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A Generalization of the “Raboter” operation.

By Yonah BIERS-ARIEL

1 Introduction

In a recent talk at Rutgers’ Experimental Math Seminar, Neil Sloane described the “raboter”
operation for the base two representation of a number [1]. From this representation, one
reduces by one the length of each run of consecutive 1s and 0s. Denote this operation by
r(n); so, for example, r(12) = 2 because 12 is represented in binary as 1100, and reducing
the length of each run by one yields 10.

Sloane also defined L(k) =
∑2k+1−1

n=2k r(n) and conjectured that L(k) = 2 · 3k−1 − 2k−1, a
fact which was quickly proven by Doron Zeilberger [3] and Chai Wah Wu [2].

In Section 2, we generalize this theorem to bases other than 2. Let r(b, n) be the the
number whose base-b representation is generated by taking the base-b representation of n
and shortening each run of consecutive identical elements by one. Further, let L(b, n) =
∑bk+1−1

n=bk r(b, n). We will prove that

L(b, k) =
b(b− 1)

2b− 1
(2b− 1)k −

b− 1

2
bk.

In Section 3, we raise r(b, n) to various powers. Define L(p, b, k) =
∑bk+1−1

n=bk r(b, n)p; we
develop an algorithm in Maple to rigorously compute L(p, b, k) as an expression in terms of
k for any fixed p, b. In addition, for any fixed p, we can conjecture an expression for L(p, b, k)
in terms of b and k.

2 More General Bases

Following the example of Zeilberger, we find a recurrence satisfied by L(b, k) and then find
a closed form expression satisfying the same recurrence.

Theorem 2.1. L(b, k) = (2b− 1) · L(b, k − 1) + bk−1 (b− 1)2

2
for k ≥ 2.

Proof. There are bk+1− bk = bk(b−1) numbers which contribute to L(b, k) are exactly those
numbers whose base-b representations use k+1 digits, so each can be written as Ab1b2 where
A ∈ {1, . . . , b − 1} × {0, . . . , b − 1}k−2 and b1, b2 ∈ {0, . . . , b − 1}. If b1 6= b2, then b2 is a
run of just one element, so the raboter operation eliminates it and r(b, Ab1b2) = r(b, Ab1).
Numbers with representations Ab1 are exactly those which were counted in the calculation
of L(b, k − 1), and each is counted b− 1 times here, once for each b2 6= b1.
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If b2 = b1, then the base-b representation of r(b, Ab1b2) is the representation of r(b, Ab1)
with b2 appended to the end, and so r(b, Ab1b2) = b · r(b, Ab1) + b2. Thus,

L(b, k) =
∑

A

∑

b1

r(b, Ab1b1) +
∑

b2 6=b1

r(b, Ab1b2)

=
∑

A

∑

b1

b · r(b, Ab1) + b1 +
∑

b2 6=b1

r(b, Ab1)

=
∑

A

∑

b1

(2b− 1)r(b, Ab1) +
∑

A

∑

b1

b1

= (2b− 1)L(b, k − 1) + (b− 1)bk−2 b(b− 1)

2

= (2b− 1)L(b, k − 1) + bk−1 (b− 1)2

2
.

Together with initial condition L(b, 1) = b(b−1)
2

, this determines the sequence (L(b, k))∞k=1.
Finding an explicit formula for L(b, k) is now just a matter of finding a formula which obeys
this same recurrence.

Corollary 2.2. L(b, k) = b(b−1)
2b−1

(2b− 1)k − b−1
2
bk.

Proof. With some help from Doron Zeilberger’s Maple package Cfinite, we conjecture that
the formula for L(b, k) has the form α1(2b− 1)k + α2b

k, so we solve the system of equations

α1(2b− 1) + α2b =
b(b− 1)

2

α1(2b− 1)2 + α2b
2 = (2b− 1)

b(b− 1)

2
+ b

(b− 1)2

2

for α1, α2 and find α1 =
b(b−1)
2b−1

and α2 = − b
2
+ 1

2
. Let L′(b, k) =

b(b− 1)

2b− 1
(2b− 1)k −

b− 1

2
bk.

Proving that L(b, k) = L′(b, k) is simply a matter of verifying that L′(b, 1) = b(b−1)
2

and

L′(b, k) = (2b − 1) · L′(b, k − 1) + bk−1 (b− 1)2

2
for k ≥ 2, which can easily be done using

Maple or any other computer algebra system.

3 Higher Moments

With a formula for L(b, k) found, we consider the following additional generalization:

L(p, b, k) =

2k+1−1
∑

n=2k

r(b, n)p;

that is the sum of r(b, n)p taken over all numbers n whose base-b representation has k + 1-
digits. The trick in this case is to work inductively beginning with the (solved) p = 1 case,



and, along the way compute L(l, p, b, k) which we define to be the sum of r(b, n)p taken over
all numbers n whose base-b representation has k + 1-digits, the last of which is l.

In order to compute L(l, p, b, k), we use the following recurrence:

Theorem 3.1. L(l, p, b, k) = (bp− 1) ·L(l, p, b, k− 1)+L(p, b, k− 1)+
∑p

i=1 l
ibp−i

(

p

i

)

L(l, p−
i, b, k − 1).

Proof. The numbers with length-(k+1) base-b representations ending in l are exactly those
which can be written as Ab1b2 with A ∈ {1, . . . , b−1}×{0, . . . , b−1}k−2, b1 ∈ {0, . . . , b−1},
and b2 = l. Therefore,

L(l, p, b, k) =
∑

A

(

∑

b1 6=l

r(b, Ab1l)
p + r(b, All)p

)

=
∑

A

(

∑

b1 6=l

r(b, Ab1)
p + (b · r(b, Al) + l)p

)

= L(p, b, k − 1)− L(l, p, b, k − 1) +
∑

A

p
∑

i=0

(

p

i

)

bp−ir(b, Al)p−ili

= L(p, b, k − 1)− L(l, p, b, k − 1) + bpL(l, p, b, k − 1)

+

p
∑

i=1

(

p

i

)

bp−iL(l, p− i, b, k − 1)p−ili

= (bp − 1) · L(l, p, b, k − 1) + L(p, b, k − 1) +

p
∑

i=1

libp−i

(

p

i

)

L(l, p− i, b, k − 1).

We find a similar recurrence for L(p, b, k).

Theorem 3.2. L(p, b, k) = (bp+ b−1)L(p, b, k−1)+
∑b−1

l=0

∑p

i=1 b
p−ili

(

p

i

)

L(l, p− i, b, k−1).

Proof. Again, note that the numbers counted by L(p, b, k) are those which can be written
as Ab1b2 with A ∈ {1, . . . , b− 1} × {0, . . . , b − 1}k−2, and b1, b2 ∈ {0, . . . , b − 1}. Therefore,
the following equations hold:

L(p, b, k) =
∑

A

(

∑

b1 6=b2

r(b, Ab1b2)
p +

∑

b1

r(b, Ab1b1)
p
)

=
∑

A

(b− 1)
∑

b1

r(b, Ab1)
p +

∑

A

∑

b1

(br(Ab1) + b1)
p

= (b− 1)L(p, b, k − 1) +
∑

A

∑

b1

p
∑

i=0

(

p

i

)

bp−ir(Ab1)
p−ibi1

= (b− 1)L(p, b, k − 1) +
∑

A

∑

b1

bpr(Ab1)
p +

∑

b1

p
∑

i=1

∑

A

(

p

i

)

bp−ir(Ab1)
p−ibi1

= (bp + b− 1)L(p, b, k − 1) +
∑

b1

p
∑

i=1

bi1b
p−i

(

p

i

)

L(b1, p− i, b, k − 1).



Change the name of b1 to l to maintain consistent notation, and we have derived the claimed
equation.

4 Maple Implementation

The Maple package raboter.txt available at http://sites.math.rutgers.edu/~yb165/raboter.txt
contains functions to implement this recurrence. The most important are SumPowers(b,k,p)
which finds an expression in terms of k for L(p, b, k) (for fixed b and p) and GuessGeneralForm(b,n,p)
which conjectures an expression in terms of k and b for L(p, b, k) (for fixed p).

For example, this package proves that

L(2, 2, k) =
2

3
5k −

1

6
2k −

2

3
3k

and conjectures that

L(2, b, k) =
(1

6
b2 −

1

6
b−

1

3

)

(b− 1)k +
(

−
1

6
b2 +

1

3
b−

1

6

)

bk

−
b(b− 1)

2b− 1
(2b− 1)k +

2b3 + 3b2 − 3b− 2

6(b2 + b− 1)
(b2 + b− 1)k.
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