Irrationality Measure of Pi

N. A. Carella

Abstract

The first estimate of the upper bound $\mu(\pi) \leq 42$ of the irrationality measure of the number π was computed by Mahler in 1953, and more recently it was reduced to $\mu(\pi) \leq 7.6063$ by Salikhov in 2008. Here, it is shown that π has the same irrationality measure $\mu(\pi)=\mu(\alpha)=2$ as almost every irrational number $\alpha>0$ 』

1 Introduction

The irrationality measure $\mu(\alpha)$ of a real number $\alpha \in \mathbb{R}$ is the infimum of the subset of real numbers $\mu(\alpha) \geq 1$ for which the Diophantine inequality

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right| \ll \frac{1}{q^{\mu(\alpha)}} \tag{1}
\end{equation*}
$$

has finitely many rational solutions p and q, see [5] Chapter 11]. The map $\mu: \mathbb{R} \longrightarrow[2, \infty) \cup\{1\}$ is surjective. Any number in the set $[2, \infty) \cup\{1\}$ is the irrationality measure of some irrational number, confer [7, Theorem 2]. More precisely,
(1) A rational number has an irrationality measure of $\mu(\alpha)=1$, see [12, Theorem 186].
(2) An algebraic irrational number has an irrationality measure of $\mu(\alpha)=2$, confer Roth Theorem.
(3) Any irrational number has an irrationality measure of $\mu(\alpha) \geq 2$.
(4) A Champernowne number $\kappa_{b}=0.123 \cdots b-1 \cdot b \cdot b+1 \cdot b+2 \cdots$ in base $b \geq 2$, concatenation of the b-base integers, has an irrationality measure of $\mu\left(\kappa_{b}\right)=b$.
(5) A Mahler number $\psi_{b}=\sum_{n \geq 1} b^{-[\tau]^{n}}$ in base $b \geq 3$ has an irrationality measure of $\mu\left(\psi_{b}\right)=\tau$, for any real number $\tau \geq 2$, see [7, Theorem 2].
(6) A Liouville number $\ell_{b}=\sum_{n \geq 1} b^{-n!}$ parametized by $b \geq 2$ has an irrationality measure of $\mu\left(\ell_{b}\right)=\infty$, see [12, p. 208].
The analysis of the irrationality measure $\mu(\pi) \geq 2$ was initiated by Mahler in 1953 , who proved that

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right|>\frac{1}{q^{42}} \tag{2}
\end{equation*}
$$

for all rational solutions p and q, see [13], et alii. Over the last seven decades, the efforts of several authors have improved this estimate significantly, see Table More recently, it was reduced to $\mu(\pi) \leq 7.6063$, see 16 .

Theorem 1.1. For any number $\varepsilon>0$, the Diophantine inequality

$$
\begin{equation*}
\left|\pi-\frac{p}{q}\right| \ll \frac{1}{q^{2+\varepsilon}} \tag{3}
\end{equation*}
$$

has finitely many rational solutions p and q. In particular, the irrationality measure $\mu(\pi)=2$.
After some preliminary preparations, the proof of Theorem 1.1 is assembled in Section 6

[^0]Table 1: Historical Data For $\mu(\pi)$

Irrationality Measure Upper Bound	Reference	Year
$\mu(\pi) \leq 42$	Mahler, [13]	1953
$\mu(\pi) \leq 20.6$	Mignotte, [14]	1974
$\mu(\pi) \leq 14.65$	Chudnovsky, [8]	1982
$\mu(\pi) \leq 13.398$	Hata, [11]	1993
$\mu(\pi) \leq 7.6063$	Salikhov, [16]	2008

2 Asymptotic Expansions Of The Sine Function

Let $f \geq 0$ and $g \geq 0$ be real valued functions. The proportional symbol $f \asymp g$ is defined by $c_{0} g \leq f \leq c_{1} g$, where $c_{0}, c_{1} \in \mathbb{R}$ are constants.

Lemma 2.1. Let p_{n} / q_{n} be the sequence of convergents of the irrational number $\pi=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$. Then, the followings hold.
(i) $\sin p_{n}=\sin \left(p_{n}-\pi q_{n}\right)$ for all p_{n} and q_{n}.
(ii) $\sin \left(\frac{1}{p_{n}}\right)=\frac{1}{p_{n}}\left(1-\frac{1}{3!} \frac{1}{p_{n}^{2}}+\frac{1}{5!} \frac{1}{p_{n}^{4}}-\cdots\right)$ as $p_{n} \rightarrow \infty$.
(iii) $\sin \left(\frac{1}{p_{n}}\right) \asymp \sin p_{n}$ as $p_{n} \rightarrow \infty$.

Proof. (iii) Let $A=p_{n}-\pi q_{n}-1 / p_{n}$ and $B=1 / p_{n}$. The addition formula $\sin (A+B)=\cos A \sin B+$ $\cos B \sin A$ leads to

$$
\begin{equation*}
\left|\sin \left(p_{n}-\pi q_{n}-\frac{1}{p_{n}}+\frac{1}{p_{n}}\right)\right|=\left|\cos A \sin \left(\frac{1}{p_{n}}\right)+\cos \left(\frac{1}{p_{n}}\right) \sin A\right| . \tag{4}
\end{equation*}
$$

For the irrational number π, the relations $\left|p_{n}-\pi q_{n}\right| \leq 1 / q_{n}$ and $p_{n} \approx \pi q_{n}$ as $n \rightarrow \infty$ are valid. Thus,

$$
\begin{equation*}
\frac{c_{0}}{p_{n}} \leq|A|=\left|p_{n}-\pi q_{n}-\frac{1}{p_{n}}\right| \leq \frac{c_{1}}{p_{n}} \tag{5}
\end{equation*}
$$

where $c_{0}>0$ and c_{1} are constants. Now, using Lemma 3.1 returns

$$
\begin{equation*}
\cos A=1+O\left(A^{2}\right)=1+O\left(\frac{1}{q_{n}^{2}}\right)=1+O\left(\frac{1}{p_{n}^{2}}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin A=A+O\left(A^{3}\right)=O\left(\frac{1}{q_{n}}\right)=O\left(\frac{1}{p_{n}}\right) \tag{7}
\end{equation*}
$$

since $p_{n} \approx \pi q_{n}$ as $n \rightarrow \infty$. Substituting these estimates into (4) produces

$$
\begin{align*}
\sin p_{n} & =\left|\sin \left(p_{n}-\pi q_{n}-\frac{1}{p_{n}}+\frac{1}{p_{n}}\right)\right| \tag{8}\\
& =\left|\cos A \sin \left(\frac{1}{p_{n}}\right)+\cos \left(\frac{1}{p_{n}}\right) \sin A\right| \\
& =\left|\left(1+O\left(\frac{1}{p_{n}^{2}}\right)\right) \sin \left(\frac{1}{p_{n}}\right)+\cos \left(\frac{1}{p_{n}}\right) O\left(\frac{1}{p_{n}}\right)\right| \\
& =\sin \left(\frac{1}{p_{n}}\right)+O\left(\frac{1}{p_{n}}\right) \\
& \asymp \sin \left(\frac{1}{p_{n}}\right) .
\end{align*}
$$

This completes the proof.

Lemma 2.2. Let $z \in \mathbb{C}$ be complex number such that $|z|<1$. Then,
(i) $1-\frac{|z|^{2}}{2} \leq \cos |z| \leq 1$.
(ii) $|z|-\frac{|z|^{3}}{6} \leq \sin |z| \leq|z|$.

Lemma 2.3. Let p_{n} / q_{n} be the sequence of convergents of the real number $\pi=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$. Then, as $n \rightarrow \infty$,
(i) $\frac{1}{2 q_{n}} \leq\left|p_{n}-\pi q_{n}-\frac{1}{q_{n}}\right| \leq \frac{2}{q_{n}}$.
(ii) $\frac{1}{2 q_{n}} \leq\left|p_{n+1}-\pi q_{n+1}-\frac{1}{q_{n}}\right| \leq \frac{2}{q_{n}}$.

Proof. (ii) Using the triangle inequality and Dirichlet approximation theorem yield the upper bound

$$
\begin{align*}
\left|p_{n+1}-\pi q_{n+1}-\frac{1}{q_{n}}\right| & \leq\left|p_{n+1}-\pi q_{n+1}\right|+\frac{1}{q_{n}} \tag{9}\\
& \ll \frac{c_{0}}{q_{n+1}}+\frac{1}{q_{n}} \\
& \leq \frac{2}{q_{n}}
\end{align*}
$$

since $q_{n+1}=a_{n} q_{n}+q_{n-1}$, and the lower bound

$$
\begin{align*}
\left|\frac{1}{q_{n}}-p_{n+1}-\pi q_{n+1}\right| & \geq \frac{1}{q_{n}}-\left|p_{n+1}-\pi q_{n+1}\right| \tag{10}\\
& \geq \frac{1}{q_{n}}-\frac{c_{1}}{q_{n+1}} \\
& \geq \frac{1}{2 q_{n}}
\end{align*}
$$

where $c_{0}>0$ and $c_{1}>0$ are constants, as $n \rightarrow \infty$ as claimed.

3 Bounded Partial Quotients

Lemma 3.1. Let $\pi=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ be the continued fraction of the real number $\pi \in \mathbb{R}$. Then, the quotients $a_{n} \in \mathbb{N}$ are bounded. Specifically, $a_{n}=O(1)$.
Proof. Let p_{n} / q_{n} be the sequence of convergents of the irrational number $\pi=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$. For all sufficiently large integers $n \geq 1$, the Dirichlet approximation theorem and the addition formula $\sin (C+D)=\cos C \sin D+\cos D \sin C$ lead to

$$
\begin{align*}
\frac{1}{q_{n+1}} & \gg\left|p_{n+1}-\pi q_{n+1}\right| \tag{11}\\
& \geq\left|\sin \left(p_{n+1}-\pi q_{n+1}\right)\right| \\
& =\left|\sin \left(p_{n+1}-\pi q_{n+1}-\frac{1}{q_{n}}+\frac{1}{q_{n}}\right)\right| \\
& =\left|\cos C \sin \left(\frac{1}{q_{n}}\right)+\cos \left(\frac{1}{q_{n}}\right) \sin C\right| \\
& \geq\left|\left(\frac{1}{q_{n}}-\frac{1}{6 q_{n}^{3}}\right) \cos C+\left(1-\frac{1}{2 q_{n}^{2}}\right) \sin C\right|
\end{align*}
$$

By Lemma 2.2 ,

$$
\begin{equation*}
\cos C \geq 1-\frac{C^{2}}{2} \geq 1-\frac{2}{q_{n}^{2}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin C \geq C-\frac{C^{3}}{6} \geq \frac{1}{2 q_{n}^{2}}-\frac{8}{6 q_{n}^{3}} \tag{13}
\end{equation*}
$$

Substituting these estimates, and using the reverse triangle inequality $|A+B| \geq \| A|-|B||$, produce

$$
\begin{align*}
\frac{1}{q_{n+1}} & \gg\left|\left(\frac{1}{q_{n}}-\frac{1}{6 q_{n}^{3}}\right) \cos C+\left(1-\frac{1}{2 q_{n}^{2}}\right) \sin C\right| \tag{14}\\
& \geq \|\left(\frac{1}{q_{n}}-\frac{1}{6 q_{n}^{3}}\right)\left(1-\frac{2}{q_{n}^{2}}\right)\left|-\left|\left(1-\frac{1}{2 q_{n}^{2}}\right)\left(\frac{1}{2 q_{n}}-\frac{8}{6 q_{n}^{3}}\right)\right|\right| \\
& \geq \| \frac{1}{q_{n}}-\frac{1}{6 q_{n}^{3}}-\frac{2}{q_{n}^{3}}+\frac{1}{3 q_{n}^{5}}\left|-\left|\frac{1}{2 q_{n}}-\frac{8}{6 q_{n}^{3}}-\frac{1}{4 q_{n}^{3}}+\frac{2}{3 q_{n}^{5}}\right|\right| \\
& \geq \frac{c_{0}}{q_{n}},
\end{align*}
$$

where $c_{0}>0$ is a constant. These show that

$$
\begin{equation*}
\frac{1}{q_{n+1}} \gg \frac{1}{q_{n}} \tag{15}
\end{equation*}
$$

as $n \rightarrow \infty$. Furthermore, (15) imply that $q_{n} \gg q_{n+1}=a_{n} q_{n}+q_{n-1}$ as claimed.
Example 3.1. A short survey of the partial quotients $\pi=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ is provided here to sample this phenomenon, most computer algebra systems can generate a few thousand terms within minutes. A limited numerical experiment established that $a_{n} \leq 21000$ for $n \leq 10000$, here $a_{432}=20776$ is the only unusual partial quotient.

$$
\begin{align*}
\pi & =[3,7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2,1,1,15,3,13,1,4,2 \tag{16}\\
& 6,6,99,1,2,2,6,3,5,1,1,6,8,1,7,1,2,3,7,1,2,1,1,12,1,1,1,3,1,1,8,1,1, \ldots]
\end{align*}
$$

4 Convergence Of The Flint Hills Series

This analysis of the the convergence of the Flint Hills series is based on the asymptotic relation relation

$$
\begin{equation*}
\sin \left(p_{n}\right) \asymp \sin \left(\frac{1}{p_{n}}\right) \tag{17}
\end{equation*}
$$

where $p_{n} / q_{n} \in \mathbb{Q}$ is the sequence of convergents of the real number $\pi \in \mathbb{R}$. In some way, the representation (17) removes any reference to the difficult problem of estimating the maximal value of the function $1 / \sin n$ as $n \rightarrow \infty$.

Theorem 4.1. If the real numbers $u>0$ and $v>0$ satisfy the relation $u-v \geq 1$, then the Flint Hills series

$$
\begin{equation*}
\sum_{n \geq 1} \frac{1}{n^{u} \sin ^{v} n} \tag{18}
\end{equation*}
$$

is absolutely convergent.
Proof. The sequence of convergents p_{n} / q_{n} of the real number $\pi=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ minimizes the sine function $\sin z \geq \sin p_{n}$ over the integers $z \in \mathbb{Z}$. Hence, it is sufficient to consider the infinite series over the subsequence $\left\{p_{n}: n \geq 1\right\}$. Substituting the sequence of convergents p_{n} / q_{n} of the irrational number $\pi=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ yields

$$
\begin{align*}
\sum_{n \geq 1} \frac{1}{n^{u} \sin ^{v} n} & \ll \sum_{n \geq 1} \frac{1}{p_{n}^{u}\left(\sin p_{n}\right)^{v}} \tag{19}\\
& \ll \sum_{n \geq 1} \frac{1}{p_{n}^{u} \sin \left(\frac{1}{p_{n}}\right)^{v}},
\end{align*}
$$

see Lemma 2.1. Substituting the Taylor series at infinity, again in Lemma 2.1, return

$$
\begin{align*}
\sum_{n \geq 1} \frac{1}{p_{n}^{u} \sin \left(\frac{1}{p_{n}}\right)^{v}} & =\sum_{n \geq 1} \frac{1}{p_{n}^{u}\left(\frac{1}{p_{n}}\left(1-\frac{1}{3!} \frac{1}{p_{n}^{2}}+\frac{1}{5!} \frac{1}{p_{n}^{4}}-\cdots\right)\right)^{v}} \\
& \ll \sum_{n \geq 1} \frac{1}{p_{n}^{u-v}} \tag{20}
\end{align*}
$$

By the Binet formula, the sequence $p_{n}=a_{n} p_{n-1}+p_{n-1}, a_{n} \geq 1$, has exponential growth, namely,

$$
\begin{equation*}
p_{n} \geq \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n} \tag{21}
\end{equation*}
$$

for $n \geq 2$. Hence, it immediately follows that the infinite series converges whenever $u-v \geq 1$.
Example 4.1. The infinite series

$$
\begin{equation*}
\sum_{n \geq 1} \frac{1}{n^{3} \sin ^{2} n} \tag{22}
\end{equation*}
$$

has $u-v=1$. Hence, by Theorem 4.1, it is convergent.
Example 4.2. The infinite series

$$
\begin{equation*}
\sum_{n \geq 1} \frac{1}{n^{2} \sin n} \tag{23}
\end{equation*}
$$

has $u-v=1$. Hence, by Theorem 4.1, it is absolutely convergent.

5 The Sine Function And The Number Pi

The argument linking the sequence of convergents $\left\{p_{n} / q_{n}: n \geq 1\right\}$ of the real number π and the sine function to the irrationality measure of the number π is well known in the number theory literature, refer to [3, Section 8], and [1] for some details.

Lemma 5.1. Let $u \geq 1$ and $v \geq 1$ be a pair of fixed parameters, and let $\mu(\pi) \geq 2$ be the irrationality measure of the number π. Then, the sequence of real numbers $\left\{n^{-u} \sin (n)^{-v}: n \geq 1\right\}$ converges if and only if

$$
\begin{equation*}
\frac{u}{v}+1>\mu(\pi) \tag{24}
\end{equation*}
$$

Proof. From the Taylor series $\sin x=x-x^{3} / 3!+x^{5} / 5!-\cdots$, it follows that $|x| / 2 \leq|\sin x| \leq|x|$ for any number $|x|<\pi / 2$.

Let $\varepsilon>0$ be an arbitrary small number, and let p_{k} / q_{k} be a large convergent of the irrational number π. For any pair of integers $m \leq q_{k}$ and $n \leq p_{k}$, it follows that

$$
\begin{equation*}
|n-\pi m| \geq\left|\pi q_{k}-p_{k}\right| \gg \frac{1}{q_{k}^{\mu(\pi)-1+\varepsilon}} \tag{25}
\end{equation*}
$$

where $\mu(\pi) \geq 2$ is the irrationality measure of the number π.
Thus, for any pair of integers $m, n \in \mathbb{N}$ such that $|n-\pi m|<\pi / 2$, the inequality

$$
\begin{align*}
|\sin (n)| & =|\sin (n-m \pi)| \tag{26}\\
& \gg|n-\pi m| \\
& \gg \frac{1}{q_{k}^{\mu(\pi)-1+\varepsilon}}
\end{align*}
$$

holds for all large convergents p_{k} / q_{k}. Equivalently,

$$
\begin{equation*}
\frac{1}{|\sin n|} \ll q_{k}^{\mu(\pi)-1+\varepsilon} \tag{27}
\end{equation*}
$$

Substituting (27) and $n=q_{k} \approx q_{k}$ to maximize the k th term of the sequence return

$$
\begin{equation*}
\left|\frac{1}{n^{u} \sin (n)^{v}}\right| \ll \frac{1}{q_{k}^{u-(\mu(\pi)-1+\varepsilon) v}} \tag{28}
\end{equation*}
$$

This implies that the sequence $n^{-u} \sin (n)^{-v} \longrightarrow 0$ converges as $n \longrightarrow \infty$ if and only if

$$
\begin{equation*}
\frac{u}{v}+1>\mu(\pi) \tag{29}
\end{equation*}
$$

6 Main Result

This analysis of the irrationality measure $\mu(\pi)$ of the number π is completely independent of the prime number theorem, and it is not related to the earlier analysis used by many authors, based on the Laplace integral of a factorial like function

$$
\begin{equation*}
\frac{1}{i 2 \pi} \int_{C}\left(\frac{n!}{z(z-1)(z-2)(z-3) \cdots(z-n)}\right)^{k+1} e^{-t z} d z \tag{30}
\end{equation*}
$$

where C is a curve around the simple poles of the integrand, and $k \geq 0$, see [13], [14, [8, [11, [16], and [6] for an introduction to the rational approximations of π and the various proofs.

Proof. (Theorem (1.1) Let $v \geq 1$ be a large number, and let $u=v+1$.

1. By Theorem 4.1, the infinite series

$$
\begin{equation*}
\sum_{n \geq 1} \frac{1}{n^{v+1} \sin ^{v} n} \tag{31}
\end{equation*}
$$

converges since $u-v=v+1-v \geq 1$. This implies that the sequence of terms

$$
\begin{equation*}
\frac{1}{n^{v+1} \sin ^{v} n} \longrightarrow 0 \tag{32}
\end{equation*}
$$

converges as $n \longrightarrow \infty$.
2. By Lemma 5.1. the sequence $n^{-u} \sin (n)^{-v} \longrightarrow 0$ converges as $n \longrightarrow \infty$ if and only if

$$
\begin{equation*}
\frac{u}{v}+1>\mu(\pi) \tag{33}
\end{equation*}
$$

Therefore, comparing items (31) and (32) return

$$
\begin{equation*}
\frac{u}{v}+1=\frac{v+1}{v}+1=2+\frac{1}{v}>\mu(\pi) . \tag{34}
\end{equation*}
$$

In particular, the inequality

$$
\begin{equation*}
\left|\pi-\frac{p}{q}\right| \gg \frac{1}{q^{2+1 / v}} \tag{35}
\end{equation*}
$$

holds for all large convergents p / q, where $v \geq 1$ is any large number. Quod erat demontrandum.

Table 2: Numerical Data For $\pi / \sin p_{n}$

n	p_{n}	$1 / \sin \left(p_{n}\right)$	$1 / \sin 1 / p_{n}$	$\sin p_{n} / \sin \left(1 / p_{n}\right)$
1	3	7.086178	3.0562	0.431303
2	22	-112.978	22.0076	-0.194796
3	333	-113.364	333.001	-2.93745
4	355	-33173.7	355.0	-0.0107013
5	103993	-52275.7	103993.0	-1.98932
6	104348	-90785.1	104348.0	-1.1494
7	208341	123239.0	208341.	1.69055
8	312689	344744.0	312689.0	0.907017
9	833719	432354.0	833719.0	1.92832
10	1146408	-1.70132×10^{6}	1.14641×10^{6}	-0.673836
11	4272943	-1.81957×10^{6}	4.27294×10^{6}	-2.34832
12	5419351	-2.61777×10^{7}	5.41935×10^{6}	-0.207022
13	80143857	-6.76918×10^{7}	8.01439×10^{7}	-1.18395
14	165707065	-1.15543×10^{8}	1.65707×10^{8}	-1.43416
15	245850922	1.6345×10^{8}	2.45851×10^{8}	1.50413
16	411557987	3.9421×10^{8}	4.11558×10^{8}	1.04401
17	1068966896	9.57274×10^{8}	1.06897×10^{9}	1.11668
18	2549491779	2.23489×10^{9}	2.54949×10^{9}	1.14077
19	6167950454	6.6785×10^{9}	6.16795×10^{9}	0.923554
20	14885392687	6.75763×10^{9}	1.48854×10^{10}	2.20275
21	21053343141	5.70327×10^{11}	2.10533×10^{10}	0.0369145
22	1783366216531	1.43483×10^{12}	1.78337×10^{12}	1.24291
23	3587785776203	2.78176×10^{12}	3.58779×10^{12}	1.28975
24	5371151992734	-2.96328×10^{12}	5.37115×10^{12}	-1.81257
25	8958937768937	-4.54136×10^{13}	8.95894×10^{12}	-0.197274

7 Numerical Data

The maxima of the function $1 / \sin x$ occur at the numerators $x=p_{n}$ of the sequence of convergents $p_{n} / q_{n} \longrightarrow \pi$. The first few terms of the sequence p_{n}, which is cataloged as $A 046947$ in [15], are:

$$
\begin{array}{r}
\mathcal{N}_{\pi}=\{1,3,22,333,355,103993,104348,208341,312689,833719,1146408,4272943, \\
5419351,80143857,165707065,245850922,411557987, \ldots\} \tag{36}
\end{array}
$$

A few values were computed to illustrate the prediction in Lemma 2.1 .

8 Beta and Gamma Functions

Certain properties of the beta function $B(a, b)=\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t$, and gamma function $\Gamma(z)=$ $\int_{0}^{\infty} t^{z-1} e^{-t} d t$ are used in the main result.
Lemma 8.1. Let $B(a, b)$ and $\Gamma(z)$ be the beta function and gamma function of the complex numbers $a, b, z \in \mathbb{C}-\{0,-1,-2,-3, \ldots\}$. Then,
(i) $\Gamma(z+1)=z \Gamma(z)$, the functional equation.
(ii) $B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$, the multiplication formula.
(iii) $\frac{B(1-z, z)}{\pi}=\frac{1}{\sin \pi z}$.
(iv) $\frac{\Gamma(1-z) \Gamma(z)}{\pi}=\frac{1}{\sin \pi z}$, the reflection formula.

Proof. Standard analytic methods on the $B(a, b)$, and gamma function $\Gamma(z)$, see (9, Equation 5.12.1], [2, Chapter 1], et cetera.

9 Beta and Gamma Functions

Certain properties of the beta function $B(a, b)=\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t$, and gamma function $\Gamma(z)=$ $\int_{0}^{\infty} t^{z-1} e^{-t} d t$ are useful in the proof of the main result.

Lemma 9.1. Let $B(a, b)$ and $\Gamma(z)$ be the beta function and gamma function of the complex numbers $a, b, z \in \mathbb{C}-\{0,-1,-2,-3, \ldots\}$. Then,
(i) $\Gamma(z+1)=z \Gamma(z)$, the functional equation.
(ii) $B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$, the multiplication formula.
(iii) $\frac{B(1-z, z)}{\pi}=\frac{1}{\sin \pi z}$.
(iv) $\frac{\Gamma(1-z) \Gamma(z)}{\pi}=\frac{1}{\sin \pi z}$, the reflection formula.

Proof. Standard analytic methods on the $B(a, b)$, and gamma function $\Gamma(z)$, see [9, Equation 5.12.1], [2, Chapter 1], et cetera.

The current result on the irrationality measure $\mu(\pi)=7.6063$, see Table 1 of the number π implies that

$$
\begin{equation*}
|\Gamma(z+1) \Gamma(z)| \ll|z|^{7.6063} \tag{37}
\end{equation*}
$$

A sharper upper bound is computed here.
Lemma 9.2. Let $\Gamma(z)$ be the gamma function of a complex number $z \in \mathbb{C}$, but not a negative integer $z \neq 0,-1,-2, \ldots$. Then,

$$
\begin{equation*}
|\Gamma(z+1) \Gamma(z)| \ll|z| \tag{38}
\end{equation*}
$$

Proof. Assume $\Re e(z)>0$. Then, the functional equation

$$
\begin{equation*}
\Gamma(z+1)=z \Gamma(z) \tag{39}
\end{equation*}
$$

see Lemma 9.1, or [9, Equation 5.5.1], provides an analytic continuation expression

$$
\frac{\Gamma(1-z) \Gamma(z)}{\pi}=\frac{1}{\sin \pi z}
$$

for any complex number $z \in \mathbb{C}$ such that $z \neq 0,-1,-2,-3, \ldots$. By Lemma 2.1,

$$
\begin{aligned}
\frac{1}{\sin |\pi z|} & \asymp \frac{1}{\sin \left(\frac{1}{|\pi z|}\right)} \\
& \asymp|\pi z|
\end{aligned}
$$

as $|\pi z| \rightarrow \infty$.
The asymptotic expansions of the gamma function

$$
\begin{equation*}
\log \Gamma(z)=\left(z-\frac{1}{2}\right) \log z-z+\frac{1}{2} \log 2 \pi+O\left(\frac{1}{z}\right) \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma(z)=\sqrt{2 \pi e}\left(\frac{z}{e}\right)^{z-1 / 2}\left(1+O\left(\frac{1}{z}\right)\right) \tag{41}
\end{equation*}
$$

and several other formulas, see [9, Equation 5.10.1], [2, Chapter 1], et alii, provide other routes to the proof of Lemma 9.2

Table 3: Numerical Data For $\pi / \sin p_{n}$

p_{n}	$\Gamma\left(1-p_{n} / \pi\right) \Gamma\left(p_{n} / \pi\right)$	$\pi^{2} / p_{n} \sin p_{n}$
3	22.2619	23.3126
22	-354.93	-50.6838
333	-356.143	-3.35992
355	-104218.0	-922.286
103993	-164229.0	-4.9613
104348	-285210.0	-8.58678
208341	387167.0	5.83812
312689	1.08305×10^{6}	10.8814
833719	1.35828×10^{6}	5.11823
1146408	-5.34484×10^{6}	-14.6469
4272943	-5.71636×10^{6}	-4.20283
5419351	-8.22396×10^{7}	-47.6742
80143857	-2.1266×10^{8}	-8.33615
165707065	-3.62989×10^{8}	-6.88181
245850922	5.13494×10^{8}	6.56166
411557987	1.23845×10^{9}	9.45359
1068966896	3.00736×10^{9}	8.83836
2549491779	7.02111×10^{9}	8.65171
6167950454	2.09811×10^{10}	10.6866
14885392687	2.12297×10^{10}	4.48058
21053343141	1.79173×10^{12}	267.364
1783366216531	4.50764×10^{12}	7.9407
3587785776203	8.73917×10^{12}	7.65233

10 Numerical Data

The maxima of the function $1 / \sin x$ occur at the numerators $x=p_{n}$ of the sequence of convergents $p_{n} / q_{n} \longrightarrow \pi$. The first few terms of sequence p_{n}, which is cataloged as $A 046947$ in [15], are:

$$
\begin{array}{r}
\mathcal{N}_{\pi}=\{1,3,22,333,355,103993,104348,208341,312689,833719,1146408,4272943, \\
5419351,80143857,165707065,245850922,411557987, \ldots\} \tag{42}
\end{array}
$$

Observe that the substitution $z \longrightarrow p_{n} / \pi$ in $\Gamma(1-z) \Gamma(z)$ leads to

$$
\begin{equation*}
\frac{\Gamma(1-z) \Gamma(z)}{z}=\frac{\pi}{z \sin \pi z}=\frac{\pi^{2}}{p_{n} \sin p_{n}}=O(1) \tag{43}
\end{equation*}
$$

A few values were computed to illustrate the prediction in Lemma ??. The ratio (43) is tabulated in the third column of Table 3.

11 Problem

11.1 Flint Hill Class Series

Exercise 11.1. Assume that the infinite series is absolutely convergent. Use a Cauchy integral formula to evaluate the integral

$$
\frac{1}{i 2 \pi} \int_{C} \frac{1}{z^{u} \sin ^{v} z} d z
$$

where C is a suitable curve.
Exercise 11.2. Determine whether or not there is a complex valued function $f(z)$ for which the Cauchy integral evaluate to

$$
\frac{1}{i 2 \pi} \int_{C} f(z) d z=\sum_{n \geq 1} \frac{1}{n^{u} \sin ^{v} n}
$$

where C is a suitable curve, and the infinite series is absolutely convergent.
as $|\pi z| \rightarrow \infty$.
Exercise 11.3. The infinite series

$$
S_{1}=\sum_{n \geq 1} \frac{(-1)^{n+1}}{n} \quad \text { and } \quad S_{2}=\sum_{n \geq 1} \frac{1}{n^{2} \sin n}
$$

have many asymptotic similarities. The first is conditionally convergent. Is the series S_{2} conditionally convergent?

11.2 Complex Analysis

Exercise 11.4. Let $z \in \mathbb{C}$ be a large complex variable. Prove or disprove the asymptotic relation

$$
\frac{1}{\sin |\pi z|} \asymp \frac{1}{\sin \left(\frac{1}{|\pi z|}\right)} \asymp|\pi z| .
$$

Exercise 11.5. Consider the product

$$
\begin{equation*}
\sin \left(\frac{1}{z}\right) \times \sin z=1+O\left(1 / z^{2}\right) \tag{44}
\end{equation*}
$$

of a complex variable $z \in \mathbb{C}$. Explain its properties in the unit disk $\{z \in \mathbb{C}:|z|<1\}$ and at infinity.
Exercise 11.6. Let $z \in \mathbb{C}$ be a large complex variable. Use the properties of the gamma function to prove the asymptotic relation

$$
|\Gamma(1-z) \Gamma(z)|=O(|z|)
$$

11.3 Irrationality Measures

Exercise 11.7. Do the irrationality measures of the numbers π and π^{2} satisfy $\mu(\pi)=\mu\left(\pi^{2}\right)=2$? This is supported by the similarity of $\sin (n)=\sin (n-m \pi)$ and

$$
\frac{\sin x}{\pi}=\prod_{m \geq 1}\left(1-\frac{x^{2}}{\pi^{2} m^{2}}\right)
$$

at $x=n$. More generally, $x=n^{k} \pi^{-k+1}$
Exercise 11.8. What is the relationship between the irrationality measures of the numbers π and π^{k}, for example, do these measures satisfy $\mu(\pi)=\mu\left(\pi^{k}\right)=2$ for $k \geq 2$?

11.4 Partial Quotients

Exercise 11.9. Determine an explicit bound $a_{n} \leq B$ for the continued fraction of the irrational number $\pi=\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right]$ for all partial quotients a_{n} as $n \rightarrow \infty$.
Exercise 11.10. Does $\pi^{2}=\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right]$ has bounded partial quotients a_{n} as $n \rightarrow \infty$?

11.5 Concatenated Sequences

Exercise 11.11. A Champernowne number $\kappa_{b}=0.123 \cdots b-1 \cdot b \cdot b+1 \cdot b+2 \cdots$ in base $b \geq 2$ is formed by concatenating the sequence of consecutive integers in base b is irrationality. Show that the number $0 . F_{0} F_{1} F_{2} F_{3} \ldots=1 / F_{11}$ formed by concatenating the sequence of Fibonacci numbers $F_{n+1}=F_{n}+F_{n-1}$ is rational.
Exercise 11.12. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial, and let $D_{n}=|f(n)|$. Show that the number $0 . D_{0} D_{1} D_{2} D_{3} \ldots$ formed by concatenating the sequence of values is irrational.

Exercise 11.13. Let $\left\{D_{n} \geq 0: n \geq 0\right\}$ be an infinite sequence of integers, and let $\alpha=$ $0 . D_{0} D_{1} D_{2} D_{3} \ldots$ formed by concatenating the sequence of integers. Determine a sufficient condition on the sequence of integers to have an irrational number $\alpha>0$.

References

[1] Max A. Alekseyev. On convergence of the Flint Hills series. arXiv:1104.5100,
[2] Andrews, George E.; Askey, Richard; Roy, Ranjan. Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge U niversity Press, Cambridge, 1999.
[3] Borwein, Jonathan M. The life of π : from Archimedes to ENIAC and beyond. From Alexandria, through Baghdad, 531-561, Springer, Heidelberg, 2014.
[4] Berggren, Lennart; Borwein, Jonathan; Borwein, Peter. Pi: a source book. Third edition. Springer-Verlag, New York, 2004.
[5] Borwein, J. M. and Borwein, P. B. AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 362-386, 1987.
[6] Beukers, Frits. A rational approach to π. Nieuw Arch. Wiskd. (5) 1 (2000), no. 4, 372-379.
[7] Bugeaud, Yann. Diophantine approximation and Cantor sets. Math. Ann. 341 (2008), no. 3, 677-684.
[8] Chudnovsky, G. V. Hermite-Pade approximations of the measure of irrationality of π. Lecture Notes in Math., 925, Springer, Berlin-New York, 1982.
[9] Digital Library Mathematical Functions, https://dlmf.nist.gov.
[10] Greene, Robert E.; Krantz, Steven G. Function theory of one complex variable. Graduate Studies in Mathematics, 40. American Mathematical Society, Providence, RI, 2006.
[11] Hata, Masayoshi. A lower bound for rational approximations to π. J. Number Theory 43 (1993), no. 1, 51-67.
[12] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. 5th ed., Oxford University Press, Oxford, 2008.
[13] Mahler, K. On the approximation of π. Nederl. Akad. Wetensch. Proc. Ser. A. 56=Indagationes Math. 15, (1953). 30-42.
[14] Mignotte, M. Approximations rationnelles de π et quelques autres nombres. Journees Arithmetiques (Grenoble, 1973), pp. 121-132. Bull. Soc. Math. France, Mem. 37, 1974.
[15] On-Line Encyclopedia of Integer Sequences, oeis.org.
[16] Salikhov, V. Kh. On the irrationality measure of π. Russian Math. Surveys 63 (2008), no. 3, 570-572.

IrrationalityMeasurePi-05-18-19-37-arxiv.tex.

[^0]: May 21, 2019
 AMS MSC: Primary 11J82, Secondary 11Y60.
 Keywords: Irrational number; Irrationality measure; Circle number.

