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Abstract

Statistical inference of evolutionary parameters from molecular sequence data relies on
coalescent models to account for the shared genealogical ancestry of the samples. How-
ever, inferential algorithms do not scale to available data sets. A strategy to improve com-
putational efficiency is to rely on simpler coalescent and mutation models, resulting in
smaller hidden state spaces. An estimate of the cardinality of the state-space of genealogi-
cal trees at different resolutions is essential to decide the best modeling strategy for a given
dataset. To our knowledge, there is neither an exact nor approximate method to determine
these cardinalities. We propose a sequential importance sampling algorithm to estimate
the cardinality of the space of genealogical trees under different coalescent resolutions.
Our sampling scheme proceeds sequentially across the set of combinatorial constraints
imposed by the data. We analyse the cardinality of different genealogical tree spaces on
simulations to study the settings that favor coarser resolutions. We estimate the cardinality
of genealogical tree spaces from mtDNA data from the 1000 genomes and a sample from
a Melanesian population to illustrate the settings in which it is advantageous to employ
coarser resolutions.

1 Introduction
Statistical inference of evolutionary parameters, such as effective population size N(t),
from molecular sequence data is an important task in population genetics, conservation
biology, anthropology and public health (Nordborg 1998, Rosenberg and Nordborg 2002,
Liu et al. 2013). Inference of such parameters relies on the coalescent process that explic-
itly models the shared ancestry of a sample (genealogy) of n individuals from a population.
More specifically, in the standard neutral coalescent framework, observed molecular data
Y in a sample of n individuals within a population, is the result of a point process of mu-
tations with rate µ superimposed on the genealogy g of the sample. The genealogy itself is
not directly observed but it is assumed to be a realization of a stochastic ancestral process
(coalescent process) that depends on N(t). Figure 1 shows a realization of the standard
coalescent (genealogy) and mutations.

Both Bayesian and frequentist methods rely on the marginal likelihood calculated by
integrating over the latent space of genealogies, that is:

P (Y|N(t), µ) =

∫
g∈G×Rn−1

P (Y | g, µ)P (g | N(t))dg. (1)
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Figure 1: Coalescence and mutation.
A genealogy of 6 individuals at a locus
of 100 base pairs is depicted as a bi-
furcating tree. Four mutations (at dif-
ferent sites) are superimposed along the
branches of the tree giving rise to the 6
sequences shown at the tips of the tree.
The 96 sites (base pairs) that do not mu-
tate are represented by dots and only the
nucleotides at the polymorphic sites are
shown.

Integration in the previous equation involves the sum over all possible tree topologies and
n − 1 integrals over coalescent times t ∈ Rn−1 (bifurcating times). The integral in (1) is
usually approximated via Monte Carlo or Markov chain Monte Carlo. However, the car-
dinality of the hidden state space of tree topologies |G| grows superexponentially with the
number of samples n, making integration over the space of genealogies already challenging
for small n.

In order to gain computational tractability, researchers have developed both methods
that rely on a reduced space of tree topologies, and inferential algorithms (exact or approx-
imate) beyond MCMC. For example, several methods have been proposed to infer N(t)
from summary statistics such as the site frequency spectra (Terhorst et al. 2017), from an
estimated genealogy (Palacios and Minin 2013, Gattepaille et al. 2016), or from a small
number of samples (Drummond et al. 2012). Gao and Keinan (2016) present an extensive
list of implemented methods.

Alternative approaches that rely on lower resolution coalescent models have been re-
cently proposed (Sainudiin et al. 2015, Sainudiin and Véber 2018, Palacios et al. 2019+).
The appealing advantage of these approaches is the a priori drastic reduction in the cardi-
nality of the space of tree topologies for a fixed n. However, conditionally on any given
dataset and mutation model, the true reduction in cardinality, that is, the number of tree
topologies for which P (Y | g, µ) > 0 (compatible), is not known neither analytically nor
approximately.

In this work, we propose a set of algorithms to approximate the cardinality of different
tree topology spaces modeled at different coalescent resolutions, the so-called Kingman-
Tajima resolutions (Sainudiin et al. 2015). Reliable estimation of the cardinality of the
coalescent hidden state space for a particular data set should provide a valuable guidance
to statisticians in designing methods that balance computational efficiency and data suffi-
ciency for inferring evolutionary parameters from different summary statistics. In addition,
the cardinality of the topological tree space can also be used directly in inferential algo-
rithms beyond MCMC, such as sequential Monte Carlo methods (Wang et al. 2015).

In this work, the combinatorial question of counting the number of compatible tree
topologies with the data is treated as a a statistical problem: estimation of the normalizing
constant of a uniform discrete distribution over the space of compatible tree topologies.
Our estimation method is an instance of sequential importance sampling (SIS) applied to
count discrete structures subject to constraints (Knuth 1976, Chen et al. 2005, Blitzstein
and Diaconis 2011, Chen and Chen 2018, Diaconis 2018). More specifically, our algo-
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rithm sequentially samples topologies g compatible with the data with a tractable sampling
probability q(g). The SIS estimation of the cardinality is computed by a Monte Carlo
approximation of the following expectation:

Eq

[
1

q(g)

]
=
∑
g∈GC

1

q(g)
q(g) = |GC |, (2)

where GC is the space of compatible tree topologies.
The rest of the paper proceeds as follows. Section 2 reviews the Kingman-Tajima coa-

lescent and the perfect phylogeny representation of molecular sequence data. In Section 3,
we present the sampling algorithms. In section 4 we analyze the cardinality of genealog-
ical spaces under different coalescent resolutions from simulated data, from a sample of
human mtDNA from the 1000 genomes and from other human DNA datasets. Section 5
concludes.

2 Preliminaries

2.1 Kingman-Tajima coalescent
Kingman’s coalescent (C(t))t≥0 is a continuous-time Markov chain with state space the
set of partitions of the label set [n] = {1, . . . , n} of the n individuals in a sample (Kingman
1982). The process starts at {{1}, . . . , {n}} at time tn = 0 (present time at the tips of the
tree). As time increases and we go further into the past, the process remains constant
until tn−1 when two of the n individuals coalescence (represented as the merger of two
branches in a single internal node in the genealogy). The state of the process after the first
transition (at time tn−1) is the partition of [n] into n − 1 sets, one set with the labels of
the two individuals that coalesce and n− 1 singleton sets with the labels of the remaining
individuals. The process ends at t1 when all individuals coalesce, i.e. at state {1, . . . , n}
when there is a single set (at the root of the genealogy when all individuals have a common
ancestor).

A complete realization of Kingman’s coalescent process is commonly represented as
a timed bifurcating tree (genealogy) denoted by gK = {gK , t}. In this work we concern
ourselves with the tree topology only, i.e. a complete realization of the embedded jump
chain of the process gK = {cj}nj=1. A genealogical representation of gK is given in
Figure 2(b) and the corresponding chain in Figure 2(a). Superindex K in gK serves to
distinguish a Kingman’s tree topology to any other type of tree topology. The transition
probability of the jump chain is:

P (Ci−1 = ci−1 | Ci = ci) =

{ (
i
2

)−1
if ci−1 ≺ ci

0 otherwise
(3)

where ci−1 ≺ ci means that ci−1 can be obtained from joining two elements of ci. It
follows from (3) that P (gK) = 2n−1/[n!(n−1)!], i.e. the discrete uniform over all possible
chain trajectories. We will use GKn to denote the space of such Kingman’s topologies.

Tajima’s coalescent (α(t))t>0 = (α1(t), α2(t))t>0 is a continuous-time Markov chain
that keeps track the number of singletons α1(t) and the set of extant vintage labels α2(t) at
time t (Tajima 1983, Sainudiin et al. 2015). We refer to singleton as an individual who has
not yet coalesced, and a vintage as the internal node of a genealogy labeled by the jump
chain step. Since singletons’ labels are ignored, there are up to three possible transitions:
two singletons merge, one singleton and a vintage merge, or two vintages merge. Formally,
given a current state α1(tj) and α2(tj), when there are j = α1(tj) + |α2(tj)| branches in
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1 2 3 4

(a) Jump chain

Kingman Coalescent Tajima Coalescent

c3 = {1, 2}, {3}, {4}

c4 = {1}, {2}, {3}, {4}

c2 = {1, 2, 3}, {4}

c1 = {1, 2, 3, 4}

(b) Ranked labeled tree (c) Jump chain (d) Ranked tree shape

α4 = {4, ∅}

1

2

3

α3 = {2, 1}

α2 = {1, 2}

α1 = {0, 3}

1

2

3

Figure 2: Coalescent tree topologies. (a) A complete realization from Kingman’s jump chain,
and (b) its corresponding bijection: a ranked labeled tree topology. (c) A complete realization
from Tajima’s jump chain, and (d) its corresponding bijection: a ranked tree shape.

the genealogy, the chain transitions to α1(tj−1) = α1(tj)−2 and α1(tj−1) = α2(tj)∪{j}
if two singletons create a new vintage with label {j}; the chain transitions to α1(tj−1) =
α1(tj−1) − 1 and α1(tj−1) = α2(tj) \ {i} ∪ {j} if one singleton and vintage with label
{i} merge to create a new vintage with label {j}; and the chain transitions to α1(tj−1) =
α1(tj) and α1(tj−1) = α2(tj) \ {i, k}∪{j} if vintages {i} and {k}merge to create a new
vintage with label {j}. The process starts at α1(0) = n and α2(0) = ∅ at time tn = 0
(present time at the tips of the tree). As time increases and we go further into the past, the
process remains constant until tn when two singletons coalesce to form a new vintage with
label 1. The state of the process after the first transition (at time tn−1) is α1(tn−1) = n− 2
and α2(tn−1) = {1} (with probability one since this is the only possible transition at this
step), when the first vintage is created. The process ends at t1 when there is a single vintage,
i.e. α1(t1) = 0, and α2(t1) = {n − 1}. A complete realization of Tajima’s coalescent
process can be represented as a genealogy gT = {gT , t}. A complete realization of the
jump chain of the process is denoted by gT = {αi}ni=1, where αi = {αi,1, αi,2} (Figure
2(c)). The jump chain has the following transition probabilities:

P (αi−1 | αi) =


( αi,1
αi,1−αi−1,1

)

(αi,1+|αi,2|
2

)
if αi−1 ≺ αi

0 otherwise
, (4)

Given (4), one can compute the probability of a Tajima’s tree topology gT as P (gT ) =
2n−c(g)−1/(n−1)!, where c(g) is the number of partitions joining two singletons (or cher-
ries). We will use GTn to denote the space of such Tajima’s topologies.

While Kingman’s coalescent keeps track who is related to whom, Tajima’s coalescent
describes the evolutionary relationships of a sample of n individuals by keeping track the
number of singletons and the vintage labels of extant “families”. We note that Tajima’s
coalescent has the same number of transitions and wait time distribution as in Kingman’s
coalescent. Tajima’s coalescent is a lower-resolution coalescent process since it takes val-
ues in a smaller state-space than Kingman’s. Sainudiin et al. (2015) formalize this notion
and describe in detail other coalescent resolutions.

The corresponding tree topology under Kingman coalescent gK is a ranked labeled
tree and the corresponding tree topology under Tajima coalescent gT is a ranked tree shape
(Figure 2). The formal definitions are as follows:

Definition 1. A ranked labeled tree is a rooted binary tree with unique labels at the tips
and a total ordering (ranking) for the internal nodes.

Definition 2. A ranked tree shape is a rooted binary unlabeled tree with a total ordering
(ranking) for the internal nodes.
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Although our main objective is to analyze Kingman and Tajima tree topologies, we
extend our analysis to the corresponding unranked tree topologies: unranked labeled tree
and tree shapes. Figure 3 shows the four tree topologies analyzed in this manuscript.

1 2 3 4 1 2 3 4

1

2

3

1

2

3

(a) Ranked labeled (d) Tree shape(c) Ranked tree shape (b) labeled 

Figure 3: Tree topologies: The (a) ranked labeled tree topology (Kingman), (b) labeled (unranked)
tree topology, (c) ranked tree shape (Tajima) and (d) tree shape

There are explicit or recursive formulas to compute the number of topologies with n
leaves. The number of ranked labeled trees is |GKn | = n!(n − 1)!/2n−1; the number of
unranked labeled trees (binary phylogenetic trees) is |GLTn | = (2n − 3)!! (Steel 2016);
the number of ranked tree shapes |GTn | is the n-th term of the Euler zig-zag sequence
(alternating permutations, OEIS: A000111) (Disanto and Wiehe 2013), and the number of
tree shapes is the n-th Wedderburn-Etherington number (OEIS: 01190) (Steel 2016).

For n > 3, it holds that |GTSn | < |GLTn | and |GTn | < |GKn |. For example, for n = 5,
there are 180 ranked labeled trees and 5 unlabeled ranked trees. Similarly, 105 labeled trees
and 3 tree shapes. This cardinality difference has motivated the study of lower resolution
coalescent processes (Sainudiin et al. 2015). However, it is not clear how big this difference
is when the observed data restricts the space of topologies. In the next section, we describe
how observed data imposes combinatorial constraints on the topological space.

2.2 Perfect phylogeny and infinite sites model
As mentioned in the introduction, we assume that molecular variation at a non-recombining
contiguous segment of DNA (or locus) is the result of a mutation process superimposed on
the timed genealogy g (Figure 1). Here, we assume that mutations (or substitutions) occur
at sites that have not mutated previously. This mutation model is called the infinite-sites
model (ISM) (Kimura 1969). Although we will not model the mutation process explicitly,
it is commonly assumed that mutation happens as Poisson process on the timed genealogy
g. However, an important consequence is that the ISM imposes a restriction on the space
of tree topologies: given that at most one mutation occurs at a site, this mutation must
occur on a branch subtending individuals with the observed mutation. In addition, if the
ancestral type at each polymorphic sites is known, molecular data from n individuals at
m polymorphic sites can be represented as an incidence matrix Y and a vector of the row
frequencies of the matrix Y. The incidence matrix Y is a k ×m matrix with 0-1 entries,
where 0 indicates the ancestral type and 1 the mutant type; k is the number of unique
sequences (or haplotypes) observed in the sample and the vector of frequencies indicates
the number of times each haplotype is observed in the sample. For example, the n = 6
sequences displayed at the leaves of the genealogy in Figure 1 can be summarized as the
incidence matrix and corresponding frequency vector in Figure 4. The three haplotypes
in this example are A...A...A...C, T...A...T...G and A...T...T...G with labels ha, hb and hc
respectively. In this example, the ancestral sequence is displayed at the root of the tree
in Figure 1. In what follows, we will assume that our data are an incidence matrix and
corresponding frequencies as in Figure 4.
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Gusfield (1991) proposed an algorithm to represent the incidence matrix as a multifur-
cating tree called perfect phylogeny. In our example, the multifurcating tree displayed in
Figure 4(a) is the corresponding perfect phylogeny representation of the incidence matrix.
The key in the perfect phylogeny representation is that mutations (labeled as s1,. . . , s4 in
Figure 4) partition the haplotypes into different groups (3 groups represented as leaf nodes
in Figure 4(a)).

 

0   0   1   1

1   0   0   0

0   1   0   0

Freq

1

1

4

ha

hb

hc

s1

ha hb hc

s1

s2

s2

s3

s3

s4

s4

Incidence Matrix

(a) (c)

{a} {c}{e}{f}{g}

T T K(b) T T

{b}

Perfect Phylogeny

1 1 4

Figure 4: Perfect phylogeny representation. Data is summarized as an incidence matrix and a vector
of frequencies. (a) Original perfect phylogeny T in bijection with the incidence matrix; each of the
4 polymorphic sites label exactly one edge. When an edge has multiple labels, the order of the labels
is irrelevant. Each of the 3 haplotyes labels one leaf if T . (b) Kingman’s perfect phylogeny T K : It
is a perfect phylogeny with edge labels removed and leaf labels the set of individual labels for each
haplotype. (c) Tajima’s perfect phylogeny T T : It is a perfect phylogeny with edge labels removed and
leaf labels the corresponding haplotype frequency.

More formally, given an incidence matrix Y, a perfect phylogeny T is a rooted tree
(possibly multifurcating) with k leaves, satisfying the following properties:

1. Each of the k haplotypes labels one leaf in T
2. Each of the m polymorphic sites labels exactly one edge. When multiple sites label

the same edge, the order of the labels along the edge is arbitrary.

3. For any haplotype hk, the labels of the edges along the unique path from the root to
the leaf hk, specify all the sites where hk has the mutant type.

A few remarks. The tree T is usually not the tree topology of a coalescent geneal-
ogy. First, each leaf node labels a unique haplotype which could have been sampled with
frequency higher than one. Second, we have restricted our attention to binary trees, those
sampled from one of the coalescent processes, and T is not necessarily binary (in most
cases it is not).

To simplify our exposition in the following sections, we summarize the perfect phy-
logeny somewhat different than the original Gusfield’s algorithm depending on whether
we wish to count Kingman’s or Tajima’s topologies compatible with the observed data.
Our perfect phylogeny representation for counting Kingman’s tree topologies is denoted
by T K . In T K , we remove the edge labels and label the leaf nodes by the set of individual
labels for each haplotype (Figure 4(b)). Similarly, our perfect phylogeny representation for
counting Tajima’s tree topologies is denoted by T T . In T T , we again remove edge labels
but now we label leaf nodes by the frequency of their corresponding haplotypes (Figure
4(c)). Note that such a representation reflects the fact that two individuals sharing the same
mutations are indistinguishable.

A tree topology g is compatible with the perfect phylogeny T if P (T |g, t) > 0. That
is, if all sequences descending from a node V in T coalesce in g before coalescing with
any other sequence descending from a different node U in T . Figure 5(b) shows exam-
ples of two compatible ranked labeled trees with the perfect phylogeny in Figure 4(b) and

6



(a)

{a} {c}{e}{f}{g}

T K

{b} {a} {a} {a}{b} {b}{c}{e}{f}{g}

(b) Compatible ranked labeled trees  

{c}{e}{f}{g} {b} {c}{e}{f}{g}

1
2

3

4
5

(c) Incompatible ranked labeled tree  

11
2 2

3

3

4 4

55

Figure 5: Compatibility of ranked labeled trees with the perfect phylogeny. (a) Perfect phylogeny,
(b) Two examples of ranked labeled trees compatible with the perfect phylogeny, (c) incompatible
ranked labeled tree.

5(a), while Figure 5(c) shows an incompatible ranked labeled tree topology. The topol-
ogy in Figure 5 (c) is not compatible since there is no node in gK that groups together
{c}, {e}, {f}, {g} without {a} or {b}. In the following sections we describe our algo-
rithms for approximating the number of tree topologies compatible with a given perfect
phylogeny. In the following, we denote the set of compatible tree topologies by Gn,C ⊆ Gn.

3 Sequential importance sampling
Let p denote the uniform discrete distribution on Gn,C . Suppose we can sample from a
distribution q with support Gn,C , then the normalizing constant of p, i.e. |Gn,C | is given by

Eq

[
1

q(g)

]
=

∑
g∈Gn,C

1

q(g)
q(g) = |Gn,C |, (5)

which, given an i.i.d. sample from q of size N , can be approximated via Monte Carlo by

|̂Gn,C | =
1

N

N∑
i=1

1

q(gi)
, (6)

with standard error: se(|̂Gn,C |) =
√

Varq(1/q(g))/
√
N , and the variance can be approxi-

mated with its empirical counterpart.
Average (6) is an instance of importance sampling (IS) (Hammersley and Handscomb

1964, Owen 2013). As described in previous sections, observed data impose combinatorial
constraints to the space of compatible tree topologies. The idea is to construct a compatible
tree topology g ∈ Gn,C sequentially with choices cn, . . . , c1 (one coalescence at a time)
from the tips to the root, ensuring that each choice is compatible with the observed data (or
perfect phylogeny) and with known probability:

q(g) = q(cn)q(cn−1 | cn) . . . q(c1 | c2), (7)

Approaches with a similar stochastic sequential nature construction have been used for
enumeration in other contexts, such as random graphs, networks and contingency tables
(Knuth 1976, Chen et al. 2005, Blitzstein and Diaconis 2011, Chen and Chen 2018, Diaco-
nis 2018). It is clear from this literature that the algorithm should satisfy two desiderata: it
should not “get stuck”, i.e. it should not sample g outside |Gn,C |; in addition, q(g) should
be easily computed. How large N should be largely depends on how close the proposal
distribution q is to the target distribution p. In our problem p is uniform discrete on the set
of compatible trees. Chatterjee et al. (2018) show that N ≈ exp(KL(q, p)) is necessary
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and sufficient for accurate estimation by IS, where KL denotes the Kullback-Leibler di-
vergence. In addition, Chatterjee et al. (2018) warn against the use of sample variance as a
criteria for IS convergence: they prove that it can be arbitrary small for large N indepen-
dently from p and q.

A common metric to assess convergence is the importance sampling effective sample
size ESS, where ESS = N/(1 + cv2), and cv2 is the coefficient of variation given by

cv2 =
Varq[p(g)/q(g)]
E2
q [p(g)/q(g)]

,

and estimated empirically. cv2 is the χ2-distance between p and q. A low cv2 (ESS close
to N ), is a good indicator of the quality of the proposal q.

In lieu of sample variance as a metric for convergence, Chatterjee et al. (2018) define
qN = E[QN ] where

QN =
max1≤i≤N p(gi)/q(gi)∑N

i=1 p(gi)/q(gi)
,

and propose to use a Monte Carlo estimate of qN below a certain threshold as a criteria for
convergence. A low value of qn can be interpreted as a situation in which a sufficiently
large number of samples have been collected (large denominator) to counterbalance the
effect of possible “outliers” that are sampled (large numerator). Computing a Monte Carlo
estimate is computationally expensive and hence, in this work we simply compute a single
running QN and combine it with the other metrics described. Note that since we restrict
our attention to p uniform discrete, the normalizing constant cancels out both in QN and
cv2, so it is possible to compute these two diagnostics.

3.1 Sampling from the perfect phylogeny
To generate a tree topology g ∈ Gn,C compatible with the observed data T , we proceed
sequentially from the tips to the root in both T and g: one coalescence in g and one node
in T at a time.

We start with some notations. We use V to denote the set of nodes of the perfect
phylogeny T and L ⊂ V to denote the set of active nodes, i.e. nodes with at least two
particles; v is an element of V , and pa(v) denotes the parent node of v (if v is not the root).
We use the word particle to refer to individual singletons, elements of a partition of [n] or
vintages. Each node in T has either no particles or a given number of particles assigned
(labeled or not). Given n individuals, the n−1 iterations required to sample a tree topology
are indexed in reverse order, i.e. from n − 1 to 1, to be consistent with the notations used
in the jump chains of the n-coalescent. This notation allows us to keep track how many
individuals have yet to coalesce.

3.1.1 Data constrained Kingman coalescent

To sample a ranked labeled tree gK = {ci}ni=1 of n individuals compatible with the ob-
served perfect phylogeny T K , we start at cn = {{1}, . . . , {n}}. Each leaf node of T K
contains a subset of cn, which we denote cvn, corresponding to the set of individuals as-
signed to that node.

The first step is to define the set L: we remove the leaf nodes with a single individual
(|cv| = 1) and assign those individuals to their parent nodes. L is the set of nodes with
at least two particles. Then for each iteration i = n − 1, . . . , 1, we sample a node in L
with probability proportional to the number of particles in that node: at iteration i, the
probability of choosing node v ∈ L is q1i (v) = |cvi+1|/

∑
j∈L |c

j
i+1|. The node sampled at

iteration i is denoted by vi. The transition from cvii+1 to cvii consists in joining two elements
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of cvii uniformly at random. If a node is not sampled, we assume cvi = cvi+1. This choice
mimics the jump chain of a Kingman n-coalescent; the difference is that the Markov chain
moves one step on a constrained state space: cvii in lieu of ci; i.e.

q2i (c
vi
i | c

vi
i+1) =

{ (|cvii+1|
2

)−1
if cvii ≺ c

vi
i+1

0 otherwise
. (8)

Note that at every iteration ci = ∪vcvi . The two probabilities q1i and q2i are all we need to
compute the transition probability

q(ci | ci+1) = q1i (vi)q
2
i (c

vi
i | c

vi
i+1),

where ci = ci+1 \ cvi+1 ∪ cvi can be constructed recursively. The last iteration happens at
the root node of T K and q(gT ) is computed as the product of the transition probabilities
as in (7). We outline our sampling algorithm with the following example and provide the
pseudocode in Algorithm 1.

Example. Consider the perfect phylogeny T K in Figure 6(a). To avoid confusion between
the nodes’ sampling order (vn−1, . . . , v1) and node labels, we label the root node j0 and
the leaf nodes j1, j2 and j3. Figure 6 gives a graphical representation of a single run of
the algorithm, where one particle is assigned to j1, one to j2 and four to j3. We start
with cj16 = {a}, cj26 = {b}, cj46 = {{c}, {d}, {e}, {f}} and cj06 = ∅. Now, both j1 and
j2 have a single particle: we transfer their particles to the root node and update cj0n =
{{a}, {b}} (Figure 6(a-b)). The set of active nodes is L = {j0, j3}. At iteration i = 5
(first iteration) suppose we sample node v5 = j3, this happens with probability 4/6. then
d and fcoalesce with probability 1/6 (Figure 6(b)). We update cj35 = {{c}, {e}, {d, f}}.
The set of active sample nodes remains L = {j0, j3}. Figure 6(c-f) shows the remaining
iterations. The sequence of sampled nodes is {v5 = j3, v4 = j3, v3 = j0, v2 = j3, v1 =
j0} with sampling probabilities (4/6, 3/5, 1/2, 1, 1). The coalescent events probabilities
q2 are (1/6, 1/3, 1, 1, 1). Thus, q(gK) = 1/90.

j3

j0

j2j1 j3

j0

c

(a) Iteration 6 (b) Iteration 5 (c) Iteration 4

d f
d f    e d f    e a   b

(d) Iteration 3

d f    e a   b

j0

(e) Iteration 2

c d f    e a   b

(f) Iteration 1

j0

{a} {b} {c},{d},{e},{f}

{a},{b}

{c},{d,f},{e}

j3

j0

{a},{b}

{c},{d,f,e}

j3

j0

{a,b}

{c},{d,f,e}

{a,b} {c,d,f,e} {a,b,c,d,f,e}

Figure 6: Example of sequential sampling of a Kingman tree topology with constraints.
We start with a perfect phylogeny (a), at each iteration (b)-(f) we select a node and coalesce a
pair from the selected node. The algorithm terminates when a single tree topology of size n is
generated.

3.1.2 Data constrained Tajima coalescent

To sample a ranked tree shape gT = {αi}ni=1 of n individuals compatible with the ob-
served perfect phylogeny T T (Figure 4 (c)), we start at αn = (n, ∅) and each leaf node in
the perfect phylogeny T T is assigned a vector αv

n= (αvn,1, α
v
n,2). Recall that αvn,1 denotes

9



Algorithm 1 Sequential sampling on a constrained Kingman tree topology

Inputs: T K with cvn subsets of singletons at all leaf nodes and cvn = ∅ at all internal nodes.
Outputs: gK , q(gK)

1. If a leaf node v is such that |cvn| = 1, then we let cpa(v)
n = c

pa(v)
n ∪ cvn and cvn = ∅.

2. Define L as the list of nodes such that |cvn| > 1

3. Initialize q = 1

4. for i = n− 1 to 1 do
(a) Sample node vi in L with probability q1i .
(b) Choose particles in vi to coalesce with probability q2i .
(c) Update cvii−1 and define cvi−1 = cvi for all the other nodes.

(d) If |cvii−1| = 1, we let cpa(vi)
i−1 = c

pa(vi)
i−1 ∪ c

vi
i−1 and cvii−1 = ∅.

(e) Update q = q × q1i × q2i
(f) Update L as the list of nodes such that |cvi−1| > 1

5. end for

the number of singletons, and αvn,2 denotes the set of vintages associated to node v. Ini-
tially, each leaf node in the perfect phylogeny contains the number of singleton particles∑

v∈V α
v
n,1 = n, and no vintages, i.e. αvn,2 = ∅ for all v ∈ V . At any given iteration i, the

number of particles associated to a node v is αvi,1 + |αvi,2|.
Tajima’s sampler follows the rationale used to build the Kingman sampler. We define

the setL as in the Kingman’s sampler (nodes with at least two particles). Then for n−1 iter-
ations, we first sample a node v ∈ Lwith probability q1i (v) = (αvi,1+ |αvi,2|)/

∑
j∈L(α

j
i,1+

|αji,2|); then we sample a pair of particles in the selected node to coalesce. Our proposal q2i
is:

q2i (α
vi
i | α

vi
i+1) =


( α

vi
i+1,1

α
vi
i+1,1−α

vi
i,1

)(αvii+1,1+|α
vi
i+1,2|

2

)−1
if αvii ≺ α

vi
i+1

0 otherwise
(9)

Analogously to the Kingman sampler, each iteration ends by updating αvii and L. The
pseudocode is presented in Algorithm 2. Note that, as opposed to the Kingman sam-
pler, q1i and q2i in Tajima sampling, do not fully determine q(αi|αi+1), where αi =
(
∑

v∈V α
v
i,1,
⋃
v∈V α

v
i,2). A transition from αi+1 to αi can be obtained by sampling dif-

ferent nodes in the active set, possibly with different sampling probabilities. For example,
suppose we are joining two singletons: any v ∈ L with at least two singletons allows this
type of transition. This issue was not relevant in the Kingman sampler because individuals
were labeled. Therefore, the output of the sampling algorithm after n − 1 iterations is
{αi}ni=1 = gT along with the sequence of sampling nodes v = (vn−1, . . . , v1). It is pos-
sible to sample the same gT with different v and v′. These two outputs of the algorithm,
which we denote by (gT ,v) and (gT ,v′), may also have different sampling probabilities
q(gT ,v) and q(gT ,v′). We illustrate this situation with the following example.

Example. Consider the perfect phylogeny in Figure 7 (a). Figure 7 (b)-(c) show two
ranked tree shapes, gT and g∗T , that can be sampled with our algorithm. Let us first con-
sider gT in Figure 7(b). A possible sequence of sampling nodes in T T is v = {j1, j2, j0, j3, j3, j3, j0}.
In this case the output of Algorithm 2 would be (gT ,v). Although, the sequence v′ =
{j2, j1, j0, j3, j3, j3, j0} leads also to the same gT . The two node orderings v and v′ can
be easily identified in T T since nodes j1 and j2 are indistinguishable by being siblings of
the same size. Let us now turn to g∗T in Figure 7(c). In this case, there 4 possible sampling

10
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Figure 7: Example of two ranked tree shapes compatible with a given perfect phylogeny.
(a) perfect phylogeny (b)-(c) two possible ranked tree shapes compatible with T T .

nodes orderings: v, v′, v′′ = {j3, j3, j3, j1, j2, j0, j0} and v′′′ = {j3, j3, j3, j2, j1, j0, j0}.

We now introduce some notation to distinguish between the output of our sampling
algorithm and the elements needed in the sequential importance sampling estimation of
|GTn,c|.

Definition 3. Let YTn,C be the set of all possible outcomes (gT ,v) of the Tajima algorithm
(Algorithm 2) conditionally on a given perfect phylogeny T T .We call two outputs of the
algorithm: (gT ,v) and (gT ,v′) equivalent if they have the same ranked tree shape gT . Let
cT (gT ) the number of possible pairs (gT ,v′) ∈ YTn,C equivalent to (gT ,v).

It is still possible to use sequential importance sampling despite the fact that our pro-
posal q has support YTn,C instead of GTn,C . We discuss two alternative ways. The first one is
to generate a sample (gT ,v) ∈ YTn,C with sampling probability q(gT ,v) computed as the
product of all q1 and q2 transition probabilities (Algorithm 2). We then call a depth-first
search algorithm that backtracks all possible sequence of nodes v′ that would give rise to
the same gT and compute:

q(gT ) =
∑

v′:(gT ,v′)∈YTn,C

q(gT ,v′). (10)

Finally, we estimate the cardinality of our constrained space by the Monte Carlo approxi-
mation to the following:

EYTn,C

[
1

q(gT )

]
=

∑
(gT ,v)∈YTn,C

q(gT ,v)

q(gT )
=

∑
gT∈GTn,C

1

q(gT )

∑
v:(gT ,v)∈YTn,C

q(gT ,v)

=
∑

gT∈GTn,C

q(gT )

q(gT )
= |GTn,C |

(11)

Our implementation is based on (11), however we discuss a second alternative for com-
pleteness. This second alternative is inspired by a similar situation discussed in Blitzstein
and Diaconis (2011) in the context of sampling graphs with a given degree sequence. The
cardinality is estimated by the Monte Carlo approximation to the following

EYTn,C

[
1

cT (gT )q(gT ,v)

]
=

∑
(gT ,v)∈YTn,C

q(gT ,v)

cT (gT )q(gT ,v)

=
∑

gT∈GTn,C

1

cT (gT )

∑
v:(gT ,v)∈YTn,C

1 = |GTn,C |,

(12)
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where cT (gT ) is the size of the equivalence class cT (gT ) = #{v′ : (gT ,v′) ∈ YTn,C}.
Given a pair (gT ,v), we can calculate cT (gT ) by finding equivalence classes of certain

subtrees in gT relative to T T . More specifically, let gTvi be the subtree in gT created at
iteration i. We say that two subtrees gTvi and gTvj are equivalent if they have the same tree
shape and d(vi, vj) ≤ 2, where d(vi, vj) is the number of edges separating vi and vj in T T .
We only consider equivalence classes of subtrees gTvi if vi is either an internal node in T T
or a leaf node in T T removed from L at iteration i. Let K be number of such equivalence
classes and let E1, . . . , EK denote the equivalence classes of subtrees of gT , then

cT (gT ) =

K∏
k=1

|Ek|! (13)

One can see that formula (13) is computationally expensive and efficient implementation
of (13) is an open question.

Algorithm 2 Sampling on the constrained Tajima Space

Inputs: T T , with αvn,1 number of singletons at all leaf nodes, and αvn,2 = ∅ for all v ∈ V .
Outputs: gT , q(gT )

1. If a leaf node v is such that αvn,1 = 1, then let αpa(v)n,1 = α
pa(v)
n,1 + 1, αvn,1 = 0.

2. Define L as the list of nodes with αvn,1 > 1.
3. for i = n− 1 to 1 do

(a) Sample node vi with probability q1i .
(b) Choose particles to coalesce with probability q2i
(c) Update αvi

i−1 and define αvi
i−1 = αvi

i for all other nodes

(d) If αvii−1,1 + |α
vi
i−1,2| = 1, then let αpa(vi)i−1,1 + = αvii−1,1, α

vi
i,1 = 0, and αpa(vi)i−1,2 ∪ = αvii−1,2,

αvii,2 = ∅
(e) Update q = q × q1i × q2i

4. end for
5. Compute q(gT ) as in (10).

3.1.3 Labeled trees and tree shapes.

We now turn to the unranked versions: labeled trees and tree shapes. As before, we de-
fine equivalence relations that partitions the spaces GKn,C and GTn,C into equivalence classes
that ignore rankings. We show two simple formulas to compute the size of these classes.
Opposed to (13), these formulas are easy to implement and allow to build a SIS proce-
dure to estimate |GLTn,C | and |GTSn,C | using outputs from the Kingman and Tajima algorithms
(Algorithm 1 and 2). First we define the following two equivalence relations and their
cardinalities.

Definition 4. For any element gK ∈ GKn,C , let LT (gK) denote the corresponding unranked
labeled tree gLT ∈ GLTn,C . We call gK and g′K equivalent if LT (gK) = LT (g′K) and we
denote the size of the equivalence class by cLT (gK).

Proposition 1. Let gK ∈ GKn,C , and let gKi,1 and gKi,2 be the two subtrees (or clades) that
merge at the ith coalescent event for i = 1, . . . , n− 1. Then

cLT (gK) =

n−1∏
i=1

(|gKi,1|+ |gKi,2| − 2)!

(|gKi,1| − 1)!(|gKi,2| − 1)!
,
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where |gKi,j | denotes the number of leaf nodes of gKi,j .

Proof. Note that |gKi,j |−1 is the number of coalescent events in subtree gKi,j . For each fixed
i, we are computing the number of possible permutations of (|gKi,1|+ |gKi,2| − 2) coalescent
events of elements of two groups with |gKi,1| − 1 and |gKi,2| − 1 elements respectively. The
two groups are guaranteed by the fact that gK is a binary tree. The product accounts for all
possible orderings.

Definition 5. For any element gT ∈ GTn,C , let TS(gT ) denote the corresponding (un-
ranked) tree shape gTS ∈ GTSn,C . We call gT and g′T equivalent if TS(gT ) = TS(g′T ) and
we denote the size of the equivalence class by cTS(gT ).

Proposition 2. Let gT ∈ GTn,C , and let gTi,1 and gTi,2 be the two subtrees (or clades) that
merge at the ith coalescent event, then

cTS(gT ) =

n−1∏
i=1

(|gTi,1|+ |gTi,2| − 2)!

(|gTi,1| − 1)!(|gTi,2| − 1)!

(
1

2

)1{gTi,1=gTi,2}
,

where |gTi,j | denotes the number of leaf nodes of gTi,j .

Proof. Again, the formula is a product of permutations with repetitions. If the two subtrees
that merge at the ith coalescence are equal, we need to dived by two since the same rankings
in the two subtrees are indistinguishable.

Given cLT (gK) and cTS(gT ), we can easily compute q(gLT ) = cLT (gK)q(gK) and
q(gTS) = cTS(gT )q(gT ). These two distributions constitute our sampling proposal in SIS
procedure to estimate |GLTn,C | and |GTSn,C |.

4 Applications and simulations

4.1 Simulation studies
In this section we discuss two simulation studies. First, we assess the convergence of
our algorithms and discuss the diagnostics employed. We then analyze and quantify the
differences in cardinalities between the four tree topologies for a given simulated dataset.
The four tree topologies analyzed are GKn,C : Kingman ranked labeled trees, GTn,C : Tajima
ranked tree shapes, GTSn,C : tree shapes and GLTn,C : unranked labeled trees. All of which are
compatible with the simulated dataset.

To simulate a single dataset, we first simulate a Kingman genealogy of n individuals as
described in Section 2 and implemented in R ape:rcoal() (Paradis et al. 2004). We
assume a constant effective population size and thus the k-th coalescent time is exponential
distributed with rate

(
k
2

)
. Given a timed genealogy with tree length L =

∑n
k=2 ktk, a

number m of mutations is sampled as a Poisson random variable with rate µL. These m
mutations are then placed uniformly at random along the branches of the timed genealogy
and labeled 1, . . . ,m. The resulting incidence matrix is initially a matrix of size n × m
with (i, j) entry equal to 1 if the branch path from leaf i to the root has labeled mutation
j. This part of the simulation algorithm corresponds the infinite-sites mutation model. The
final incidence matrix is then summarized by unique rows (haplotypes).

Lacking a competing method for accuracy check, we resort to two type of checks. First,
we use the SIS diagnostics described in Section 3: coefficient of variations cv2, effective
sample size ESS, and standard error se. Second, for n ≤ 10, we estimate the cardinality
by the number of observed distinct topologies from 3× 105 i.i.d trees. This second “brute
force” method becomes computationally unfeasible already at small n. We refer to it as
“real count”.
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4.1.1 Numerical convergence

We simulate incidence matrices under four scenarios: with sample sizes n ∈ (10, 20),
and two mutation regimes µ ∈ (5, 20). SIS estimates and diagnostics are computed at
N ∈ (100, 500, 1000, 3000, 5000, 10000, 15000) from 20 repetitions on each of the four
incidence matrices. Figure 8 shows the results for the four combinations of n and µ
(columns) and the four topological spaces considered (rows). Grey lines represent esti-
mates as N increases, the black line denotes the mean estimate.

A visual inspection of Figure 8 suggests a few qualitative observations. For n = 10,
convergence is generally achieved for fairly small SIS sample size (N ≈ 3000), although
variance across runs decreases solely at N = 10000. As expected, larger sample sizes
(n) increase estimation uncertainty; this is depicted by scattered and non overlapping grey
lines; in general, the coefficient of variation increases one order of magnitude by increasing
the sample size n from 10 to 20. Similarly, estimates of unranked topologies: tree shapes
and labeled trees show higher coefficients of variation than the ranked counterparts. This
is not surprising given that the sampling distributions for GLTn,C and GTSn,C are “corrected”
from the their corresponding ranked tree spaces. A comparison between mean squared
coefficients of variation (computed for N > 5000) show that Kingman’s algorithm per-
forms better than Tajima’s algorithm. Tajima’s algorithm mean cv2 are 0.87 and ≈ 7.87
for n = 10 and n = 20 respectively, while Kingman’s algorithm mean cv2 are 18% and
40% lower.

4.1.2 Multi-resolution simulation study

Table 1: SIS counts for varying n and µ. n denotes sample size, µ mutations rate, |Jleaf | the number
of leaf nodes in T , |J | the number of nodes in T . Counts are reported for the four resolutions plus/minus
the standard error.

n µ |Jleaf | |J | Tajima trees Kingman trees Tree shapes Labeled trees

5 5 2 4 2.994 +/- 0.01 9.01 +/- 0.01223 3.003 +/- 0.004076 0.9979 +/- 0.003333
10 2 5 3.011 +/- 0.01 9.018 +/- 0.01221 3.006 +/- 0.00407 1.004 +/- 0.003333
20 2 5 3.005 +/- 0.01 9.018 +/- 0.01221 3.006 +/- 0.00407 1.002 +/- 0.003333
50 3 7 3.009 +/- 0.01 3 +/- 0.01 0.9999 +/- 0.003333 1.003 +/- 0.003333

10 5 5 8 1410 +/- 14.66 10520 +/- 101 52.73 +/- 1.057 8.478 +/- 0.2009
10 7 14 361.5 +/- 3.407 724.9 +/- 6.587 3.329 +/- 0.03942 2.306 +/- 0.03901
20 7 14 360.9 +/- 3.378 725.2 +/- 6.589 3.329 +/- 0.03941 2.338 +/- 0.03874
50 7 16 281.5 +/- 2.368 282.8 +/- 2.358 1.01 +/- 0.008423 1.006 +/- 0.008456

15 5 7 14 9532000 +/- 186600 2.65e+08 +/- 4909000 1961 +/- 52.38 113.8 +/- 2.901
10 7 16 504100 +/- 7710 9458000 +/- 124300 48.18 +/- 0.617 4.175 +/- 0.05833
20 7 16 526700 +/- 8191 9467000 +/- 124400 48.19 +/- 0.6165 4.293 +/- 0.06187
50 8 20 256100 +/- 3514 1578000 +/- 19390 9.962 +/- 0.1224 3.234 +/- 0.04437

20 5 8 17 2.486e+09 +/- 86600000 9.007e+12 +/- 2.574e+11 241900 +/- 17940 101.4 +/- 8.59
10 9 20 2.063e+09 +/- 56090000 6.195e+12 +/- 1.503e+11 140900 +/- 9516 72.43 +/- 4.551
20 11 23 1.306e+09 +/- 50380000 5.668e+10 +/- 2.084e+09 540.1 +/- 59.65 24.18 +/- 2.135
50 11 26 462900000 +/- 14690000 1.024e+10 +/- 337900000 39.4 +/- 2.042 4.056 +/- 0.1785

We simulate 50 incidence matrices for the 20 possible pairings of n in (5, 10, 15, 20)
and µ in (5, 10, 20, 50, 75). For each simulated dataset, we estimate the cardinality of the
four constrained topological spaces. Based on the results observed in the previous section,
we set N = 5000 for n ∈ (5, 10), N = 10000 for n = 15, and N = 15000 for n = 20. In
the first row of Figure 9, we show the log ratio of the estimated cardinalities of Kingman
topologies and Tajima topologies. Similarly, in the second row of Figure 9, we show the
log ratio of the estimated cardinalities of labeled trees and tree shapes. Table 1 summarizes
the results for a single iteration picked at random among the 50 replicates: an average
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Figure 8: Sequential importance sampling convergence. Rows show the four topologies: Ranked tree
shapes, ranked labeled trees, unranked tree shapes and labeled tress respectively, the first two columns
show results on simulations based on n = 10 samples and the last two columns on n = 20 samples.
The first and third column show results for µ = 5 and second and fourth show results for µ = 20. Grey
lines show each of the 20 independent estimates from the 20 repetitions of the SIS algorithm computed
at N ∈ (100, 500, 1000, 3000, 5000, 10000, 15000) iterations. Black lines show the mean estimate of
the 20 repetitions.
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over the 50 iterations is not insightful given the high variability of the incidence matrices
sampled (which can be observed in Figure 9).

The reduction in cardinality of Tajima’s versus Kingman’s is clearly depicted in Figure
9, as it is for the reduction in cardinality of tree shapes versus labeled trees. However,
as the rate of mutation µ increases, these two ratios become exponentially smaller. If we
compare these ratios as the sample size n increases, we also observe an exponential growth
trend (in natural scale), highlighting the difference in cardinalities between unlabeled and
labeled trees.

Recall that, in expectation, a higher mutation rate corresponds to a higher number of
mutations, which should correspond to a more constrained space. The reduction in the tree
spaces imposed by mutations is accentuated for Kingman’s trees under every scenario. For
example for n = 20, there are 5.64 × 1029 (exact) unconstrained Kingman’s trees (using
formula from section 2). This number drops to 5.67×1010±2.08×109 (SIS estimate) for
a simulated dataset with µ = 20. The (exact) unconstrained number of ranked tree shapes
is 2.9 × 1013, which drops to 4.63 × 1010 ± 1.47 × 108 (SIS estimate) for a simulated
dataset with µ = 20. A similar pattern is observed for unranked tree shapes.

Lastly, the benefits of employing coarser resolutions are striking when the sample sizes
increases. For n = 20 and µ = 5, the Tajima space is on average (across the 50 datasets)
48000 times smaller than the Kingman space: 60 times smaller in the simulated worst case
scenario, and two billion times smaller in the best case.

4.2 Human mtDNA data
The left of Figure 10 shows the Tajima perfect phylogeny reconstructed from n = 35 sam-
ples of mitochondrial DNA (mtDNA) selected uniformly at random from the 107 Yoruban
individuals available in the 1000 Genomes Project phase 3 (1000 Genomes Project Consor-
tium 2015). We retained the coding region: 576−16, 024 according to the rCRS reference
of Human Mitochondrial DNA (Anderson et al. 1981, Andrews et al. 1999) and removed
38 indels. Of the 260 polymorphic sites, we only retained 240 sites compatible with the
infinite sites mutation model. Ancestral states (0s in the incidence matrix) were obtained
from the RSRS root sequence (Behar et al. 2012).

We estimated the cardinalities of the four constrained topologies by running ten iter-
ations of the algorithms for N ∈ (5000, 10000, 15000, 20000, 25000) iterations. Com-
puting SIS estimates for increasing N allows to check the convergence. We report mean
estimate across the 10 for N larger or equal 15000. Note that in this way, we are implicitly
increasing N ten fold.

The cardinality of the unconstrained Kingman space (for n = 35) is 1.78× 1068 trees,
while our estimated cardinality of compatible Kingman’s trees is 3.65 × 1029 ± 2.65 ×
1028. The unconstrained cardinality of Tajima space is 8.07 × 1031, while our estimated
cardinality of compatible Tajima space is 1.81× 1025 ± 1.96 × 1024. We show that
the space of compatible Tajima’s trees if 4 orders of magnitude smaller than the space of
compatible Kingman’s tree. While Tajima’s constrained space has the smallest cardinality,
we note that in this setting with high mutation rates and, as pointed out in the introduction,
inference would be computationally expensive.

Moving now to the unranked tree spaces, the cardinality of unconstrained labeled tree
space is 4.89 × 1047, while the estimated cardinality of compatible labeled tree space is
9× 1016± 4.91× 1016. Finally, the constrained cardinality of tree shapes is 2.06× 1013±
1.05× 1013 (unconstrained cardinality unavailable). We note the very high standard errors
of the unranked estimates may be a product of low algorithmic efficiency for unranked
trees.
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Figure 10: Tajima perfect phylogenies of Yoruban mitochondrial data (left) and Melanesian
β−globin locus data (right). Left panel: GT of n = 35 sequences of mtDNA sampled at random
from 107 Yoruban individuals available from the 1000 Genomes Project phase 3 (1000 Genomes Project
Consortium 2015). Right panel: GT of n = 30 sequences of DNA from the β-globin locus sampled at
random from 57 Melanesian individuals available in Fullerton et al. (1994). Dark blue nodes represent
the leaf nodes. The number within a node is the number of individuals assigned to that node.
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4.3 Melanesian β-globin locus
The right side of Figure 10 shows the reconstructed Tajima perfect phylogeny from part
of the β-globin locus. This dataset consist of n = 30 sequences sampled uniformly at
random from the 57 sequences from a Melanesian human population analyzed in Fullerton
et al. (1994). This dataset was already part of a larger dataset described in Harding et al.
(1997)and consist of 13 segregating sites and 4 haplotypes (distinct sequences among the
30 sequences).

Similar to our previous analysis on mtDNA data, we run ten iterations of the algorithm.
However, in this case we only estimate cardinalities of the two ranked type of trees: King-
man and Tajima. For unranked trees, it is not possible to assert algorithmic convergence for
already high N ; this is not a complete surprise since we have already pointed out the poor
performance of estimates for unranked tree spaces. The cardinality of the unconstrained
Kingman space (for n = 30) is 4.37× 1054 while the constrained Kingman space has esti-
mated cardinality of 1.07×1040±6.66×1037. The cardinality of the unconstrained Tajima
space is 2.31×1025, while the constrained space has cardinality 2.98×1023±5.01×1022.

5 Discussion
In this article we propose a set of algorithms to sample coalescent tree topologies when
the infinite sites mutation model is assumed. Our algorithms sequentially sample tree
topologies compatible with the observed data in order to estimate their cardinality using
importance sampling. We analyze the cardinality of different types of tree topologies:
ranked labeled trees (Kingman), ranked tree shapes (Tajima), unranked labeled trees and
tree shapes, which corresponds to different resolutions of the n-coalescent process.

Our proposed algorithms sample a tree topology in a bottom-up fashion: given a sam-
ple of n individuals, we sequentially build the trees in n− 1 steps. We employ a graphical
representation of the data called perfect phylogeny that allows us to account for the com-
binatorial constraints imposed by the data. The perfect phylogeny “groups” individuals in
different nodes: in our algorithms coalescent events are allowed solely among individuals
assigned to the same node. Within each node, the choice of which individuals coalesce is
regulated by the underlying jump chain of the coalescent process we are modeling. In our
application either Kingman or Tajima coalescent process.

The research question tackled in this paper was motivated by the challenging inference
problem of coalescent methods used in population genetics. There is a growing interest
in exploring different resolutions of the n-coalescent process for inference of evolutionary
parameters from molecular sequence data in order to gain computational tractability. In-
deed, the size of the hidden state-space of trees in the standard Kingman coalescent grows
superexponentially with the sample size. Despite being clear that there is a reduction in the
cardinality of the state-space using coarser resolutions, e.g. Tajima n-coalescent, there was
no way to quantify how much smaller the state space is conditionally on the data. Given
the amount of work and software available tailored to the Kingman n-coalescent, it was in
our opinion fundamental to quantify the benefits of a different resolution before any more
work is carried out.

From our empirical analysis, it emerges that the benefits of using a coarser resolution
depends largely on the data considered. The advantages are striking as the sample size in-
creases, especially in the context of few segregating sites (nuclear human DNA variation).
In general, the greater the number of observed mutations is, the less are the benefits of
employing coarser resolutions. This is consistent with theoretical predictions: under the
infinite sites assumption, mutations induce some labeling: individuals can be distinguished
according to private mutations. In this case, the benefits of employing an unlabeled tree are
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less evident. This observation applies to both ranked and unranked trees. In applications
where the mutation rate is low, and consequently the number of mutations is also low, the
benefits of lower resolutions remain clear.
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