A Generalization of the "Raboter" operation.

By Yonah BIERS-ARIEL

1 Introduction

In a recent talk at Rutgers' Experimental Math Seminar, Neil Sloane described the "raboter" operation for the base two representation of a number [1]. From this representation, one reduces by one the length of each run of consecutive 1s and 0s. Denote this operation by $r(n)$; so, for example, $r(12)=2$ because 12 is represented in binary as 1100 , and reducing the length of each run by one yields 10 .

Sloane also defined $L(k)=\sum_{n=2^{k}}^{2^{k+1}-1} r(n)$ and conjectured that $L(k)=2 \cdot 3^{k-1}-2^{k-1}$, a fact which was quickly proven by Doron Zeilberger [3] and Chai Wah Wu [2].

In Section 2, we generalize this theorem to bases other than 2. Let $r(b, n)$ be the the number whose base- b representation is generated by taking the base- b representation of n and shortening each run of consecutive identical elements by one. Further, let $L(b, n)=$ $\sum_{n=b^{k}}^{b^{k+1}-1} r(b, n)$. We will prove that

$$
L(b, k)=\frac{b(b-1)}{2 b-1}(2 b-1)^{k}-\frac{b-1}{2} b^{k} .
$$

In Section 3, we raise $r(b, n)$ to various powers. Define $L(p, b, k)=\sum_{n=b^{k}}^{b^{k+1}-1} r(b, n)^{p}$; we develop an algorithm in Maple to rigorously compute $L(p, b, k)$ as an expression in terms of k for any fixed p, b. In addition, for any fixed p, we can conjecture an expression for $L(p, b, k)$ in terms of b and k.

2 More General Bases

Following the example of Zeilberger, we find a recurrence satisfied by $L(b, k)$ and then find a closed form expression satisfying the same recurrence.

Theorem 2.1. $L(b, k)=(2 b-1) \cdot L(b, k-1)+b^{k-1} \frac{(b-1)^{2}}{2}$ for $k \geq 2$.
Proof. There are $b^{k+1}-b^{k}=b^{k}(b-1)$ numbers which contribute to $L(b, k)$ are exactly those numbers whose base- b representations use $k+1$ digits, so each can be written as $A b_{1} b_{2}$ where $A \in\{1, \ldots, b-1\} \times\{0, \ldots, b-1\}^{k-2}$ and $b_{1}, b_{2} \in\{0, \ldots, b-1\}$. If $b_{1} \neq b_{2}$, then b_{2} is a run of just one element, so the raboter operation eliminates it and $r\left(b, A b_{1} b_{2}\right)=r\left(b, A b_{1}\right)$. Numbers with representations $A b_{1}$ are exactly those which were counted in the calculation of $L(b, k-1)$, and each is counted $b-1$ times here, once for each $b_{2} \neq b_{1}$.

If $b_{2}=b_{1}$, then the base- b representation of $r\left(b, A b_{1} b_{2}\right)$ is the representation of $r\left(b, A b_{1}\right)$ with b_{2} appended to the end, and so $r\left(b, A b_{1} b_{2}\right)=b \cdot r\left(b, A b_{1}\right)+b_{2}$. Thus,

$$
\begin{aligned}
L(b, k) & =\sum_{A} \sum_{b_{1}} r\left(b, A b_{1} b_{1}\right)+\sum_{b_{2} \neq b_{1}} r\left(b, A b_{1} b_{2}\right) \\
& =\sum_{A} \sum_{b_{1}} b \cdot r\left(b, A b_{1}\right)+b_{1}+\sum_{b_{2} \neq b_{1}} r\left(b, A b_{1}\right) \\
& =\sum_{A} \sum_{b_{1}}(2 b-1) r\left(b, A b_{1}\right)+\sum_{A} \sum_{b_{1}} b_{1} \\
& =(2 b-1) L(b, k-1)+(b-1) b^{k-2} \frac{b(b-1)}{2} \\
& =(2 b-1) L(b, k-1)+b^{k-1} \frac{(b-1)^{2}}{2} .
\end{aligned}
$$

Together with initial condition $L(b, 1)=\frac{b(b-1)}{2}$, this determines the sequence $(L(b, k))_{k=1}^{\infty}$. Finding an explicit formula for $L(b, k)$ is now just a matter of finding a formula which obeys this same recurrence.
Corollary 2.2. $L(b, k)=\frac{b(b-1)}{2 b-1}(2 b-1)^{k}-\frac{b-1}{2} b^{k}$.
Proof. With some help from Doron Zeilberger's Maple package Cfinite, we conjecture that the formula for $L(b, k)$ has the form $\alpha_{1}(2 b-1)^{k}+\alpha_{2} b^{k}$, so we solve the system of equations

$$
\begin{aligned}
& \alpha_{1}(2 b-1)+\alpha_{2} b=\frac{b(b-1)}{2} \\
& \alpha_{1}(2 b-1)^{2}+\alpha_{2} b^{2}=(2 b-1) \frac{b(b-1)}{2}+b \frac{(b-1)^{2}}{2}
\end{aligned}
$$

for α_{1}, α_{2} and find $\alpha_{1}=\frac{b(b-1)}{2 b-1}$ and $\alpha_{2}=-\frac{b}{2}+\frac{1}{2}$. Let $L^{\prime}(b, k)=\frac{b(b-1)}{2 b-1}(2 b-1)^{k}-\frac{b-1}{2} b^{k}$. Proving that $L(b, k)=L^{\prime}(b, k)$ is simply a matter of verifying that $L^{\prime}(b, 1)=\frac{b(b-1)}{2}$ and $L^{\prime}(b, k)=(2 b-1) \cdot L^{\prime}(b, k-1)+b^{k-1} \frac{(b-1)^{2}}{2}$ for $k \geq 2$, which can easily be done using Maple or any other computer algebra system.

3 Higher Moments

With a formula for $L(b, k)$ found, we consider the following additional generalization:

$$
L(p, b, k)=\sum_{n=2^{k}}^{2^{k+1}-1} r(b, n)^{p}
$$

that is the sum of $r(b, n)^{p}$ taken over all numbers n whose base- b representation has $k+1$ digits. The trick in this case is to work inductively beginning with the (solved) $p=1$ case,
and, along the way compute $L(l, p, b, k)$ which we define to be the sum of $r(b, n)^{p}$ taken over all numbers n whose base- b representation has $k+1$-digits, the last of which is l.

In order to compute $L(l, p, b, k)$, we use the following recurrence:
Theorem 3.1. $L(l, p, b, k)=\left(b^{p}-1\right) \cdot L(l, p, b, k-1)+L(p, b, k-1)+\sum_{i=1}^{p} l^{i} b^{p-i}\binom{p}{i} L(l, p-$ $i, b, k-1)$.

Proof. The numbers with length- $(k+1)$ base- b representations ending in l are exactly those which can be written as $A b_{1} b_{2}$ with $A \in\{1, \ldots, b-1\} \times\{0, \ldots, b-1\}^{k-2}, b_{1} \in\{0, \ldots, b-1\}$, and $b_{2}=l$. Therefore,

$$
\begin{aligned}
L(l, p, b, k)= & \sum_{A}\left(\sum_{b_{1} \neq l} r\left(b, A b_{1} l\right)^{p}+r(b, A l l)^{p}\right) \\
= & \sum_{A}\left(\sum_{b_{1} \neq l} r\left(b, A b_{1}\right)^{p}+(b \cdot r(b, A l)+l)^{p}\right) \\
= & L(p, b, k-1)-L(l, p, b, k-1)+\sum_{A} \sum_{i=0}^{p}\binom{p}{i} b^{p-i} r(b, A l)^{p-i} l^{i} \\
= & L(p, b, k-1)-L(l, p, b, k-1)+b^{p} L(l, p, b, k-1) \\
& \quad+\sum_{i=1}^{p}\binom{p}{i} b^{p-i} L(l, p-i, b, k-1)^{p-i} l^{i} \\
= & \left(b^{p}-1\right) \cdot L(l, p, b, k-1)+L(p, b, k-1)+\sum_{i=1}^{p} l^{i} b^{p-i}\binom{p}{i} L(l, p-i, b, k-1) .
\end{aligned}
$$

We find a similar recurrence for $L(p, b, k)$.
Theorem 3.2. $L(p, b, k)=\left(b^{p}+b-1\right) L(p, b, k-1)+\sum_{l=0}^{b-1} \sum_{i=1}^{p} b^{p-i} l^{i}\binom{p}{i} L(l, p-i, b, k-1)$.
Proof. Again, note that the numbers counted by $L(p, b, k)$ are those which can be written as $A b_{1} b_{2}$ with $A \in\{1, \ldots, b-1\} \times\{0, \ldots, b-1\}^{k-2}$, and $b_{1}, b_{2} \in\{0, \ldots, b-1\}$. Therefore, the following equations hold:

$$
\begin{aligned}
L(p, b, k) & =\sum_{A}\left(\sum_{b_{1} \neq b_{2}} r\left(b, A b_{1} b_{2}\right)^{p}+\sum_{b_{1}} r\left(b, A b_{1} b_{1}\right)^{p}\right) \\
& =\sum_{A}(b-1) \sum_{b_{1}} r\left(b, A b_{1}\right)^{p}+\sum_{A} \sum_{b_{1}}\left(b r\left(A b_{1}\right)+b_{1}\right)^{p} \\
& =(b-1) L(p, b, k-1)+\sum_{A} \sum_{b_{1}} \sum_{i=0}^{p}\binom{p}{i} b^{p-i} r\left(A b_{1}\right)^{p-i} b_{1}^{i} \\
& =(b-1) L(p, b, k-1)+\sum_{A} \sum_{b_{1}} b^{p} r\left(A b_{1}\right)^{p}+\sum_{b_{1}} \sum_{i=1}^{p} \sum_{A}\binom{p}{i} b^{p-i} r\left(A b_{1}\right)^{p-i} b_{1}^{i} \\
& =\left(b^{p}+b-1\right) L(p, b, k-1)+\sum_{b_{1}} \sum_{i=1}^{p} b_{1}^{i} b^{p-i}\binom{p}{i} L\left(b_{1}, p-i, b, k-1\right) .
\end{aligned}
$$

Change the name of b_{1} to l to maintain consistent notation, and we have derived the claimed equation.

4 Maple Implementation

The Maple package raboter.txt available at http://sites.math.rutgers.edu/~yb165/raboter.txt contains functions to implement this recurrence. The most important are SumPowers ($\mathrm{b}, \mathrm{k}, \mathrm{p}$) which finds an expression in terms of k for $L(p, b, k)$ (for fixed b and p) and GuessGeneralForm ($\mathrm{b}, \mathrm{n}, \mathrm{p}$) which conjectures an expression in terms of k and b for $L(p, b, k)$ (for fixed p).

For example, this package proves that

$$
L(2,2, k)=\frac{2}{3} 5^{k}-\frac{1}{6} 2^{k}-\frac{2}{3} 3^{k}
$$

and conjectures that

$$
\begin{aligned}
L(2, b, k) & =\left(\frac{1}{6} b^{2}-\frac{1}{6} b-\frac{1}{3}\right)(b-1)^{k}+\left(-\frac{1}{6} b^{2}+\frac{1}{3} b-\frac{1}{6}\right) b^{k} \\
& -\frac{b(b-1)}{2 b-1}(2 b-1)^{k}+\frac{2 b^{3}+3 b^{2}-3 b-2}{6\left(b^{2}+b-1\right)}\left(b^{2}+b-1\right)^{k} .
\end{aligned}
$$

References

[1] N.J.A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences, talk given in Rutgers University Experimental Mathematics Seminar, Nov. 15, 2018. Video part 1: https://vimeo.com/301216222; video part 2: https://vimeo.com/301219515; slides: http://sites.math.rutgers.edu/~~my237/expmath/EMNov2018.pdf.
[2] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, Sequence A318921, http://oeis.org/A318921.
[3] Doron Zeilberger, "Proof of a Conjecture of Neil Sloane Concerning Claude Lenormand's "Raboter" Operation (OEIS sequence A318921)" The Personal Journal of Shalosh B. Ekhad and Doron Zeilberger (2018). http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/rabot.pdf.

