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Abstract. We address the enumeration of planar 4-valent maps equipped with an Eulerian
orientation by two different methods, and compare the solutions we thus obtain. With the
first method we enumerate these orientations as well as a restricted class which we show to
be in bijection with general Eulerian orientations. The second method, based on the work of
Kostov, allows us to enumerate these 4-valent orientations with a weight on some vertices,
corresponding to the six vertex model. We prove that this result generalises both results
obtained using the first method, although the equivalence is not immediately clear.

1. Introduction

In 2000, Zinn-Justin [ZJ00] and Kostov [Kos00] studied the six-vertex model on a random
lattice. In combinatorial terms, this means counting rooted 4-valent (or: quartic) planar
maps equipped with an Eulerian orientation of the edges: that is, every vertex has equal in-
and out-degree (Figs. 1 and 3). Every vertex is weighted t, and every alternating vertex gets
an additional weight γ, yielding a generating function Q(t, γ):

Q(t, γ) = (2 γ + 2) t+
(
9 γ2 + 16 γ + 10

)
t2 +

(
54 γ3 + 132 γ2 + 150 γ + 66

)
t3 +O(t4).

For instance, the 4 orientations accounting for the coefficient of t are the following ones (the
edge carrying a double arrow is the root edge, oriented canonically):

Kostov solved this problem exactly, but the form of his solution is quite complicated and its
derivation is not entirely rigourous.

Non-alternating
(weight t)

Alternating
(weight tγ)

Figure 1. The two types of vertices in the six-vertex model.
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Recently Bonichon, Bouquet-Mélou, Dorbec and Pennarun [BBMDP17] posed the analo-
gous problem of enumerating Eulerian orientations of general planar maps by edges (where
the vertex degree is not restricted). They were followed by Elvey Price and Guttmann who
wrote an intricate system of functional equations defining the associated generating function
[EPG18]. This allowed them to compute the number gn of Eulerian orientations with n
edges for large values of n, and led them to a conjecture on the asymptotic behaviour of gn.
In a similar way they conjectured the asymptotic behaviour of the coefficients qn of Q(t, 1),
counting Eulerian orientations of quartic maps, though this prediction had already been in
the physics papers [Kos00, ZJ00]. The conjectured asymptotic forms of the sequences (qn)n≥0
and (gn)n≥0 led us to conjecture exact forms of the two sequences. These are the conjectures
that we prove in the following two theorems.

Theorem 1. Let R(t) ≡ R be the unique formal power series with constant term 0 satisfying

(1) t =
∑
n≥0

1

n+ 1

(
2n

n

)2

Rn+1.

Then the generating function of rooted planar Eulerian orientations, counted by edges, is

G(t) =
1

2
Q(t, 0) =

1

4t2
(
t− 2t2 − R(t)

)
= t+ 5t2 + 33t3 + · · · .

Theorem 2. Let R(t) ≡ R be the unique formal power series with constant term 0 satisfying

t =
∑
n≥0

1

n+ 1

(
2n

n

)(
3n

n

)
Rn+1.

Then the generating function of quartic rooted planar Eulerian orientations, counted by ver-
tices, is

Q(t, 1) =
1

3t2
(
t− 3t2 − R(t)

)
= 4t+ 35t2 + 402t3 + · · · .

The first step in our proof of Theorem 1 is a bijection that relates general Eulerian orienta-
tions to quartic ones having no alternating vertex (Section 2). It implies that G(t) = 1

2
Q(t, 0).

We then characterise the generating functions Q(t, 0) and Q(t, 1) by a system of functional
equations using some new decompositions of planar maps. We then solve these equations
exactly (Section 3). Details on this approach as well as basic definitions on planar maps can
be found in [BMEP].

In Section 4 we use a different method to analyse the generating function Q(t, γ) for general
γ, following Kostov’s solution to the six-vertex model. We re-derive the first part of his study,
which yields a system of functional equations characterising Q(t, γ), using a combinatorial
argument. We then follow Kostov’s solution to these equations and fix a mistake, which
gives us a parametric expression of Q(t, γ) in terms of the Jacobi theta function

ϑ(z, q) = 2 sin(z)q1/8
∞∏
n=1

(1− 2 cos(2z)qn + q2n)(1− qn).

Theorem 3. Write γ = −2 cos(2α), and let q(t, γ) ≡ q = t+ (6 γ + 6) t2 + · · · be the unique
formal power series in t with constant term 0 satisfying

t =
cosα

64 sin3 α

(
−ϑ(α, q)ϑ′′′(α, q)

ϑ′(α, q)2
+
ϑ′′(α, q)

ϑ′(α, q)

)
,
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where all derivatives are with respect to the first variable. Moreover, define the series R(t, γ)
by

R(t, γ) =
cos2 α

96 sin4 α

ϑ(α, q)2

ϑ′(α, q)2

(
−ϑ

′′′(α, q)

ϑ′(α, q)
+
ϑ′′′(0, q)

ϑ′(0, q)

)
.

Then the generating function of quartic rooted planar Eulerian orientations, counted by ver-
tices, with a weight γ per alternating vertex is

Q(t, γ) =
1

(γ + 2)t2
(
t− (γ + 2)t2 − R(t, γ)

)
.

It is not clear why, in the two special cases γ = 0, 1, this theorem is equivalent to Theorems
1 and 2 respectively. We prove this equivalence in Section 5. We conclude with a discussion
on further projects.

1 2 1−1 ``+ 1

0

Figure 2. A rooted Eulerian orientation (solid edges; the root edge is shown
with a double arrow, and its orientation is chosen canonically) and the cor-
responding dual labelled map (dashed edges). The labelling rule is shown on
the right.

2. Bijection for general Eulerian orientations

The first step in the enumeration of Eulerian orientations is a simple bijection, introduced
in [EPG18], to certain labelled maps.

Definition 4. A labelled map is a rooted planar map with integer labels on its vertices, such
that adjacent labels differ by 1 and the root edge is labelled from 0 to 1.

The bijection is illustrated in Figure 2. The idea is that an Eulerian orientation of edges
of a map determines a height function on the vertices of its dual. A restriction of this bijec-
tion shows that quartic Eulerian orientations are in bijection with labelled quadrangulations
(every face has degree 4).

For the next step, we use a bijection of Miermont, Ambjørn and Budd [Mie09, AB13] to
show that labelled maps having n edges are in 1-to-2 correspondence with colourful labelled
quadrangulations having n faces. By colourful we mean that each face has three distinct
labels, or equivalently, that the corresponding quartic orientation has no alternating vertex.
This bijection generalizes a bijection of [CS04], and is illustrated in Figure 3. It implies that
G(t) = 1

2
Q(t, 0).

In fact, this pair of bijections allows us to understand the more general series Q(t, γ) as
a generalisation of G(t) in terms of Eulerian partial orientations. These are planar maps in
which some edges are oriented, in such a way that each vertex has equal in- and out-degree.

Proposition 5. The series Q(t, γ) counting rooted quartic Eulerian orientations also counts
rooted Eulerian partial orientations with a weight t per edge and an additional weight γ per
undirected edge (the root edge may be undirected or directed in either direction).
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Here are the 4 partial orientations that account for the coefficient 2 + 2γ of t in Q(t, γ):

γ γ

3. The number of planar Eulerian orientations

In this section we give a very brief summary of our solutions to the cases Q(t, 0) and
Q(t, 1). The full details are in [BMEP]. We define three classes P ,D and C of labelled
quadrangulations and decompose them recursively, using in particular a new contraction
operation. We thus characterise the series Q(t, 0) = 2G(t) as follows.

Proposition 6. There is a unique 3-tuple of series, denoted P(t, y), C(t, x, y) and D(t, x, y),
belonging respectively to Q[[y, t]], Q[x][[y, t]] and Q[[x, y, t]], and satisfying the following equa-
tions:

P(t, y) =
1

y
[x1]C(t, x, y),

D(t, x, y) =
1

1− C
(
t, 1

1−x , y
) ,

C(t, x, y) = xy[x≥0]

(
P(t, tx)D

(
t,

1

x
, y

))
,

together with the initial condition P(t, 0) = 1 (the operator [x≥0] extracts all monomials in
which the exponent of x is non-negative).

The generating function Q(t, 0) is related to these series by the equation

Q(t, 0) = [y1]P(t, y)− 1.

`+ 1

`

`+ 1

`+ 2

1

0

−1

−1

−2

−1

−1

0

−1

0

−2

Figure 3. A labelled quadrangulation Q (black edges) and the corresponding
labelled map L (red edges). The rule for drawing red edges is shown on the
right. Note that the two local minima of Q, both labelled −2, disappear in
the construction.



EULERIAN ORIENTATIONS AND THE SIX-VERTEX MODEL ON PLANAR MAPS 5

We then solve this system of equations as follows, writing P, C and D in terms of the series
R(t) defined in Theorem 1:

tP(t, ty) =
∑
n≥0

n∑
j=0

1

n+ 1

(
2n

n

)(
2n− j
n

)
yjRn+1,

C(t, x, ty) = 1− exp

(
−
∑
n≥0

n∑
j=0

n∑
i=0

1

n+ 1

(
2n− i
n

)(
2n− j
n

)
xi+1yj+1Rn+1

)
,

D(t, x, ty) = exp

(∑
n≥0

n∑
j=0

∑
i≥0

1

n+ 1

(
2n− j
n

)(
2n+ i+ 1

n

)
xiyj+1Rn+1

)
.

Theorem 1 then follows from the equation 2G(t) = Q(t, 0) = [y1]P(t, y)−1. We first obtained
the solution using a guess and check approach, but we now have a constructive way of deriving
it from Proposition 6.

We have a similar proof of Theorem 2: we characterise Q(t, 1) using a system of functional
equations, which we then solve.

4. The matrix integral approach to the six-vertex model

Following [ZJ00] and [Kos00], we introduce the following matrix integral:

(2) ZN =

∫
dXdX† exp

[
N tr

(
−XX† + tX2X†2 +

γt

2
(XX†)2

)]
where integration is over N ×N complex matrices, and X† denotes the conjugate transpose
of X. Then

(3) 2t
∂

∂t
logZN =

∑
g≥0

Q(g)(t, γ)N2−2g,

where each series Q(g)(t, γ) is the genus g analogue of Q(t, γ) ≡ Q(0)(t, γ).
Extracting the series Q(t, γ) from Kostov’s solution [Kos00] by using (3) directly is not

easy, so instead we start with a combinatorial interpretation of Kostov’s work in which
Q(t, γ) appears naturally.

We first convert the matrix integral (2) into another integral, this time involving three
matrices, which can be understood in terms of cubic maps. Then, a standard first step is
to derive from such integrals “loop equations” relating certain correlation functions. In fact
we also have direct combinatorial proofs of these equations in terms of certain families of
partially oriented maps.

Proposition 7. There is a unique pair of series, denoted W(t, ω, x) ≡ W(x) and H(t, ω, x, y) ≡
H(x, y), belonging respectively to Q(ω)[x][[t]] and Q(ω)[x, y][[t]] and satisfying the equations

W(x) = x2tW(x)2 + ωxtH(0, x) + ω−1xtH(x, 0) + 1

H(x, y) = W(x)W(y) +
ω

y
(H(x, y)− H(x, 0)) +

ω−1

x
(H(x, y)− H(0, y)) .

The series Q(t, γ) is given by

Q
(
t, ω2 + ω−2

)
= H(t, ω, 0, 0)− 1 =

1

t(ω + ω−1)
[x1]W(x)− 1.
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Each of the two series W and H counts some class of rooted Eulerian partial orientations
in which each non-root vertex is one of the two types shown in Figure 4, with weights ω and
ω−1 as shown, and t counts undirected edges. The series W and H differ in the weight and
allowed type of the root vertex. The equations relating H and W follow from contracting the
root edge, while the relation to Q follows from contracting all of the undirected edges.

Right turn
(weight ω−1)

Left turn
(weight ω)

Figure 4. The two vertex types allowed as non-root vertices in the Eulerian
partial orientations counted by W(t, ω, x) and H(t, ω, x, y).

To solve these equations we convert the series back to Kostov’s setting via the transfor-
mation

W (0)(x) =
1

x
W

(
1

x

)
,

and similar transformations for H(x, y), H(x, 0) and H(0, y). We reinterpret these transformed
series as complex analytic functions of x, with t a fixed small real number and ω fixed, with
|ω| = 1. In order to solve these equations one first proves a technical lemma (the “one-cut
lemma”) which states that the function W (0)(x) is analytic in x except on a single cut [x1, x2]
on the positive real line. After some algebraic manipulation of the equations in Proposition
7, we arrive at the equation

0 = W (0)(x+ i0) +W (0)(x− i0)− x

t
+ ω−2W (0)(ω−1 − ω−2x) + ω2W (0)(ω − ω2x),

for x ∈ R on the cut of W (0)(x) (see [Kos00, Eq. (3.19)]). As Kostov explains, the function

U(x) := xωW (0)

(
1

ω + ω−1
+ iωx

)
+ xω−1W (0)

(
1

ω + ω−1
− iω−1x

)
+

ix2

t(ω2 − ω−2)
− x

t(ω + ω−1)2

is uniquely defined by the fact that U(x) is holomorphic in C minus the two cuts (iω)±1[x′1, x
′
2],

where x′i is a translate of xi by an explicit real constant, along with the following three equa-
tions

(4) U(iω(x± i0)) = U(−iω−1(x∓ i0)), x ∈ (x′1, x
′
2)

(5) U(x) =
i

t(ω2 − ω−2)
x2 − 1

t(ω + ω−1)2
x+O(1/x) as x→∞,

(6)

∮
C

dx

2πx
U(x) = 1,

where C surrounds the cut (iω)−1[x′1, x
′
2] anticlockwise.

Note that by expanding U(x) at infinity further than (5), i.e., U(x) =
∑∞

i=−2 Uix
−i, we

can extract from U(x) the same information as from W (0)(x). In particular,

(7) U1 = 1− (ω + ω−1)[x−2]W (0)(x) = 1− t(ω + ω−1)2
(
1 + Q

(
t, ω2 + ω−2

))
.
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Solution in terms of theta functions. We now provide a parametric expression for U(x),
following [Kos00]. We will first parametrise the domain of analyticity of U(x). Let ϑ denote
the classical Jacobi theta function θ1:

ϑ(z) ≡ ϑ(z, q) := θ1(z; τ) = 2 sin(z)q1/8
∞∏
n=1

(1− 2 cos(2z)qn + q2n)(1− qn),(8)

= −i
∑
n∈Z

(−1)ne(n+1/2)2πiτ+(2n+1)iz,(9)

where q = e2πiτ and τ has positive imaginary part. Define the mapping x : C→ C by

x(z) = x0
ϑ(z + α)

ϑ(z)
,

where α is chosen so that ω = ie−iα, which gives γ = ω2 +ω−2 = −2 cos(2α). The quantities
x0 and τ will be determined later. Note that x(z) is a meromorphic function whose poles
form the lattice πτZ + πZ.

From the identities

ϑ(z + π) = −ϑ(z) and ϑ(z + πτ) = −e−iπτ−2izϑ(z),

we obtain the pseudo-periodic identities:

x(z + π) = x(z), and x(z + πτ) = e−2iαx(z).

The former identity implies that x is a meromorphic function on the cylinder C = C/(πZ).
Then, as explained in [Kos00], property (4) will be satisfied for certain x′1, x

′
2 ∈ R provided

that the following holds: There is some meromorphic function V (z) on the complex torus

T = C/(πτZ) = C/(πZ+πτZ) and some fundamental domain T̂ ⊂ C of T containing 0 such

that U(x(z)) = V (z) for z ∈ T̂ . The restriction of x to T̂ sends each of the two boundaries

of T̂ to one of the two cuts in the domain of analyticity of U(x).
Furthermore, because of the analyticity properties of U , the only singularity of V (z) =

U(x(z)) comes from the double pole of U(x) at x =∞, i.e., z = 0. Since V (z) is meromorphic
on T and its only singularity is a double pole at z = 0, it must be a linear transformation of
the Weierstrass function:

U(x(z)) = A+B℘(z), ℘(z) =
1

z2
+

∑
(m,n) 6=(0,0)

(
1

(z + π(m+ nτ))2
− 1

π2(m+ nτ)2

)
.

The parameters τ, x0, A,B are determined by the expansion of U at infinity (5) and the
normalization condition (6).

The three terms of expansion (5) provide three equations which determine x0, B and A
in terms of α and τ . We ignore the equation coming from the constant term, since this only
determines A, which plays no role in any further calculations. We are left with the equations:

B =
cosα

sin2 α
ϑ4
3(0)

ϑ2(α)

ϑ′2(α)
, x0 =

cosα

2 sinα

ϑ′(0)

ϑ′(α)

where ϑ3(0) =
∑+∞

n=−∞ q
n2/2. The integral (6) can be computed; fixing a mistake in [Kos00,

App. B.2] results in a massive simplification:

(10) t =
cosα

64 sin3 α

(
−ϑ(α)ϑ′′′(α)

ϑ′(α)2
+
ϑ′′(α)

ϑ′(α)

)
.
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The last equation should be understood as an implicit equation for q = e2πiτ as a function of
t; if we want to return to formal power series, then it determines q uniquely once we require
t ∼ q around 0, as claimed in Theorem 3.

Finally, by expanding U(x) one order further, one finds

(11) tU1 =
cos2 α

96 sin4 α

ϑ(α)2

ϑ′(α)2

(
−ϑ

′′′(α)

ϑ′(α)
+
ϑ′′′(0)

ϑ′(0)

)
.

Theorem 3 then follows due to (7), writing R(t, γ) = tU1, where γ = −2 cos(2α).

5. Relationships between results and further problems

The cases γ = 0 and γ = 1. We now describe how our formulas for Q(t, 0) and Q(t, 1)
in Theorems 1 and 2 can be derived from our general formula for Q(t, γ) in Theorem 3. It
suffices to show that the series R(t, γ) coincides with the series R(t) in each case. In sight
of (1), for γ = 0 this is equivalent to

(12) t = R(t, 0) 2F1 (1/2, 1/2; 2|16R(t, 0)) ,

where we use the standard hypergeometric notation, while for γ = 1, it is equivalent to

(13) t = R(t, 1) 2F1(1/3, 2/3; 2|27R(t, 1)).

In each case, we rewrite both sides of the equation as series in q using the expressions in
Theorem 3, noting that γ = 0 corresponds to α = π/4 and γ = 1 corresponds to α = π/3.
We then introduce the following parametrisation of q, as first suggested in a slightly different
language by Ramanujan [Ber98]:

q = exp

(
− π

sin(πa)

Ã(w)

A(w)

)
,

A(w) = 2F1(a, 1− a; 1|w), Ã(w) = A(1− w),

where a is a constant to be specified shortly, and w is the new parameter. The hypergeometric
series A and Ã satisfy the same differential equation:

(14) w(1− w)
d2A

dw2
+ (1− 2w)

dA

dw
− a(1− a)A = 0.

Writing q = e2πiτ , it is not hard to prove that τ(w) satisfies the following equation:

(15) 2πiw(1− w)
dτ

dw
A(w)2 = 1.

Finally, the usual differentiation formula for hypergeometric series yields

(16) (1− w)
dA

dw
= a(1− a)2F1(a, 1− a; 2|w).

The functional inverse w(τ) is known explicitly in the four cases a = 1/2, 1/3, 1/4, 1/6
[BB91]; the first two will be relevant to us:

w(τ) =



(
C

A

)2

, A =
∑
m,n∈Z

qm
2+n2

, C =
∑

m,n∈Z+1/2

qm
2+n2

, a = 1/2

(
C

A

)3

, A =
∑
m,n∈Z

qm
2+mn+n2

, C =
∑

m,n∈Z+1/3

qm
2+mn+n2

, a = 1/3
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where in addition, A coincides with A(w(τ)). In both cases, one has the following identity,
which follows from the product definition (8) of ϑ:

(17) A = tanα
ϑ′(α, q)

ϑ(α, q)
,

{
a = 1/2, α = π/4,

a = 1/3, α = π/3.

These series are entries A004018 and A004016 in the OEIS [Inc], respectively, and the iden-
tities above can be found there. We will also use the heat equation

(18) ϑ′′(z, q) :=
∂2ϑ

∂z2
(z, q) = − 4

iπ

dϑ

dτ
(z, q),

which allows us to express all τ -derivatives of ϑ in terms of z-derivatives.
We compute R = tU1 from (11) using the function η(x) =

∏
n≥1(1− xn). In the case α =

π/4 we have the equations −ϑ′′′(0)/ϑ′(0) = 1 + 24q η
′(q)
η(q)

(A006352) and −ϑ′′′(π/4)/ϑ′(π/4) =

1− 24q η
′(−q)
η(−q) (A143337), so

48RA2 =
ϑ′′′(0)

ϑ′(0)
−
ϑ′′′
(
π
4

)
ϑ′
(
π
4

) = −24q
η′(q)

η(q)
− 24q

η′(−q)
η(−q)

= 3
∑
n≥0

(2n+ 1)q2n

1− q4n+2
= 3C2,

and therefore R = 1
16
w. The last equality above is from A008438. For α = π/3, we show

that R = 1
27
w in a similar way, although the proof is more complicated.

Using the parametrisation in terms of w, we are now in a position to prove the identi-
ties (12) and (13), with t and R(t, γ) given by Theorem 3.

t =
1

8 sin2 α

1

2πi
A−2

dA

dτ
from (10), (17), (18)

=
1

8 sin2 α
w(1− w)

dA

dw
from (15)

=
a(1− a)

8 sin2 α
w 2F1(a, 1− a; 2|w) from (16).

The desired results then follow as R = a(1−a)
8 sin2 α

w in both cases.

Generalisations and further questions. When γ = 0 or γ = 1, we have obtained two
different parametric expressions of Q(t, γ): one in terms of hypergeometric series, the other
in terms of theta functions. Is there an analogue of the hypergeometric version for general
γ? We have generalised the equations of Proposition 6 to include a weight γ, but so far we
have been unable to solve them for general γ.

In the case of general Eulerian orientations, we are interested in one other natural gener-
alisation of G(t): the generating function G(t, z) which counts Eulerian orientations by edges
(t) and vertices (z). Through the sequence of bijections of Section 2, the number of vertices
in an Eulerian orientation is the number of clockwise faces in the corresponding quartic ori-
entation. This is not a very natural quantity from the matrix integral perspective, and it is
not clear how to generalise the equations of Theorem 7 to include z. Nevertheless, we have
generalised the equations of Theorem 6 to include z (and in fact z and γ simultaneously). In
the specific cases γ = 0 and γ = 1 we can solve these equations, thus generalising Theorems
1 and 2.

https://oeis.org/A004018
https://oeis.org/A004016
https://oeis.org/A006352
https://oeis.org/A143337
https://oeis.org/A008438
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