we finish the proof. �

Lemma 9.2. Retain the notation as in Theorem 0.4. If n = 10, then p(A,Cn) = 9.

Proof. This proof is very similar to the proof of Lemma 9.1
First we let Φ := Φ10 = {1, 2, 3, 4, 6, 7, 8, 9}. By Lemma 6.2, GKdimE =

GKdimE. It suffices to show that GKdimE = 1. By Lemma 6.5(2),

GKdimE = max
j

GKdim(A/BjA)

where j ranges over {1, 2, 5} (all positive integers less than 6 that divide 10).
Case 1: j = 5. The proof of Case 1 in Lemma 9.1 can be easily modified by

replacing j = 3 to j = 5.
Case 2: j = 2. We need to show that GKdim(A/B2A) ≤ 1. By (E1.0.3), it is

enough to show the claim that

(E9.2.1) GKdim(A/(B2A+ c5A)) = 0.

Now we change Φ from {1, 2, 3, 4, 6, 7, 8, 9} to {1, 2, 3, 4, 5, 6, 7, 8, 9}. Recycle all
notation such as A, Bi, etc, for the new Φ, claim (E9.2.1) becomes

(E9.2.2) GKdim(A/B2A) = 0

with new Φ = {1, 2, 3, 4, 5, 6, 7, 8, 9}. For the rest of the proof in Case 2, we use this
new Φ. Note that we have the following elements in B2A:

b2, b4b8, b1b5b6, b5b8b9.

Taking commutators in B2A, we have the following computations in B2A:

[b4b8, b2] = c0b4,

[b1b5b6, c0b4] = c20b1b5,

[b5b8b9, c
2
0b1b5] = −

1

2
c40b8,

[b2, c
4
0b8] = c50.

Therefore c50 = 0 in A/B2A, and consequently, 0 ∈ Ψ2. By definition, ci = 0 in
A/B2A for all i = 1, 2, 3, 4, 5, 6, 7, 8, 9. Therefore (E9.2.2) holds.
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Case 3: j = 1. The proof of Case 3 in Lemma 9.1 works.
Combining these three cases with Theorem 0.4, we finish the proof. �

Next we consider n = 9.

Lemma 9.3. Retain the notation as in Theorem 0.4. If n = 9, then p(A,Cn) = 8.

Proof. First we let Φ := Φ9 = {1, 2, 4, 5, 7, 8}. By Lemma 6.2, GKdimE =
GKdimE. It suffices to show that GKdimE = 1. By Lemma 6.5(2),

GKdimE = max
j

GKdim(A/BjA)

where j ranges over {1, 3}. So we need to consider two cases.
Case 1: j = 3. Since b3, c3 ∈ B3A, c6, c3 ∈ B3A. This shows that ci = 0 in

A/B3A for all i = 1, 2, 3, 4, 5, 6, 7, 8. So GKdim(A/B3A) ≤ 1.
Case 2: j = 1. We need to show that GKdim(A/B1A) ≤ 1. Note that we have

the following elements in B1A:

b1, c6b5b8, c26b7.

Taking commutators in B1A, we have the following computations inside B1A:

[b1, c6b5b8] = b1c6b5b8 − c6b5b8b1

= c6[b1b5]b8 − c6b5b8b1

= c6[c6b8 − b5b1b8]− c6b5b8b1

= c26b8 − c0c6b5,

[c26b7, c
2
6b8 − c0c6b5] = c56 − c0c3c

3
6.

Similarly we have the following elements in B1A:

c3b7, c3b5b8, c23b4.

Taking commutators in B1A, we have the following computations inside B1A:

[c3b7, c
2
3b5b8] = c33(b7b5b8 − b5b8b7)

= c33(c3b8 − b5b7b8 − b5b8b7)

= c43b8 − c33c6b5,

[c23b4, c
4
3b8 − c33c6b5] = c83 − c63c0c6.

It is easy to see that the quotient algebra

D :=
A

(c56 − c0c3c36, c
8
3 − c63c0c6)

has GKdimension 1. Since A/B1A is a quotient of D by the above computation.
Therefore GKdimA/B1A ≤ 1 as desired.

Combining these two cases with Theorem 0.4, we finish the proof. �

Now we are ready to prove Proposition 0.8.

Proof of Proposition 0.8. When n = 6, 10, 9, the p is 5, 9, 8 by Lemmas 9.1, 9.2 and
9.3 respectively. For n = 3, 5, the assertion follows by Propositions 4.1 and 4.2
respectively. For n = 2, 4, 7, 8, 11, 13, 14, the assertion follows from Theorem 0.2.
The statement for n = 12 follows by combining Theorems 0.4 and 0.7. �
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10. More examples of graded isolated singularities

To save space, we will omit some non-essential details in Sections 10

and 11.

In this section, we give more examples of graded isolated singularities. Some nice
results of He-Y.H. Zhang [HZ] and Gaddis-Kirkman-Moore-Won [GKMW] will be
reviewed and used in this section. First we recall some definitions from [HZ].

Let R be a noetherian algebra and G be a finite group acting on R. We say that
two sequences (a1, . . . , aw) and (b1, . . . , bw) of elements of R are pertinent under the
G-action, if

w∑

i=1

ai(g · bi) = 0

for all 1 6= g ∈ G. In this case we write (a1, . . . , aw) ∼ (b1, . . . , bw). The radical of
the G-action on R is defined to be

r(R,G) :=

{
w∑

i=1

aibi ∈ R | (a1, . . . , aw) ∼ (b1, . . . , bw)

}
.

By [HZ, Section 1], r(R,G) is a 2-sided ideal of R.
Let e0 be the element 1#( 1

|G|

∑
g∈G g) in R#G. By the proof of [HZ, Proposition

2.4], r(R,G) = R ∩ (e0). Therefore we have [HZ, (3.1.1)],

p(R,G) = GKdimR−GKdimR/r(R,G).

If R is noetherian and Artin-Schelter regular, then RG is a graded isolated singu-
larity if and only if R/r(R,G) is finite dimensional over the base field k.

As said in introduction, almost all graded isolated singularities studied in this
paper are non-conventional in the following sense.

Definition 10.1. Let R be a noetherian Artin-Schelter regular algebra with graded
maximal ideal m := A≥1. Let G be a finite subgroup of Autgr(R) such that RG

is a graded isolated singularity. We say the graded isolated singularity RG is non-
conventional if there is an element 1 6= σ ∈ G such that at least one of the eigen-
values of σ restricted to the k-vector space m/m2 is 1. Otherwise, we say RG is
conventional.

If R is the commutative polynomial ring k[V ], then every graded isolated singu-
larity RG is conventional, see [MU1, Corollary 3.11]. A similar statement holds for
skew polynomial rings. Let {pij | 1 ≤ i < j ≤ n− 1} be a set of nonzero scalars in
k×. The skew polynomial ring kpij

[x0, x1, . . . , xn−1] is generated by {x0, . . . , xn−1},
with deg xi > 0 for each i, and subject to the relations xjxi = pijxixj for all i < j.

Let V =
⊕n−1

i=0 kxi.

Lemma 10.2. Let R be a skew polynomial ring kpij
[x0, x1, . . . , xn−1] and let G be

a finite group acting on R linearly and diagonally, namely, each xi is an eigenvector
of G. Then RG is a graded isolated singularity if and only if the G-action on V \{0}
is free.

Proof. Let d = |G|.
⇐=: Assume that the G-action on V \ {0} is free. In this setting, for each i,

the G-action on kxi \ {0} is also free. This implies that there is an σ ∈ G and a
ξ ∈ k being a primitive dth root of unity such that σ(xi) = ξxi. As a consequence,
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G is generated by σ and σw(xi) = ξwxi for all w ∈ Zd. By [HZ, Lemma 3.4],
xd
i ∈ r(R,G). Therefore R/r(R,G) is finite dimensional. As a consequence, RG is

a graded isolated singularity.
=⇒: We prove the statement by contradiction and assume that the G-action on

V \{0} is not free. Pick an element 1 6= σ ∈ G so that σ has a fixed point in V \{0}.
This implies that σ fixes one xi. Replacing G by the subgroup 〈σ〉, we can assume
that G = 〈σ〉 following [GKMW, Theorem 3.4]. Since σ fixes xi, one can show that
xN
i is not in r(R,G) for all N ≥ 0 (which also follows from Lemma 10.4(6) in an

appropriate setting). Therefore R/r(R,G) is not finite dimensional, whence RG is
not a graded isolated singularity. �

As a consequence of [GKMW, Theorem 3.4], ifRG is a graded isolated singularity,
then so is RH for all subgroups 1 ( H ⊆ G. The graded isolated singularities in the
above lemma are all conventional. One nice example of non-conventional graded
isolated singularities is given by Gaddis-Kirkman-Moore-Won [GKMW].

Example 10.3. [GKMW, Theorem 5.2] Let R be a generic 3-dimensional Sklyanin
algebra S(a, b, c) generated by {x, y, z} with standard relations, see [GKMW, In-
troduction]. Let G be the cyclic group of order 3 acting on R by permuting the
standard generators {x, y, z}. Then RG is a graded isolated singularity by [GKMW,
Theorem 5.2]. Since G has a fixed point x+ y + z in R1 \ {0}, we obtain that RG

is non-conventional.

We will use a few more lemmas. In Lemma 10.4 below we do not assume that
the G-actions is inner-faithful.

Lemma 10.4. Let R and S be two connected graded algebra with G-action where
G is a finite group. Let e0 = 1#( 1

|G|

∑
g∈G g). Suppose that f : R → S be a graded

algebra homomorphism that is compatible with G-action.

(1) There is an induced algebra homomorphism f#G : R#G → S#G such that
f#G(r#g) = f(r)#g for all r ∈ R and g ∈ G.

(2) f#G maps e0 ∈ R#G to e0 ∈ S#G. As a consequence, there is an induced

algebra homomorphism f#G : R#G/(e0) → S#G/(e0).
(3) If x ∈ R such that x := x#1 ∈ (e0) in R#G, then f(x) := f(x)#1 ∈ (e0)

in S#G.
(4) If f is surjective, so is f#G. If, further, S#G/(e0) is infinite dimensional,

so is R#G/(e0).
(5) f maps r(R,G) to r(S,G). As a consequence, f induces an algebra homo-

morphism from R/r(R,G) to S/r(S,G).
(6) Suppose f is surjective. If S/r(S,G) is infinite dimensional, then so is

R/r(R,G).

The proof of Lemma 10.4 is easy and omitted.

Lemma 10.5. Let A = k−1[x] with n ≥ 2.

(1) Let p be a prime number such that p 6= 3, 5 and p ≤ n. Then there is a
group G ⊆ Autgr(A) of order p such that AG is a non-conventional graded
isolated singularity.

(2) Let p = 3a5b for some a, b ≥ 0. If G is a subgroup of Autgr(A) of order p
such that AG is a graded isolated singularity, then it is conventional.
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Proof. We omit the proof of part (2). For part (1), we show give a proof when
p = 2.

We construct the group G = 〈σ〉 as follows. If n is even, let σ ∈ Autgr(A) be
defined by

σ : xi → xn−1−i

for all i ∈ Zn. If n is odd, let σ ∈ Autgr(A) be defined by

σ : xi → xn−1−i, and xn−1

2

→ −xn−1

2

for all i ∈ Zn not equal to n−1
2 . By [HZ, Example 1.6(ii)] and [HZ, Lemma 3.4],

x2
i ∈ r(A,G) for all i. (Some details are omitted.) Therefore A/r(A,G) is finite

dimensional and AG is a graded isolated singularity. Since G preserves x0 + xn−1,
it is non-conventional. �

The next lemma is due to Jason Bell. We thank him for sharing his result with
us. We say an algebra B is PI if it satisfies a polynomial identity.

Lemma 10.6 (Jason Bell). Let B be a noetherian connected graded PI algebra
generated in degree 1. If every linear combination of homogenous elements of odd
degrees is nilpotent, then B is finite dimensional.

Proof. Suppose on the contrary that B is infinite dimensional. Let W be the set of
graded ideals I of B such that B/I is infinite dimensional. Since B is noetherian,
there is a maximal element J in W . Replacing B by B/J , we may assume that
every nonzero ideal of B has finite codimension. Since B is graded, every minimal
prime of B is graded. As a consequence, the nilradical N of B is graded. Since B
is noetherian, B is infinite dimensional if and only if B/N is infinite dimensional.
This implies that N = 0. As a consequence, a product of minimal prime ideals is
zero. This in turn implies that one of minimal prime is zero, or B is prime.

Since B is PI, there is a nonzero central element in B. We can further assume
that this element, say z, is homogeneous and a nonzerodivisor (or regular element).
By the last paragraph, B/(z) is finite dimensional. Then GKdimB = 1 by (E1.0.3).

By Small-Warfield’s theorem [SW], the center Z(B) of B is a finitely generated
graded algebra of GKdimension one and B is a finite module over Z(B). Note that
every nonzero element in Z(B) is regular. Hence Z(B) is contained in the second
Veronese subring of B since all odd degree elements are nilpotent.

Let Q := Qgr(B) be the graded quotient ring of B. By a graded version of Pos-
ner’s theorem, this is just the result of inverting the homogeneous nonzero central
elements, all of which have even degree. The important point here is that every
element of odd degree in Q can be written in the form az−1 with a, z homogeneous
and a ∈ B of odd degree and z ∈ Z(B) of even degree. Let T be the (ungraded)
total quotient ring of B (or of Q). Then T can be embedded into a matrix algebra
over a field F . With this embedding, we fix a trace map tr (the usual matrix trace).
(With a bit more care one can even show that T ∼= Mn(F ) where F is the fraction
field of Z(B).) In particular, tr(1) 6= 0.

As a general fact, since B is generated in degree 1, Q is strongly Z-graded in the
sense of [NvO, A.I.3]. Let Qodd :=

⊕
i is oddQi and Qeven :=

⊕
i is evenQi. Then

Q = Qodd ⊕Qeven is a strongly Z2-graded algebra, namely, Q2
odd = Qeven. By the

last paragraph, every element u in Qodd is of the form az−1 where a ∈ B is a linear
combination of homogeneous elements of odd degrees and where z ∈ Z(B) is of
even degree. Therefore u is nilpotent by hypothesis. Let u, v be any two elements
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in Qodd. Then u, v, u+v are all in Qodd; and consequently, all nilpotent. By [MOR,
Lemma 1], tr(uv) = 0. Since Q2

odd = Qeven, tr(Qeven) = 0. This contradicts
tr(1) 6= 0. �

Now we consider twisted tensor products. Let {B(i)}wi=1 be a family of connected
graded algebras. Then the tensor product

⊗
nB(i) := B(1)⊗B(2)⊗ · · · ⊗B(n)

is a connected graded and Z⊕n-graded algebra. Let ui denote the ith unit element
(0, . . . , 0, 1, 0, . . . , 0) ∈ Z⊕n where 1 is in the ith position. Let {pij ∈ k× | 1 ≤
i < j ≤ n} be a set of nonzero scalar. Define fui

to be the Z⊕n-graded algebra
automorphism of

⊗n
B(i) determined by

fui
(1⊗(j−1) ⊗ xj ⊗ 1⊗(n−j)) = 1⊗(j−1) ⊗ xj ⊗ 1⊗(n−j)

for all i ≥ j and xj ∈ B(j) and

fui
(1⊗(j−1) ⊗ xj ⊗ 1⊗(n−j)) = p

− deg xj

ij 1⊗(j−1) ⊗ xj ⊗ 1⊗(n−j)

for all i < j and homogeneous elements xj ∈ B(j). Then

F := {fua1

1
···uan

n
:= fa1

u1
· · · fan

un
| ua1

1 · · ·uan
n ∈ Z⊕n}

is an twisting system of
⊗n

B(i) in the sense of [Zh1, Definition 2.1]. By [Zh1,
Proposition and Definition 2.3], one can define a twisted algebra of

⊗n B(i) asso-
ciated to the twisting system F . This twisted algebra is denoted by

⊗n
{pij}

B(i). If

B(i) = k[x] for all i, then
⊗n

{pij}
B(i) is canonically isomorphic to skew polynomial

ring kpij
[x1, . . . , xn], see [Zh1, p.310]. Note that if a = 1⊗(i−1) ⊗ xi ⊗ 1⊗(n−i) and

b = 1⊗(j−1) ⊗ xj ⊗ 1⊗(n−j) for two homogeneous elements xi ∈ B(i) and xj ∈ B(j)
for i < j. Then one can check that

ba = p
degxi deg xj

ij ab.

Suppose each B(i) is a noetherian PI Artin-Schelter regular algebra (and it is
possible that the “PI” hypothesis can be weakened). One can easily check that⊗n

{pij}
B(i) is noetherian and Artin-Schelter regular. Further,

⊗n
{pij}

B(i) has

enough normal elements in the sense of [Zh2, p.392]. By [Zh2, Theorem 1], it is
Auslander regular and Cohen-Macaulay.

Suppose G is a finite group and φi : G → Autgr(B(i)) is an injective map for
each i. Then there is a unique extension of the G-action on

⊗n
{pij}

B(i).

Proposition 10.7. Retain the above notation. Suppose G is a finite group and
φi : G → Autgr(B(i)) is an injective map for each i. Let B =

⊗n
{pij}

B(i).

(1) BG is a graded isolated singularity if and only if each B(i)G is a graded
isolated singularity.

(2) Assume BG is a graded isolated singularity. Then BG is conventional if
and only if each B(i)G is conventional.

Proof. The proof follows from Lemma 10.4(5,6). Details are omitted. �

Proposition 10.7 provides a lot examples of graded isolated singularities.
Next let B(i) = B, for i = 1, . . . , n, be a noetherian PI Artin-Schelter regular

algebra generated in degree 1. Let pij = −1 for all i < j. We consider (−1)-twisted
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tensor product
⊗n

{−1} B and the permutation automorphism σ ∈ Autgr(
⊗n

{−1} B)

determined by

(E10.7.1)

σ : 1⊗(j−1) ⊗ xj ⊗ 1⊗(n−j) 7→ 1⊗j ⊗ xj ⊗ 1⊗(n−j−1), 1⊗(n−1) ⊗ xn 7→ xn ⊗ 1⊗(n−1)

for all xj , xn ∈ B.

Proposition 10.8. Retain the above notation. Assume that n ≥ 2 is admissible in
the sense of Definition 5.2(2). Let B be any noetherian PI Artin-Schelter regular
algebra generated in degree 1. Let G be the group 〈σ〉 where σ is defined in (E10.7.1).
Then (

⊗n
{−1} B)G is a non-conventional graded isolated singularity.

Proof. Let S =
⊗n

{−1} B. It suffices to show that S/r(S,G) is finite dimensional.

Let x ∈ B be a linear combination of homogeneous elements of odd degrees.
Let xi = 1⊗i ⊗ x ⊗ 1⊗(n−i−1) ∈ S, for i = 0, . . . , n − 1. Then the subalgebra
generated by {x0, x1, . . . , xn} is the (−1)-skew polynomial ring R := k−1[x]. So
the inclusion f : R → S is compatible with the G-action. (Note that f is not a
graded algebra homomorphism.) Since n is admissible, the quotient R/r(R,G) is
finite dimensional. Hence, for each xi, we have xN

i ∈ r(R,G) for some N ≥ 0. By
Lemma 10.4(5), xN

i ∈ r(S,G). This is true for all x that is a linear combination of
homogeneous elements of odd degrees in B. By Lemma 10.6, the image of the map

B → B ⊗ k⊗(n−1) ⊂
⊗n

{−1}B(= S) → S/r(S,G)

is finite dimensional. Say this image is B. By symmetry, S/r(S,G) is a quotient ring
of

⊗n
{−1} B, which is finite dimensional. Therefore S/r(S,G) is finite dimensional

as desired. �

Proposition 10.8 also provides a lot examples of graded isolated singularities by
varying B.

11. Some questions and comments

It is quite reasonable to adapt Ueyama’s definition of a graded isolated singularity
[Ue, Definition 2.2], at least in the connected graded case. By Remark 0.3(2), the
straightforward generalization of the freeness criterion for commutative quotient
isolated singularities [MSt, Lemma 2.1] fails badly in the noncommutative case.
However the freeness of the G-action on V \ {0} is one of the easiest and most
effective criterions for isolated singularities. Therefore we ask

Question 11.1. What is the analogue of the freeness criterion of isolated singu-
larities in the (connected graded) noncommutative setting?

Let R be a noetherian Artin-Schelter regular algebra and let G be a finite sub-
group of Autgr(R). By a result of Mori-Ueyama [MU1, Theorem 3.10] together
with [HZ], the following are equivalent:

(1) RG is a graded isolated singularity,
(2) R/r(R,G) is finite dimensional,
(3) R#G/(e0), where e0 = 1#(

∑
g∈G g), is finite dimensional,

(4) p(R,G) = GKdimR.
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Mori-Ueyama’s criterion of graded isolated singularities is quite convenient. On the
other hand, it could be very difficult to verify (2), or (3), or to calculate the exact
value of p(R,G).

One of the key steps in the proof of Theorem 0.2 is to show that the set Spl(n)
is non-empty. But we can not prove that Spl(n) 6= ∅ is necessary. In particular, we
do not have answers to the following questions.

Question 11.2. Let n = p1p2 for two distinct odd primes p1, p2.

(1) If 7 ≤ mop(n) ≤ 17, is then n admissible?
(2) Is Spl(77) 6= ∅?
(3) If Spl(77) = ∅, is 77 admissible?

Hypersurface isolated singularities have been studied extensively, and form a rich
topic in algebraic geometry [Mi]. The noncommutative version of a hypersurface
was defined in [KKZ2, Definition 1.3(c)].

In the commutative theory, every hypersurface isolated singularity produces a
finite dimensional Milnor algebra (as well as the Tjurina algebra). It would be
interesting to develop a similar theory for the noncommutative hypersurface isolated
singularities. At this point, it is not clear to us what is the best way of defining
the noncommutative Jacobian ideal, since there are no canonically defined partial
derivatives in the noncommutative case. Here we will like to propose a definition of
the Milnor algebra when the hypersurface singularity is defined by “double twisted
superpotentials”.

Let V be a finite dimensional vector space
⊕v

s=1 kxi, or {xs}vs=1 be a basis of
V . Let F be the free algebra k〈x1, . . . , xv〉 = k〈V 〉. Let σ denote an element in
GL(V ). We define two k-linear maps from F to F . The first one is φ, which is
determined by

φ : xi1 ⊗ · · · ⊗ xin−1
⊗ xin 7→ xin ⊗ xi1 ⊗ · · · ⊗ xin−1

for all xis in the basis of V . The second one σ⊗1, where σ ∈ GL(V ), is determined
by

σ ⊗ 1 : xi1 ⊗ · · · ⊗ xin−1
⊗ xin 7→ σ(xi1 )⊗ · · · ⊗ xin−1

⊗ xin .

Following [DV, Definition 1], [BSW, p.1502], [Ka, Definitions 2.1.3 and 2.1.4],
[MSm, Definition 2.5] (and taking the quiver with one vertex and v arrows), a
twisted superpotential in the free algebra F is an element w in F such that

w = (σ ⊗ 1)φ(w)

for some σ ∈ GL(V ). (All papers [DV, BSW, Ka, MSm] use slightly different
notation, but one can easily figure out the discrepancies). For every xi, we define
a partial derivation ∂i as follows

∂i(xi1 ⊗ xi2 ⊗ · · · ⊗ xiw ) =

{
xi2 ⊗ · · · ⊗ xiw i1 = i

0 i 6= i1.

(This definition of a partial derivative is slightly different from the ordinary partial
derivative in calculus. Another possibility is the cyclic, or circular, derivative.) For
every w, let ∂(w) be the k-linear span of {∂i(w)}vi=1. For an integer N , one can
define ∂N(w) inductively by ∂N (w) = ∂(∂N−1(w)). Given a twisted superpotential
w and an integer N , one can define superpotential algebra D(w,N) [Ka, Definition
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2.1.6] (which is the same as the derivation-quotient algebra in the sense of [DV,
BSW, MSm]) to be

D(w,N) := F/(∂N (w)).

Dubois-Violette proved a very nice result [DV, Theorem 11]: a Koszul (or higher
Koszul) algebra is twisted Calabi-Yau if and only if it is isomorphic to a superpo-
tential algebra for a unique-up-to-scalar-multiples twisted superpotential w.

Definition 11.3. Retain the above notation.

(1) A pair of elements (w1, w2) in F are called double twisted superpotentials if
(a) w1 is a twisted superpotential (with an automorphism σ1 ∈ GL(V ))

such that the superpotential algebra D := D(w1, N) is a noetherian
Artin-Schelter regular algebra.

(b) w2 is a twisted superpotential (with an automorphism σ2 ∈ GL(V ))
such that w2 is a normal regular element in D.

Let (w1, w2) be double twisted superpotentials in parts (2,3,4).
(2) The algebra D/(w2) is called the hypersurface singularity associated to

(w1, w2), and is denoted by T (w1, w2).
(3) The Milnor algebra associated to (w1, w2) is defined to be

M(w1, w2) := D/(∂(w2)).

(4) The Milnor number associated to (w1, w2) is defined to be

m(w1, w2) := dimk M(w1, w2).

With these definitions, we can ask the following:

Question 11.4. Is T (w1, w2) being a graded isolated singularity equivalent to
m(w1, w2) being finite?

The following example of a hypersurface isolated singularity is non-conventional
such that Question 11.4 has an affirmative answer.

Example 11.5. Let A = k−1[x0, x1] and G be the group of automorphism of A
generated by f , where f is determined by

f : x0 7→ x1, x1 7→ x0.

By [KKZ1, Example 3.1], AG is a hypersurface singularity, which can be written as

AG = D/(w2)

where D is an Artin-Schelter regular algebra of global dimension three and w2 is a
normal element of degree 6 in D. In details, x = x0 + x1 and y = x3

0 + x3
1,

D = k〈x, y〉/(x2y − yx2, xy2 − y2x)

and

w2 = 2x6 −
3

2
(x3y + x2yx+ xyx2 + yx3) + 4y2.

By Theorem 0.2, AG has a non-conventional graded isolated singularity.
Note that D is (−1)-twisted Calabi-Yau [RRZ, Example 1.6]. There is a twisted

superpotential
w1 = xy2x+ yx2y − y2x2 − x2y2

with automorphism σ determined by

σ : x 7→ −x, y 7→ −y,
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and D is the superpotential algebra associated to w1. It is easy to check that

(1) w2 is a regular normal element in D,
(2) w2 is a superpotential.

The Milnor ring of the hypersurface singularity AG is

D/(∂w2) = D/(12x5 −
3

2
(x2y + xyx+ yx2),−

3

2
x3 + 4y),

which is isomorphic to k[x]/(x5) by an easy calculation. As a consequence, the
Milnor number of AG is 5.

Note that the McKay quiver corresponding to (A,G) is of type L̃1, see [CKWZ1,

Proposition 7.1 and pp. 249-250]. This is slightly different from the classical Ã, D̃,

Ẽ types.

Remark 11.6. Some other noncommutative hypersurface graded isolated singu-
larities are given in [CKWZ2, Theorem 5.2] and [CKWZ2, Table 3 in p.537]. These
are related to noncommutative McKay correspondence in dimension two. It would
be interesting to answer Question 11.4 for these hypersurface singularities.
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