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Abstract. The quaternions form a 4-dimensional Cayley-Dickson algebra. In this paper, we intro-
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1. Introduction

Tetranacci sequence {Mn}n≥0 and Tetranacci-Lucas sequence {Rn}n≥0 are defined by the fourth-order

recurrence relations

(1.1) Mn = Mn−1 +Mn−2 +Mn−3 +Mn−4, M0 = 0,M1 = 1,M2 = 1,M3 = 2

and

(1.2) Rn = Rn−1 +Rn−2 +Rn−3 +Rn−4, R0 = 4, R1 = 1, R2 = 3, R3 = 7

respectively. Mn is the sequence A000078 in [19] and Rn is the sequence A073817 in [19]. This sequence has

been studied by many authors and more detail can be found in the extensive literature dedicated to these

sequences, see for example [10], [15], [16], [18], [25], [26].

The sequences {Mn}n≥0 and {Rn}n≥0 can be extended to negative subscripts by defining

M−n = −M−(n−1) −M−(n−2) −M−(n−3) +M−(n−4)

and

R−n = −R−(n−1) −R−(n−2) −R−(n−3) +R−(n−4)

for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.1) and (1.2) hold for all integer n.
1
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We can write (1.1) as Mn−1 = Mn−2 +Mn−3 +Mn−4 +Mn−5. Substracting this from (1.1), we see that

Tetranacci numbers also satisfy the following useful alternative linear recurrence relation for n ≥ 5:

(1.3) Mn = 2Mn−1 −Mn−5.

Extension of the definition of Mn to negative subscripts can be proved by writing the recurrence relation

(1.3) as

(1.4) M−n = 2M−n+5 −M−n+6.

Similarly, we have

Rn = 2Rn−1 −Rn−5,(1.5)

R−n = 2R−n+5 −R−n+6.(1.6)

The following Table 1 presents the first few values of the Tetranacci and Tetranacci-Lucas numbers with

positive and negative subscripts:

Table 1. Tetranacci and Tetranacci-Lucas Numbers with non-negative and negative indices

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

Mn 0 1 1 2 4 8 15 29 56 108 208 401 773 1490 ...

M−n 0 0 0 1 −1 0 0 2 −3 1 0 4 −8 5 ...

Rn 4 1 3 7 15 26 51 99 191 367 708 1365 2631 5071 ...

R−n 4 −1 −1 −1 7 −6 −1 −1 15 −19 4 −1 31 −53 ...

It is well known that for all integers n, usual Tetranacci and Tetranacci-Lucas numbers can be expressed

using Binet’s formulas

Mn =
αn+2

(α− β)(α − γ)(α − δ)
+

βn+2

(β − α)(β − γ)(β − δ)
+

γn+2

(γ − α)(γ − β)(γ − δ)
+

δn+2

(δ − α)(δ − β)(δ − γ)

(see for example [28] or [10])

or

(1.7) Mn =
α− 1

5α− 8
αn−1 +

β − 1

5β − 8
βn−1 +

γ − 1

5γ − 8
γn−1 ++

δ − 1

5δ − 8
δn−1

(see for example [6]) and

Rn = αn + βn + γn + δn
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respectively, where α, β, γ and δ are the roots of the cubic equation x4 − x3 − x2 − x− 1 = 0. Moreover,

α =
1

4
+

1

2
ω +

1

2

√
11

4
− ω2 +

13

4
ω−1,

β =
1

4
+

1

2
ω −

1

2

√
11

4
− ω2 +

13

4
ω−1,

γ =
1

4
−

1

2
ω +

1

2

√
11

4
− ω2 −

13

4
ω−1,

δ =
1

4
−

1

2
ω −

1

2

√
11

4
− ω2 −

13

4
ω−1,

where

ω =

√√√√11

12
+

(
−65

54
+

√
563

108

)1/3

+

(
−65

54
−

√
563

108

)1/3

.

Note that we have the following identities:

α+ β + γ + δ = 1,

αβ + αγ + αδ + βγ + βδ + γδ = −1,

αβγ + αβδ + αγδ + βγδ = 1,

αβγδ = −1.

Note that the Binet form of a sequence satisfying (1.1) and (1.2) for non-negative integers is valid for all

integers n. This result of Howard and Saidak [12] is even true in the case of higher-order recurrence relations

as the following theorem shows.

Theorem 1 ([12]). Let {wn} be a sequence such that

{wn} = a1wn−1 + a2wn−2 + ...+ akwn−k

for all integers n, with arbitrary initial conditions w0, w1, ..., wk−1. Assume that each ai and the initial

conditions are complex numbers. Write

f(x) = xk − a1x
k−1 − a2x

k−2 − ...− ak−1x− ak(1.8)

= (x − α1)
d1(x− α2)

d2 ...(x− αh)
dh

with d1 + d2 + ...+ dh = k, and α1, α2, ..., αk distinct. Then

(a): For all n,

(1.9) wn =

k∑

m=1

N(n,m)(αm)n

where

N(n,m) = A
(m)
1 +A

(m)
2 n+ ...+A(m)

rm nrm−1 =

rm−1∑

u=0

A
(m)
u+1n

u
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with each A
(m)
i a constant determined by the initial conditions for {wn}. Here, equation (1.9) is

called the Binet form (or Binet formula) for {wn}. We assume that f(0) 6= 0 so that {wn} can be

extended to negative integers n.

If the zeros of (1.8) are distinct, as they are in our examples, then

wn = A1(α1)
n +A2(α2)

n + ...+Ak(αk)
n.

(b): The Binet form for {wn} is valid for all integers n.

The generating functions for the Tetranacci sequence {Mn}n≥0 and Tetranacci-Lucas sequence {Rn}n≥0

are
∞∑

n=0

Mnx
n =

x

1− x− x2 − x3 − x4
and

∞∑

n=0

Rnx
n =

4− 3x− 2x2 − x3

1− x− x2 − x3 − x4
,

respectively.

In this paper, we define Tetranacci and Tetranacci-Lucas quaternions in the next section and give some

properties of them. Before giving their definition, we present some information on quaternions.

Quaternions were invented by Irish mathematician W. R. Hamilton (1805-1865) as an extension to the

complex numbers. Most mathematicians have heard the story of how Hamilton invented the quaternions.

The 16th of October 1843 was a momentous day in the history of mathematics and in particular a major

turning point in the subject of algebra. On that day William Rowan Hamilton had a brain wave and came

up with the idea of the quaternions. He carved the multiplication formulae with his knife into the stone of

the Brougham Bridge (nowadays known as Broomebridge) in Dublin,

i2 = j2 = k2 = ijk = −1.

One reason this story is so well-known is that Hamilton spent the rest of his life obsessed with the quaternions

and their applications to geometry. The story of this discovery has been translated into many different

languages. For this story and for a full biography of Hamilton, we refer the work of Hankins [9].

After the middle of the 20th century, the practical use of quaternions has been discovered in comparison

with other methods and there has been an increasing interest in algebra problems on quaternion field since

many algebra problems on quaternion field were encountered in some applied and pure science such as the

quantum physics, computer science, analysis and differential geometry.

A quaternion is a hyper-complex number and is defined by

q = a0 + ia1 + ja2 + ka3 = (a0, a1, a2, a3)

where a0, a1, a2 and a3 are real numbers or scalers and 1, i, j, k are the standard orthonormal basis in R4.

The set of all quaternions are denoted by H. Note that we can write

q = a0 + p
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where p = ia1 + ja2 + ka3. a0 and p are called the scalar part and the vector part of the quaternion q,

respectively. The a0, a1, a2, a3 are called the components of the quaternion q.

Addition of quaternions is defined as componentwise and the quaternion multiplication is defined as

follows:

(1.10) i2 = j2 = k2 = ijk = −1.

Note that from (1.10), we have

(1.11) ij = k = −ji, jk = i = −kj, ki = j = −ik.

So, multiplication on H is not commutative. The identities in (1.10) and (1.11), sometimes are known as

Hamilton’s rules. Quaternions have the following multiplication Table 2:

Table 2. Multiplication Table

1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

The product of two quaternions q = a0 + ia1 + ja2 + ka3 and p = b0 + ib1 + jb2 + kb3 is

qp = (a0b0 − a1b1 − a2b2 − a3b3) + i(a0b1 + a1b0 + a2b3 − a3b2)

+j(a0b2 − a1b3 + a2b0 + a3b1) + k(a0b3 + a1b2 − a2b1 + a3b0).

The conjugate of the quaternion q is defined by

q∗ = (a0 + ia1 + ja2 + ka3)
∗ = a0 − ia1 − ja2 − ka3.

For two quaternions p, q we have

(q∗)∗ = q, (p+ q)∗ = p∗ + q∗, (pq)∗ = q∗p∗ and (p∗q)∗ = q∗p.

The norm of a quaternion q is defined by

N(q) = ‖q‖ := qq∗ = a20 + a21 + a22 + a23.

The norm is multiplicative:

N(pq) = N(p)N(q).

Division is uniquely defined (except by zero), thus quaternions form a division algebra. For two quaternions

p, q ∈ H we have

(pq)−1 = q−1p−1.
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The inverse (reciprocal) of a nonzero quaternion q is given by

q−1 =
q∗

N(q)
.

In 1898 A. Hurwitz proved that the only real composition algebras are R, C, H and O (here O stands

for octonion algebras). (A real composition algebra is an algebra A over R, not necessarily associative or

finite-dimensional, equipped with a nonsingular quadratic form Q : A → R such that Q(ab) = Q(a)Q(b) for

all a, b ∈ A. The form Q is given by the norm. For more information on quadratic form, see [13, pp. 44 and

53])

Briefly H, the algebra of quaternions, has the following properties:

• H is a 4 dimensional non-commutative (Carley-Dickson) algebra over the reals.

• H is an associative algebra.

• H is a division algebra, i.e. an algebra which is also a division ring, i.e., each nonzero element of H

is invertible.

• H is a composition algebra.

• H is a flexible algebra, i.e. (pq)p = p(qp) for all p, q ∈ H.

• H is an alternative algebra, i.e. they have the property p(pq) = (pp)q and (qp)p = q(pp) for all

p, q ∈ H.

For the basics on the quaternions theory, we refer the work of Ward [27] and Lewis [13].

We remark that

• R, C, H and O are the only normed division algebras.

• R, C, H and O are the only alternative division algebras.

Last two properties shows what is so great about R, C, H and O. For this two properties and their

histories, see [1].

2. The Tetranacci and Tetranacci-Lucas Quaternions and their Generating Functions, Binet’s

Formulas and Summations Formulas

In this section, we define Tetranacci and Tetranacci-Lucas quaternions and give generating functions and

Binet formulas for them. First, we give some information about quaternion sequences from the literature.

There are various types of quaternion sequences which have been studied by many researchers. Horadam

[11] introduced nth Fibonacci and nth Lucas quaternions as

Qn = Fn + Fn+1e1 + Fn+2e2 + Fn+3e3 =
3∑

s=0

Fn+ses

and

Rn = Ln + Ln+1e1 + Ln+2e2 + Ln+3e3 =

3∑

s=0

Ln+ses
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respectively, where Fn and Ln are the nth Fibonacci and Lucas numbers respectively. He also defined

generalized Fibonacci quaternion as

Pn = Hn +Hn+1e1 +Hn+2e2 +Hn+3e3 =
3∑

s=0

Hn+ses

where Hn is the nth generalized Fibonacci number (which is now called Horadam number) by the recursive

relation H1 = p, H2 = p + q, Hn = Hn−1 + Hn−2 (p and q are arbitrary integers). Halici [7] gave the

generating functions and Binet formulas for the Fibonacci and Lucas quaternions.

Cerda-Morales [4] defined and studied the generalized Tribonacci quaternion sequence that includes the

previously introduced Tribonacci, Padovan, Narayana and third order Jacobsthal quaternion sequences. In

[4], the author defined generalized Tribonacci quaternion as

Qv,n = Vn + Vn+1e1 + Vn+2e2 + Vn+3e3 =

3∑

s=0

Vn+ses

where Vn is the nth generalized Tribonacci number defined by the third-order recurrance relations

Vn = rVn−1 + sVn−2 + tVn−3,

here V0 = a, V1 = b, V2 = c are arbitrary integers and r, s, t are real numbers.

Many other generalizations of Fibonacci quaternions have been given, see for example Catarino [3], Halici

and Karataş [8], and Polatlı [17], Szynal-Liana and Wloch [21] and Tasci [23] for second order quaternion

sequences and Akkus and Kızılaslan [2], Szynal-Liana and Wloch [22], Tasci [24], Cerda-Morales [5] for third

order quaternion sequences.

We now define Tetranacci and Tetranacci-Lucas quaternions over the quaternion algebra H. The nth

Tetranacci quaternion is

(2.1) M̂n = Mn + iMn+1 + jMn+2 + kMn+3

and the nth Tetranacci-Lucas quaternion is

(2.2) R̂n = Rn + iRn+1 + jRn+2 + kRn+3.

It can be easily shown that

(2.3) M̂n = M̂n−1 + M̂n−2 + M̂n−3 + M̂n−4

and

(2.4) R̂n = R̂n−1 + R̂n−2 + R̂n−3 + R̂n−4.

Note that

M̂−n = −M̂−(n−1) − M̂−(n−2) − M̂−(n−3) + M̂−(n−4)

and

R̂−n = −R̂−(n−1) − R̂−(n−2) − R̂−(n−3) + R̂−(n−4).
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The conjugate of M̂n and R̂n are defined by

M̂n = Mn − iMn+1 − jMn+2 − kMn+3

and

R̂n = Rn − iRn+1 − jRn+2 − kRn+3

respectively.

Now, we will state Binet’s formula for the Tetranacci and Tetranacci-Lucas quaternions and in the rest

of the paper we fix the following notations.

α̂ = 1 + iα+ jα2 + kα3,

β̂ = 1 + iβ + jβ2 + kβ3,

γ̂ = 1 + iγ + jγ2 + kγ3.

δ̂ = 1 + iδ + jδ2 + kδ3.

Theorem 2. (Binet’s Formulas) For any integer n, the nth Tetranacci quaternion is

M̂n =
α̂αn+2

(α− β)(α− γ)(α− δ)
+

β̂βn+2

(β − α)(β − γ)(β − δ)
(2.5)

+
γ̂γn+2

(γ − α)(γ − β)(γ − δ)
+

δ̂δn+2

(δ − α)(δ − β)(δ − γ)

=
α− 1

5α− 8
α̂αn−1 +

β − 1

5β − 8
β̂βn−1 +

γ − 1

5γ − 8
γ̂γn−1 +

δ − 1

5δ − 8
δ̂δn−1(2.6)

and the nth Tetranacci-Lucas quaternion is

(2.7) R̂n = α̂αn + β̂βn + γ̂γn + δ̂δn.

Proof. Using Binet’s formula of the Tetranacci-Lucas numbers, we have

R̂n = Rn + iRn+1 + jRn+2 + kRn+3

= (αn + βn + γn + δn) + i(αn+1 + βn+1 + γn+1 + δn+1)

+j(αn+2 + βn+2 + γn+2 + δn+2) + k(αn+3 + βn+3 + γn+3 + δn+3)

= α̂αn + β̂βn + γ̂γn + δ̂δn.
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Note that using Binet’s formula (1.7) of the Tetranacci numbers we have

M̂n = Mn + iMn+1 + jMn+2 + kMn+3

= (
α− 1

5α− 8
αn−1 +

β − 1

5β − 8
βn−1 +

γ − 1

5γ − 8
γn−1 +

δ − 1

5δ − 8
δn−1)

+i(
α− 1

5α− 8
αn +

β − 1

5β − 8
βn +

γ − 1

5γ − 8
γn +

δ − 1

5δ − 8
δn)

+j(
α− 1

5α− 8
αn+1 +

β − 1

5β − 8
βn+1 +

γ − 1

5γ − 8
γn+1 +

δ − 1

5δ − 8
δn+1)

+k(
α− 1

5α− 8
αn+2 +

β − 1

5β − 8
βn+2 +

γ − 1

5γ − 8
γn+2 +

δ − 1

5δ − 8
δn+2)

=
α− 1

5α− 8
α̂αn−1 +

β − 1

5β − 8
β̂βn−1 +

γ − 1

5γ − 8
γ̂γn−1 +

δ − 1

5δ − 8
δ̂δn−1.

This proves (2.6). Similarly, we can obtain (2.5).

Remark 3. According to Theorem 1, Binet’s Formulas of the Tetranacci and Tetranacci-Lucas quater-

nions are true for all integers n.

Next, we present generating functions.

Theorem 4. The generating functions for the Tetranacci and Tetranacci-Lucas quaternions are

(2.8)
∞∑

n=0

M̂nx
n =

(i+ j + 2k) + (1 + j + 2k)x+ (j + 2k)x2 + (j + k)x3

1− x− x2 − x3 − x4

and

(2.9)
∞∑

n=0

R̂nx
n =

(4 + i+ 3j + 7k) + (−3 + 2i+ 4j + 8k)x+ (−2 + 3i+ 5j + 4k)x2 + (−1 + 4i+ j + 3k)x3

1− x− x2 − x3 − x4

respectively.

Proof. Let

g(x) =
∞∑

n=0

M̂nx
n

be generating function of the Tetranacci quaternions. Then, using the definition of the Tetranacci quater-

nions, and substracting xg(x), x2g(x), x3g(x) and x4g(x) from g(x), we obtain (note the shift in the index
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n in the third line)

(1− x− x2 − x3 − x4)g(x)

=

∞∑

n=0

M̂nx
n − x

∞∑

n=0

M̂nx
n − x2

∞∑

n=0

M̂nx
n − x3

∞∑

n=0

M̂nx
n − x4

∞∑

n=0

M̂nx
n

=

∞∑

n=0

M̂nx
n −

∞∑

n=0

M̂nx
n+1 −

∞∑

n=0

M̂nx
n+2 −

∞∑

n=0

M̂nx
n+3 −

∞∑

n=0

M̂nx
n+4

=

∞∑

n=0

M̂nx
n −

∞∑

n=1

M̂n−1x
n −

∞∑

n=2

M̂n−2x
n −

∞∑

n=3

M̂n−3x
n −

∞∑

n=4

M̂n−4x
n

= (M̂0 + M̂1x+ M̂2x
2 + M̂3x

3)− (M̂0x+ M̂1x
2 + M̂2x

3)− (M̂0x
2 + M̂1x

3)− M̂0x
3

+

∞∑

n=4

(M̂n − M̂n−1 − M̂n−2 − M̂n−3 − M̂n−4)x
n

= M̂0 + (M̂1 − M̂0)x+ (M̂2 − M̂1 − M̂0)x
2 + (M̂3 − M̂2 − M̂1 − M̂0)x

3.

Note that we used the recurrence relation M̂n = M̂n−1+M̂n−2+M̂n−3+M̂n−4. Rearranging above equation,

we get

g(x) =
M̂0 + (M̂1 − M̂0)x+ (M̂2 − M̂1 − M̂0)x

2 + (M̂3 − M̂2 − M̂1 − M̂0)x
3

1− x− x2 − x3 − x4
.

or

g(x) =
M̂0 + (M̂1 − M̂0)x+ (M̂2 − M̂1 − M̂0)x

2 + M̂−1x
3

1− x− x2 − x3 − x4
.

since M̂3 = M̂2 + M̂1 + M̂0 + M̂−1. Now using

M̂−1 = j + k,

M̂0 = i+ j + 2k,

M̂1 = 1 + i+ 2j + 4k,

M̂2 = 1 + 2i+ 4j + 8k,

M̂3 = 2 + 4i+ 8j + 15k,

we obtain

g(x) =
(i+ j + 2k) + (1 + j + 2k)x+ (j + 2k)x2 + (j + k)x3

1− x− x2 − x3 − x4
.

Similarly, we can obtain (2.9).

In the following theorem, we present another forms of Binet’s formulas for the Tetranacci and Tetranacci-

Lucas quaternions using generating functions.
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Theorem 5. For any integer n, the nth Tetranacci quaternion is

M̂n =
M̂−1 + α(M̂2 − M̂1 − M̂0) + α2(M̂1 − M̂0) + α3M̂0

(α− β) (α− γ) (α− δ)
αn

+
M̂−1 + β(M̂2 − M̂1 − M̂0) + β2(M̂1 − M̂0) + β3M̂0

(β − γ) (β − α) (β − δ)
βn

+
M̂−1 + γ(M̂2 − M̂1 − M̂0) + γ2(M̂1 − M̂0) + γ3M̂0

(γ − α)(γ − β)(γ − δ)
γn

+
M̂−1 + δ(M̂2 − M̂1 − M̂0) + δ2(M̂1 − M̂0) + δ3M̂0

(δ − α)(δ − β)(δ − γ)
δn

and the nth Tetranacci-Lucas quaternion is

R̂n =
R̂−1 + α(R̂2 − R̂1 − R̂0) + α2(R̂1 − R̂0) + α3R̂0

(α− β) (α− γ) (α− δ)
αn +

R̂−1 + β(R̂2 − R̂1 − R̂0) + β2(R̂1 − R̂0) + β3R̂0

(β − γ) (β − α) (β − δ)
βn

+
R̂−1 + γ(R̂2 − R̂1 − R̂0) + γ2(R̂1 − R̂0) + γ3R̂0

(γ − α)(γ − β)(γ − δ)
γn +

R̂−1 + δ(R̂2 − R̂1 − R̂0) + δ2(R̂1 − R̂0) + δ3R̂0

(δ − α)(δ − β)(δ − γ)
δn

Proof. We can use generating functions. Since the roots of the equation 1 − x − x2 − x3 − x4 = 0 are

1
α ,

1
β ,

1
γ ,

1
δ and

1− x− x2 − x3 − x4 = (1− αx)(1 − βx)(1 − γx)(1 − δx),

we can write the generating function of M̂n as

g(x) =
M̂0 + (M̂1 − M̂0)x+ (M̂2 − M̂1 − M̂0)x

2 + M̂−1x
3

1− x− x2 − x3 − x4

=
M̂0 + (M̂1 − M̂0)x+ (M̂2 − M̂1 − M̂0)x

2 + M̂−1x
3

(1 − αx)(1 − βx)(1 − γx)(1 − δx)

=
A

(1− αx)
+

B

(1− βx)
+

C

(1− γx)
+

D

(1− δx)

We need to find A,B,C and D, so the following system of equations should be solved:

A+B + C +D = M̂0

A(−β − γ − δ) +B(−α− γ − δ) + C(−α− β − δ) +D(−α− β − γ) = M̂1 − M̂0

A(βγ + βδ + γδ) +B(αγ + αδ + γδ) + C(αβ + αδ + βδ) +D(αβ + αγ + βγ) = M̂2 − M̂1 − M̂0

−Aβγδ −Bαγδ − Cαβδ − αβγD = M̂−1.
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Then, we find that

A =
M̂−1 + α(M̂2 − M̂1 − M̂0) + α2(M̂1 − M̂0) + α3M̂0

(α− β) (α− γ) (α− δ)

B =
M̂−1 + β(M̂2 − M̂1 − M̂0) + β2(M̂1 − M̂0) + β3M̂0

(β − γ) (β − α) (β − δ)

C =
M̂−1 + γ(M̂2 − M̂1 − M̂0) + γ2(M̂1 − M̂0) + γ3M̂0

(γ − α)(γ − β)(γ − δ)

D =
M̂−1 + δ(M̂2 − M̂1 − M̂0) + δ2(M̂1 − M̂0) + δ3M̂0

(δ − α)(δ − β)(δ − γ)

and

g(x) =
M̂−1 + α(M̂2 − M̂1 − M̂0) + α2(M̂1 − M̂0) + α3M̂0

(α− β) (α− γ) (α− δ)

∞∑

n=0

αnxn

+
M̂−1 + β(M̂2 − M̂1 − M̂0) + β2(M̂1 − M̂0) + β3M̂0

(β − γ) (β − α) (β − δ)

∞∑

n=0

βnxn

+
M̂−1 + γ(M̂2 − M̂1 − M̂0) + γ2(M̂1 − M̂0) + γ3M̂0

(γ − α)(γ − β)(γ − δ)

∞∑

n=0

γnxn

+
M̂−1 + δ(M̂2 − M̂1 − M̂0) + δ2(M̂1 − M̂0) + δ3M̂0

(δ − α)(δ − β)(δ − γ)

∞∑

n=0

δnxn

=

∞∑

n=0




M̂
−1+α(M̂2−M̂1−M̂0)+α2(M̂1−M̂0)+α3M̂0

(α−β)(α−γ)(α−δ) αn + M̂
−1+β(M̂2−M̂1−M̂0)+β2(M̂1−M̂0)+β3M̂0

(β−γ)(β−α)(β−δ) βn

+ M̂
−1+γ(M̂2−M̂1−M̂0)+γ2(M̂1−M̂0)+γ3M̂0

(γ−α)(γ−β)(γ−δ) γn + M̂
−1+δ(M̂2−M̂1−M̂0)+δ2(M̂1−M̂0)+δ3M̂0

(δ−α)(δ−β)(δ−γ) δn


xn.

Thus, from this, we obtain Binet’s formula of Tetranacci quaternion. Similarly, we can obtain Binet’s formula

of the Tetranacci-Lucas quaternion.

If we compare Theorem 2 and Theorem 5 and use the definition of M̂n, R̂n, we have the following Remark

showing relations between M̂−1, M̂0, M̂1, M̂2; R̂−1, R̂0, R̂1, R̂2 and α̂, β̂, γ̂, δ̂.

Remark 6. We have the following identities:

(a):

M̂−1 + α(M̂2 − M̂1 − M̂0) + α2(M̂1 − M̂0) + α3M̂0

α2
= α̂

M̂−1 + β(M̂2 − M̂1 − M̂0) + β2(M̂1 − M̂0) + β3M̂0

β2 = β̂

M̂−1 + γ(M̂2 − M̂1 − M̂0) + γ2(M̂1 − M̂0) + γ3M̂0

γ2
= γ̂

M̂−1 + δ(M̂2 − M̂1 − M̂0) + δ2(M̂1 − M̂0) + δ3M̂0

δ2
= δ̂
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(b):

R̂−1 + α(R̂2 − R̂1 − R̂0) + α2(R̂1 − R̂0) + α3R̂0

(α− β) (α− γ) (α− δ)
= α̂

+
R̂−1 + β(R̂2 − R̂1 − R̂0) + β2(R̂1 − R̂0) + β3R̂0

(β − γ) (β − α) (β − δ)
= β̂

R̂−1 + γ(R̂2 − R̂1 − R̂0) + γ2(R̂1 − R̂0) + γ3R̂0

(γ − α)(γ − β)(γ − δ)
= γ̂

R̂−1 + δ(R̂2 − R̂1 − R̂0) + δ2(R̂1 − R̂0) + δ3R̂0

(δ − α)(δ − β)(δ − γ)
= δ̂

Now, we present the formulas which give the summation of the first n Tetranacci and Tetranacci-Lucas

numbers.

Lemma 7. For every integer n ≥ 0, we have

(2.10)

n∑

p=0

Mp =
1

3
(Mn+2 + 2Mn +Mn−1 − 1)

and

(2.11)
n∑

p=0

Rp =
1

3
(Rn+2 + 2Rn +Rn−1 + 2).

Proof. (2.10) and (2.11) are given in Soykan [20, Corollaries 2.7 and 2.8].

Note that (2.10) and (2.11) can be easily proved by mathematical induction as well.

Next, we present the formulas which give the summation of the first n Tetranacci and Tetranacci-Lucas

quaternions.

Theorem 8. The summation formula for Tetranacci and Tetranacci-Lucas quaternions are

(2.12)

n∑

p=0

M̂p =
1

3
(M̂n+2 + 2M̂n + M̂n−1 − (1 + i+ 4j + 7k))

and

(2.13)
n∑

p=0

R̂p =
1

3
(R̂n+2 + 2R̂n + R̂n−1 + (2 − 10i− 13j − 22k)).

Proof. Using (2.1) and (2.10), we obtain

n∑

p=0

M̂i =

n∑

p=0

Mp + i

n∑

p=0

Mp+1 + j

n∑

p=0

Mp+2 + k

n∑

p=0

Mp+3

= (M0 + ...+Mn) + i(M1 + ...+Mn+1)

+j(M2 + ...+Mn+2) + k(M3 + ...+Mn+3).
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and so

3
n∑

p=0

M̂p = (Mn+2 + 2Mn +Mn−1 − 1)

+i(Mn+3 + 2Mn+1 +Mn − 1− 3M0)

+j(Mn+4 + 2Mn+2 +Mn+1 − 1− 3(M0 +M1))

+k(Mn+5 + 2Mn+3 +Mn+2 − 1− 3(M0 +M1 +M2))

= M̂n+2 + 2M̂n + M̂n−1 + c

where

c = −1 + i(−1− 3M0) + j(−1− 3(M0 +M1)) + k(−1− 3(M0 +M1 +M2))

= −1− i− 4j − 7k.

Hence
n∑

p=0

M̂p =
1

3
(M̂n+2 + 2M̂n + M̂n−1 − (1 + i+ 4j + 7k)).

This proves (2.12). Similarly, we can obtain (2.13).

Note that above Theorem can be proved by induction as well.

Theorem 9. For n ≥ 0, we have the following formulas:

(a):
n∑

p=0
M̂2p+1 = 1

3 (2M̂2n+2 + M̂2n − M̂2n−1 + (1 − 2i− 2j − 5k))

(b):
n∑

p=0
M̂2p = 1

3 (2M̂2n+1 + M̂2n−1 − M̂2n−2 − (2− i+ 2j + 2k)).

Proof. The proof follows from the following identities:

(2.14)

n∑

p=0

M2p+1 =
1

3
(2M2n+2 +M2n −M2n−1 + 1)

and

(2.15)

n∑

p=0

M2p =
1

3
(2M2n+1 +M2n−1 −M2n−2 − 2).

(2.14) and (2.15) are given in Soykan [20, Corollary 2.7].

Note that (2.14) and (2.15) can be easily proved by mathematical induction as well. Of course, the

above theorem itself can be proved by induction.

Theorem 10. For n ≥ 0, we have the following formulas:

(a):
n∑

p=0
R̂2p+1 = 1

3 (2R̂2n+2 + R̂2n − R̂2n−1 − (8 + 2i+ 11j + 11k))

(b):
n∑

p=0
R̂2p = 1

3 (2R̂2n+1 + R̂2n−1 − R̂2n−2 + (10− 8i− 2j − 11k)).
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Proof. The proof follows from the following identities:

(2.16)

n∑

p=0

R2p+1 =
1

3
(2R2n+2 +R2n −R2n−1 − 8)

and

(2.17)

n∑

p=0

R2p =
1

3
(2R2n+1 +R2n−1 −R2n−2 + 10).

(2.16) and (2.17) are given in Soykan [20, Corollary 2.8].

Note that (2.16) and (2.17) can be easily proved by mathematical induction as well. Of course, the

above theorem itself can be proved by induction.

3. Matrices and Determinants related with Tetranacci and Tetranacci-Lucas Quaternions

Define the 5× 5 determinants Dn and En, for all integers n, by

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Mn Rn Rn+1 Rn+2 Rn+3

M2 R2 R3 R4 R5

M1 R1 R2 R3 R4

M0 R0 R1 R2 R3

M−1 R−1 R0 R1 R2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, En =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Rn Mn Mn+1 Mn+2 Mn+3

R2 M2 M3 M4 M5

R1 M1 M2 M3 M4

R0 M0 M1 M2 M3

R−1 M−1 M0 M1 M2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Theorem 11. The following statements are true.

(a): Dn = 0 and En = 0 for all integers n.

(b): 563M̂n = 86R̂n+3 − 61R̂n+2 − 71R̂n+1 − 87R̂n.

(c): R̂n = 6M̂n+1 − M̂n − M̂n+3.

Proof. (a) is a special case of a result in [14]. Expanding Dn along the top row gives 563Mn =

86Rn+3 − 61Rn+2 − 71Rn+1 − 87Rn and now (b) follows. Expanding En along the top row gives Rn =

6Mn+1 −Mn −Mn+3 and now (c) follows.

Consider the sequence {Un} which is defined by the fourth-order recurrence relation

Un = Un−1 + Un−2 + Un−3 + Un−4, U0 = U1 = 0, U2 = U3 = 1.

The numbers Un can be expressed using Binet’s formula

Un =
αn

(α− β)(α− γ)(α− δ)
+

βn

(β − α)(β − γ)(β − δ)
+

γn

(γ − α)(γ − β)(γ − δ)
+

δn

(δ − α)(δ − β)(δ − γ)
.

We define the square matrix B of order 4 as:

B =




1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0
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such that detB = −1.

Induction proof may be used to establish

(3.1) Bn =




Un+2 Un+1 + Un + Un−1 Un+1 + Un Un+1

Un+1 Un + Un−1 + Un−2 Un + Un−1 Un

Un Un−1 + Un−2 + Un−3 Un−1 + Un−2 Un−1

Un−1 Un−2 + Un−3 + Un−4 Un−2 + Un−3 Un−2




.

Matrix formulation of Mn and Rn can be given as

(3.2)




Mn+3

Mn+2

Mn+1

Mn




=




1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0




n


M3

M2

M1

M0




and

(3.3)




Rn+3

Rn+2

Rn+1

Rn




=




1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0




n


R3

R2

R1

R0




.

Induction proofs may be used to establish the matrix formulations Mn and Rn.

Now we define the matrices BM and BR as

BM =




M̂5 M̂4 + M̂3 + M̂2 M̂4 + M̂3 M̂4

M̂4 M̂3 + M̂2 + M̂1 M̂3 + M̂2 M̂3

M̂3 M̂2 + M̂1 + M̂0 M̂2 + M̂1 M̂2

M̂2 M̂1 + M̂0 + M̂−1 M̂1 + M̂0 M̂1




and BR =




R̂5 R̂4 + R̂3 + R̂2 R̂4 + R̂3 R̂4

R̂4 R̂3 + R̂2 + R̂1 R̂3 + R̂2 R̂3

R̂3 R̂2 + R̂1 + R̂0 R̂2 + R̂1 R̂2

R̂2 R̂1 + R̂0 + R̂−1 R̂1 + R̂0 R̂1




.

These matrices BM and BR can be called Tetranacci quaternion matrix and Tetranacci-Lucas quaternion

matrix, respectively.

Theorem 12. For n ≥ 0, the followings are valid:

(a):

(3.4) BM




1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0




n

=




M̂n+5 M̂n+4 + M̂n+3 + M̂n+2 M̂n+4 + M̂n+3 M̂n+4

M̂n+4 M̂n+3 + M̂n+2 + M̂n+1 M̂n+3 + M̂n+2 M̂n+3

M̂n+3 M̂n+2 + M̂n+1 + M̂n M̂n+2 + M̂n+1 M̂n+2

M̂n+2 M̂n+1 + M̂n + M̂n−1 M̂n+1 + M̂n M̂n+1




,
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(b):

(3.5) BR




1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0




n

=




R̂n+5 R̂n+4 + R̂n+3 + R̂n+2 R̂n+4 + R̂n+3 R̂n+4

R̂n+4 R̂n+3 + R̂n+2 + R̂n+1 R̂n+3 + R̂n+2 R̂n+3

R̂n+3 R̂n+2 + R̂n+1 + R̂n R̂n+2 + R̂n+1 R̂n+2

R̂n+2 R̂n+1 + R̂n + R̂n−1 R̂n+1 + R̂n R̂n+1




.

Proof. We prove (a) by mathematical induction on n. If n = 0, then the result is clear. Now, we assume

it is true for n = k, that is

BMBk =




M̂k+5 M̂k+4 + M̂k+3 + M̂k+2 M̂k+4 + M̂k+3 M̂k+4

M̂k+4 M̂k+3 + M̂k+2 + M̂k+1 M̂k+3 + M̂k+2 M̂k+3

M̂k+3 M̂k+2 + M̂k+1 + M̂k M̂k+2 + M̂k+1 M̂k+2

M̂k+2 M̂k+1 + M̂k + M̂k−1 M̂k+1 + M̂k M̂k+1




.

If we use (2.3), then we have M̂k+4 = M̂k+3+M̂k+2+M̂k+1+M̂k. Then, by induction hypothesis, we obtain

BMBk+1 = (BMBk)B

=




M̂k+5 M̂k+4 + M̂k+3 + M̂k+2 M̂k+4 + M̂k+3 M̂k+4

M̂k+4 M̂k+3 + M̂k+2 + M̂k+1 M̂k+3 + M̂k+2 M̂k+3

M̂k+3 M̂k+2 + M̂k+1 + M̂k M̂k+2 + M̂k+1 M̂k+2

M̂k+2 M̂k+1 + M̂k + M̂k−1 M̂k+1 + M̂k M̂k+1







1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0




=




M̂k+5 + M̂k+4 + M̂k+3 + M̂k+2 M̂k+5 + M̂k+4 + M̂k+3 M̂k+5 + M̂k+4 M̂k+5

M̂k+4 + M̂k+3 + M̂k+2 + M̂k+1 M̂k+4 + M̂k+3 + M̂k+2 M̂k+4 + M̂k+3 M̂k+4

M̂k+3 + M̂k+2 + M̂k+1 + M̂k M̂k+3 + M̂k+2 + M̂k+1 M̂k+3 + M̂k+2 M̂k+3

M̂k+2 + M̂k+1 + M̂k + M̂k−1 M̂k+2 + M̂k+1 + M̂k M̂k+2 + M̂k+1 M̂k+2




=




M̂k+6 M̂k+5 + M̂k+4 + M̂k+3 M̂k+5 + M̂k+4 M̂k+5

M̂k+5 M̂k+4 + M̂k+3 + M̂k+2 M̂k+4 + M̂k+3 M̂k+4

M̂k+4 M̂k+3 + M̂k+2 + M̂k+1 M̂k+3 + M̂k+2 M̂k+3

M̂k+3 M̂k+2 + M̂k+1 + M̂k M̂k+2 + M̂k+1 M̂k+2




.

Thus, (3.4) holds for all non-negative integers n.

(3.5) can be similarly proved .

Corollary 13. For n ≥ 0, the followings hold:

(a): M̂n+3 = M̂3Un+2 + (M̂2 + M̂1 + M̂0)Un+1 + (M̂1 + M̂2)Un + M̂2Un−1

(b): R̂n+3 = R̂3Un+2 + (R̂2 + R̂1 + R̂0)Un+1 + (R̂1 + R̂2)Un + R̂2Un−1

Proof. The proof of (a) can be seen by the coefficient of the matrix BM and (3.1). The proof of (b) can

be seen by the coefficient of the matrix BR and (3.1).
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