
ar
X

iv
:1

90
2.

08
98

2v
7

 [
m

at
h.

N
T

]
 3

0
A

pr
 2

01
9 Flattening Karatsuba’s recursion tree

into a single summation

Thomas Baruchel†

†Éducation nationale, France
baruchel@riseup.net

February 2019∗

Abstract

The recursion tree resulting from Karatsuba’s formula is built here by
using an interleaved splitting scheme rather than the traditional left/right
one. This allows an easier access to the nodes of the tree and 2n−1 of them
are initially flattened all at once into a single recursive formula. The whole
tree is then flattened further into a convolution formula involving less
elementary multiplications than the usual Cauchy product — leading to
iterative (rather than recursive) implementations of the algorithm. Unlike
the traditional splitting scheme, the interleaved approach may also be
applied to infinite power series, and corresponding formulas are also given.

1 Introduction

The fast multiplication algorithm discovered by Anatoly Karatsuba in 1960 (and
published two years later) is known to be the oldest algorithm faster than the
“grade school” method; while newer algorithms are still faster for sufficiently
large numbers or polynomials, it is still widely used today for multiplicating
medium-sized numbers or polynomials.

Due to its recursive divide-and-conquer approach, implementing this algo-
rithm with no care about various issues (mostly related to storage of the tem-
porary data) will lead to poor and often slow programs. Furthermore, the triple
recursion involved by the algorithm, along with propagating changes in the
computed data due to consecutive subtractions, makes implementing it in an
iterative style more challenging.

The purpose of this paper is to deeply rewrite Karatsuba’s formula in such
a way that an efficient iterative implementation would at first glance naturally

∗The first version of this paper was carefully reviewed by Aurélien Monteillet and Anthony
Travers. Their comments have been taken into account in the current revision.

1

http://arxiv.org/abs/1902.08982v7

arise. The last example of high-level pseudocode given in the paper relies on a
single simple loop — and in bounded stack space.

Instead of performing 3log2(n) separate products, the algorithm descrived
here computes n termwise multiplications on increasingly-sparse polynomials.

2 Karatsuba’s recursion tree

While the ideas discussed here may be applied to any variant of Karatsuba’s
initial formula, we take the following one as a starting point and group all terms
as factors around each of its three distinct branches:

AB = (X + 1)A0B0
︸ ︷︷ ︸

branch 0

+X (X + 1)A1B1
︸ ︷︷ ︸

branch 1

−X (A1 −A0) (B1 −B0)
︸ ︷︷ ︸

branch 2

(1)

with A = A1X+A0 and B = B1X+B0. The formula is intended to be applied
recursively until elementary products are encountered, and each node in the
recursion tree is labelled according to a radix-3 labelling system.

When a node is reached (by starting from the root node) without walking on
any branch-2 nodes, we call it a direct node; it will otherwise be called indirect.

Karatsuba’s algorithm seems to be most of the time implemented or studied
by using the same splitting scheme which involves taking apart terms of lower
and higher degree (this may intuitively be seen as a left/right approach); it will
be referred to here as the “traditional splitting scheme”.

Several other splitting schemes are fully compliant with formula (1), namely
any scheme taking apart groups of some power-of-2 sequential terms. The sim-
plest one will be considered from now on: taking apart terms of even and odd
rank. Such choice will have two main benefits: identifying the exact labelling
number of a node is now easier and applying the algorithm to infinite power
series will also be possible. This splitting scheme will be referred to here as the
“interleaved splitting scheme”. Applying it recursively is illustrated below:

a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0

=
(
a7x

6 + a5x
4 + a3x

2 + a1
)
x+

(
a6x

6 + a4x
4 + a2x

2 + a0
)

=
((
a7x

4 + a3
)
x2 +

(
a5x

4 + a1
))

x+
((
a6x

4 + a2
)
x2 +

(
a4x

4 + a0
))

3 Partially flattening the recursion tree

In this section, the following conventions are used:

• explicit symbols for multiplication and convolution (× and ∗ respectively)
for formulae which are applied recursively;

• an implcit notation if one of the factors is a polynomial — or the generating
function of an integer sequence — containing only 0 and 1 coefficients.

2

Let A and B be two polynomials of degree n−1 (for clarity, n being a power
of 2). Once Karatsuba’s formula has been applied repeatedly log (n) times,
matching coefficients by degree in A and B are multiplied together. All these
n elementary multiplications obviously correspond to direct nodes of the tree
(involving no subtraction). With the interleaved splitting scheme, the radix-3
label of such nodes also gives the binary notation (in the reversed order) of each
degree. By using the ⊙ symbol for the termwise multiplication of polynomials
(or power series), we can group these n elementary multiplications as:

1− xn

1− x
(A (x)⊙B (x)) (2)

where, from a computational point of view, the left factor does not involve a
true multiplication but rather n shift/add operations.

We also collect all other direct nodes, which are subtracting nodes reached
whithout having previously walked on any branch-2 nodes. There are 2k of
them on the level k of the tree (k = 0 corresponding to the first level under the
root node). It is easy again to use the binary counterpart of their radix-3 label
for correctly identifying them. On the level k of the tree, all terms of degree j

are subtracted from the corresponding terms of degree j + 2k−1. Generating
functions are used as masks for extracting the relevant terms (as well as for
shifting and adding them):

−

log2(n)∑

k=1

2k−1−1∑

j=0

1− x2k−1

(1− x) x2k−1+j

(
1− xn

1− x2k
x2k−1+j ⊙

(

1− x2k−1
)

A (x)

)

×

(
1− xn

1− x2k
x2k−1+j ⊙

(

1− x2k−1
)

B (x)

)

where k is the level of each considered row of nodes, and j the rank of each
direct subtracting node on the level k.

Since 2k−1+ j merely iterates over 1, 2, 3, . . . , n− 1, it is easy to use a single
summation for directly iterating over all the considered subtrees:

−

n−1∑

m=1

1− x2⌊log2(m)⌋

(1− x) xm

(
(1− xn)xm

1− x2⌊log2(m)⌋+1
⊙
(

1− x2⌊log2(m)⌋
)

A (x)

)

×

(
(1− xn)xm

1− x2⌊log2(m)⌋+1
⊙
(

1− x2⌊log2(m)⌋
)

B (x)

)

(3)

Summing both parts (2) and (3) results in A (x)×B (x) and is more or less
equivalent to Karatsuba’s algorithm from a computational point of view — as

3

long as some variable substitution is done before each recursive call in order to
map sparse polynomials to new polynomials of smaller degree.

Using the previously described interleaved splitting scheme now allows to
apply Karatsuba’s recursive formula to infinite power series (which is not the
case with the traditional splitting scheme).

In the formulas (2) and (3), all 1−xn numerators in the generating functions
are intended to truncate periodical sequences of unitary and null coefficients to
the required length. Extending these formulas to infinite power series is then
easily achieved by removing such numerators:

f(x) ∗ g(x) =
f (x)⊙ g (x)

1− x
−

∞∑

m=1

1− x2⌊log2 m⌋

(1− x)xm

(
xm

1− x2⌊log2 m⌋+1
⊙
(

1− x2⌊log2 m⌋
)

f (x)

)

∗

(
xm

1− x2⌊log2 m⌋+1
⊙
(

1− x2⌊log2 m⌋
)

g (x)

)

(4)

It is also easy to build the set Sd of all indices m occuring in the previous
formulas (3) or (4) which are involved in the resulting coefficient of degree d:

Sd =
{

m
∣
∣
∣ 1 6 m 6 d,

(

(d−m) mod 2⌊log2 m⌋+1
)

< 2⌊log2 m⌋
}

(5)

The cardinality |Sd| of such sets of indices is empirically found to be the se-
quence A268289 in the On-Line Encyclopedia of Integer Sequences, namely the
cumulated differences between the number of digits 1 and the number of digits 0
in the binary expansions of integers up to d 1. An explicit expression can be
given for |Sd| by resorting to the τ Takagi function:

|Sd| = (d+ 1) (m− k + 1)− (2 + τ(ξ − 1)) 2m + 2k+1 − 1

with k = ⌊log2(d)⌋, m = ⌊log2(d+ 1)⌋ and ξ = (d+ 1)2−m.

4 Fully flattening the recursion tree

Having described in the previous section how to handle two branches of the
tree at once by using the termwise multiplication formula, we now go one step
further. In order to finally flatten the whole tree, the initial formula (1) is
rewritten with only two branches (by merging the previous branches 0 and 1),

1Other interesting integer sequences may be related to these consecutive sets, some being
already known with other definitions and published in the On-Line Encyclopedia of Integer

Sequences. Most of the conjectured identities gathered through experimental computations
involve the binary expansion of integers; some give the required number of moves to solve the
chinese rings puzzle, etc. They may be published separately later.

4

leading now to a more familiar binary tree:

AB = (X + 1) (A0B0 +XA1B1)
︸ ︷︷ ︸

branch 0 (termwise)

−X (A1 −A0) (B1 −B0)
︸ ︷︷ ︸

branch 1 (subtracting)

(6)

As shown above, the new first branch is called “termwise” because it will be
flattened as the termwise product of A = A1X + A0 and B = B1X + B0; the
new second branch is the “subtracting” one. Iterating over all nodes of the tree
is achieved by using a suitable bit-testing function.

Discussing the whole process being now easier from a coding point of view,
we give two pieces of pseudocode intended to be used with any computer algebra
system handling the polynomial type; they do not focus on low-level implemen-
tation issues (how more or less sparse polynomials are internally represented in
order to give the most efficient access to their coefficients). Termwise multipli-
cation of two polynomials should of course be already implemented.

The following code shows how subtracting and masking factors are accumu-
lated while iterating on the branches of the tree; the key idea is to use the X+1
factors for selecting subtracted terms as well as for propagating them and the
1−X corresponding factors for performing the subtractions:

Multiply(A,B)

1 d← ⌈log
2
(1 + max(degA,degB))⌉

2 n← 2d

3 s← 0
4 for k ← 0 to n− 1
5 do f ← 1
6 f ′ ← 1
7 for j ← 0 to d− 1
8 do if k & 2j 6= 0 ✄ test if bit j of k is set

9 then f ′ ← (1−X2
j

) f ′
✄ subtracting factor

10 else f ← (1 +X2
j

) f ✄ termwise mask
11 degree ← deg f ′

✄ degree of f ′

12 lt ← coeff(f ′, X, degree)Xdegree
✄ leading term in f ′

13 s← s+ f (f lt ⊙ f ′A⊙ f ′B)
14 return s

where it can be seen that the variable f has two distinct purposes: an algebraic
purpose coming from (6) but also a tracking purpose for identifying how many
terms have to be kept in the termwise multiplication.

Trying to write down the previous algorithm as a mathematical formula
is achievable but rather heavy if we stick to mimicking all bitwise operations.
A more elegant approach is allowed by noticing that iterating with f over all
divisors of some suitable polynomial leads to a more concise typesetting, though
we still have to introduce some conventional notations:

A×B =
∑

f ∈ Z[X],

f
∣

∣

∑n−1

k=0
Xk

f
(

f ḟ W ⊙ ḟA⊙ ḟB
)

(7)

5

with ḟ selecting all unselected 1 + X2k factors in f and negating — for each
one — the coefficient of their non constant term, and ḟ W the leading term (in-
cluding the coefficient) of ḟ . The superscript character W stands for “weight”2.

Formula (7) can easily be adapted to infinite power series by changing the

definition of the variable f to f ∈ Z[X], ∃n ∈ N : f |
∑2n−1

k=0 Xk.
The previous pseudocode however loses all benefits of traditional implemen-

tations of Karatsuba’s algorithm because the same subtractions are computed
for distinct values of k. Fortunately iterating over the binary expansions of k
by using the reflected binary code (Gray code) instead of the standard radix-2
labelling system preserves the required number of subtractions.

The following version, though not optimized by itself from an implementa-
tion point of view (because it still relies on high-level polynomial types), gives
the prototype of a rather optimized iterative version of Karatsuba’s algorithm:

Multiply2(A,B)

1 d← ⌈log
2
(1 + max(degA,degB))⌉

2 n← 2d

3 f ← (1−Xn)/(1−X) ✄ initial mask (all bits set)
4 f ′ ← 1
5 g ← 0 ✄ Gray-code counterpart of k
6 s← f (f ⊙ A⊙B) ✄ case g = k = 0
7 for k ← 1 to n− 1
8 do j ← ⌊log

2
(k xor k − 1)⌋ ✄ least significant set bit in k

9 if g & 2j = 0 ✄ test if bit j has to be set in g

10 then f ′ ← (1−X2
j

) f ′
✄ subtracting factor

11 f ← f/(1 +X2
j

) ✄ termwise mask

12 else f ′ ← f ′/(1−X2
j

) ✄ subtracting factor

13 f ← (1 +X2
j

) f ✄ termwise mask
14 g ← g xor 2j ✄ update g (Gray-code of k)
15 degree ← deg f ′

✄ degree of f ′

16 lt ← coeff(f ′, X, degree)Xdegree
✄ leading term in f ′

17 s← s+ f (f lt ⊙ f ′A⊙ f ′B)
18 return s

A lower-level implementation of this pseudocode should avoid actually stor-
ing the f ′ polynomial in a separate buffer and computing both f ′A and f ′B

products — the idea being rather to directly store f ′A and f ′B, and merely
update them at each step of the loop.

Furthermore, efficiently implementing the previous pseudocode should take
care of the subtracting and adding steps: since polynomials become very sparse
for some values of k, very few terms should be manipulated at these points.
Two main directions should be explored for that purpose: using linked lists for
representing polynomials or tracking the remaining non-null coefficients by using

2This symbol is compact but not very common; it can be found however in an article
by Shigeru Kuroda, Shestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial

automorphism (2007).

6

an elaborated system of strides3. Elementary multiplications should of course
be aware of the mask to be applied in order to avoid useless computation.

References

[1] The On-Line Encyclopedia of Integer Sequences, published electronically at
https://oeis.org .

[2] Richard Brent, Paul Zimmermann, Modern Computer Arithmetic, Cam-
bridge, 2011.

[3] Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Math-

ematics: A Foundation for Computer Science, second edition, 1994.

[4] Anatoly Karatsuba, Yuri Ofman, Multiplication of many-digital numbers by

automatic computers, Dokl. Akad. Nauk SSSR, 1962.

[5] Donald E. Knuth, The Art of Computer Programming, vol. 2 “Seminumer-
ical Algorithms”, third edition, 1998.

[6] Sergei K. Lando, Lectures on Generating Functions, American Mathemat-
ical Society, 2003.

[7] Richard P. Stanley, Sergey P. Fomin, Enumerative Combinatorics, vol. 2,
Cambridge, 1999.

3This is one of the most important concepts behind the famous Numpy module for Python;
strides allow to build views on parts of an existing array without actually copying it.

7

	1 Introduction
	2 Karatsuba's recursion tree
	3 Partially flattening the recursion tree
	4 Fully flattening the recursion tree

