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Abstract

Linear chord diagrams are partitions of [2n] into n blocks of size
two called chords. We refer to a block of the form {i, i + 1} as a
short chord. In this paper, we study the distribution of the number of
short chords on the set of linear chord diagrams, as a generalization
of the Narayana distribution obtained when restricted to the set of
noncrossing linear chord diagrams. We provide a combinatorial proof
that this distribution is unimodal and has an expected value of one.
We also study the number of pairs (i, i + 1) where i is the minimal
element of a chord and i + 1 is the maximal element of a chord. We
show that the distribution of this statistic on linear chord diagrams
corresponds to the second-order Eulerian triangle and is log-concave.

1 Introduction

Linear chord diagrams are partitions of [2n] = {1, 2, ..., 2n} into n blocks of
size two called chords. For a given chord {a, b} with b > a, we call a the
startpoint, b the endpoint and b − a the length of the chord. Two chords,
{a1, b1} and {a2, b2}, are said to be crossing if a1 < a2 < b1 < b2 and are said
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Figure 1: The set L1
3 of all linear chord diagrams with three chords each of

length at least one.

to be nesting if a1 < a2 < b2 < b1. For example, when n = 2 there are three
linear chord diagrams, listed as follows:

1 2 3 4 1 2 3 4 1 2 3 4

In the first diagram above, the pair of chords is neither crossing nor
nesting. The second diagram consists of exactly one crossing and the third
diagram consists of exactly one nesting.

When n = 3, there are fifteen linear chord diagrams, all of which are
shown in Figure 1. The diagrams in the first row of Figure 1 are noncrossing
(i.e., contain no crossings), while the last diagram in the first row and the
first four diagrams in the second row of Figure 1 are nonnesting (i.e., contain
no nestings). In general, the total number of linear chord diagrams having n

chords is (2n− 1)!!.
In [8], Sullivan gave a relationship for the diagonals of the array (1) below

of linear chord diagrams with n chords where all chords have length at least
k.
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n L1
n(q) L2

n(q) L3
n(q)

1 q

2 1 + q + q2 q2

3 5 + 6q + 3q2 + q3 1 + 2q + 2q2 q3

4 36 + 41q + 21q2 + 6q3 + q4 10 + 14q + 9q2 + 2q3 + q4 1 + 3q + 4q2 + 2q3

...
...

Figure 2: The distribution of the number of short (i.e., minimal length)
chords on Lk

n for k = 1, 2, 3, . . . .

n\k 1 2 3 4 5
1 1
2 3 1
3 15 5 1
4 105 36 10 1
5 945 329 99 20 1
... · · ·

(1)

We are interested in further refining this table by considering the number
of chords of length k for each linear chord diagram with n chords. Let Lk

n

denote the set of all linear chord diagrams having n chords, each of which
has length at least k. For π ∈ Lk

n, we refer to a chord of length k in π as a
short chord. For π ∈ Lk

n, define sc(π) to be the number of short chords, i.e.
the number of chords of length k, in π. We want to consider the distribution
of the number of short chords on Lk

n, that is,

Lk
n(q) :=

∑

π∈Lk
n

qsc(π)

See Figure 2.
In this paper, we will focus only on the case where k = 1, i.e. those linear

chord diagrams with n chords whose shortest chord is of length at least 1,
classified by the number of chords of length 1. In other words, we will look
at the set of all linear chord diagrams with n chords (since all diagrams have
a shortest chord of length at least 1) by number of chords of length 1. In
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this context, a short chord will be understood to be a chord of length one.
Table (2) gives the numbers

Ln,s :=
∣

∣{π ∈ L1
n | sc(π) = s}

∣

∣ ,

i.e., the total number of linear chord diagrams with n chords exactly s of
which are short (have length one):

n\s 0 1 2 3 4 5 6 7 8
0 1
1 0 1
2 1 1 1
3 5 6 3 1
4 36 41 21 6 1
5 329 365 185 55 10 1
6 3655 3984 2010 610 120 15 1
7 47844 51499 25914 7980 1645 231 21 1
8 72135 769159 386407 120274 25585 3850 406 28 1
... · · ·

(2)

Note that the numbers Ln,s in the table above are the coefficients of the
polynomials L1

n(q) in the first column of the table in Figure 2. The numbers
Ln,s are recorded as A079267 in [9].

Linear chord diagrams with n chords are also called (perfect) matchings
on [2n], i.e. ways of connecting 2n points in the plane lying on a horizontal
line by n arcs, each arc connecting two of the points and lying above the
points [6]. It is also known that the Catalan numbers Cn = 1

n+1

(

2n
n

)

count the
number of noncrossing matchings on [2n]. The Narayana numbers, N(n, k) =
1
k

(

n−1
k−1

)(

n

k−1

)

, count the number of noncrossing matchings on [2n] with k arcs
of the form (i, i+ 1) (i.e., k chords of length 1). The Narayana numbers are
given by the following table:

n\k 1 2 3 4 5
1 1
2 1 1
3 1 3 1
4 1 6 6 1
5 1 10 20 10 1
... · · ·
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We may consider table (2) as a generalization of the Narayana numbers
on the set of all matchings on [2n].

An LR pair in a linear chord diagram is a pair of consecutive integers
(i, i + 1) where i is a startpoint of a chord and i + 1 is an endpoint of a
(possibly different) chord. The Narayana numbers also count the number of
nonnesting matchings on [2n] with k LR pairs, which can be seen as follows.
We first make the well known observation that the Narayana numbers count
the number of Dyck paths of length 2n with k peaks [7]. Consider a Dyck
path as a list of n up steps U and n down steps D, such that at any step
the number of preceding down steps never exceeds the number of preceding
up steps. Label the U steps of the list with the numbers 1 through n, from
left to right, and label the D steps of the list with the numbers 1 through n,
from left to right. Draw a linear chord diagram with n chords by connecting
the U step labeled i with the D step labeled i, for all i = 1, . . . , n. The result
is a unique nonnesting linear chord diagram with n chords and k LR-pairs.

We obtain a different generalization of the Narayana numbers by consid-
ering LR pairs in all matchings on [2n] (equivalently, linear chord diagrams
with n chords). Let Tn,k denote the number of all linear chord diagrams with
n chords having exactly k LR pairs. The following table gives the numbers
Tn,k:

n\k 1 2 3 4 5 6 7
1 1
2 2 1
3 6 8 1
4 24 58 22 1
5 120 444 328 52 1
6 720 3708 4400 1452 114 1
7 5040 33984 58140 32120 5610 240 1
... · · ·

(3)

In Section 2 of this paper, we prove combinatorially that the rows of table
(2) are unimodal and conjecture that they are also log-concave. We also give
the exponential generating functions for the columns of this triangle. In
addition, we give a combinatorial proof of the fact that the total number
of chords of length one among all linear chord diagrams with n chords is
equal to the total number of linear chord diagrams with n chords. In other
words, one is the expected number of short chords among the elements of L1

n.
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This fact was first shown by Kreweras and Poupard in [3] and more recently
extended by Young in [10]. In Section 3, we explore the triangle given by
table (3). We connect table (3) to the second order Eulerian triangle and
prove that the rows of table (3) are log-concave (and thus also unimodal).

2 A Generalized Narayana Triangle

We now explore several interesting properties of the generalized Narayana
triangle given in table (2), i.e, the number of linear chord diagrams with n

chords, exactly s of which have length 1. It is easy to see that the entries on
the main diagonal of this triangle will always have the value 1. Furthermore,
the entries along the first sub-diagonal correspond to the triangular numbers
(

n

2

)

.
Now recall from Section 1 that Ln,s = |{π ∈ L1

n | sc(π) = s}| is the num-
ber of linear chord diagrams having n chords exactly s of which are chords
of length one. We introduce the following shorthand,

Ln(q) := L1
n(q) =

n
∑

s=0

Ln,s q
s,

and note that the coefficients of Ln(q) are given by the rows of table (2).

Theorem 1. Ln(q) is unimodal.

Proof. Let Ln,s := {π ∈ L1
n| sc(π) = s} denote the set of linear chord dia-

grams having n chords and exactly s short chords (i.e., chords of length one),
so that |Ln,s| = Ln,s. We can show that Ln(q) is unimodal by establishing
injective maps φ1 : Ln,0 → Ln,1 and φj : Ln,j → Ln,j−1 for j = 2, . . . , n.

Define φj : Ln,j → Ln,j−1 for j ≥ 2 as follows. Let π ∈ Ln,j. Then π has
j short chords, where j ≥ 2. Take the rightmost short chord, say {i, i + 1},
and unwrap this chord by sending the right endpoint to the beginning of the
diagram, i.e., replacing it with the long chord {1, i}. The result is a linear
chord diagram with j−1 short chords where all short chords are covered. φj

is injective. Define φ1 : Ln,0 → Ln,1 as follows. Let π ∈ Ln,0. Take the first
(long) chord {1, i} and turn it into the short chord {i, i+ 1}; the result is a
chord diagram with exactly one short chord. This map is injective but not
surjective because it will not produce the chord diagrams in Ln,1 that begin
with a short chord.
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Conjecture 1. The coefficients of Ln(q) form a log-concave sequence.

Theorem 2. The exponential generating function for the number Ln,s of
linear chord diagrams with n chords, exactly s of which are chords of length
one, is

e(−1+
√
1−2t)

√
1− 2t

· (1−
√
1− 2t)s

s!
.

Proof. First we note that, for s ≥ 0, the numbers Ln,s satisfy the recurrence

Ln,s = Ln−1,s−1 + (2n− 2− s)Ln−1,s + (s+ 1)Ln−1,s+1 (4)

with L0,0 = 1 and Ln,s = 0 for s > n. A combinatorial proof of this recurrence
is given in [2].

We want to find the exponential generating function

Ls(t) :=
∞
∑

n=0

Ln,s

tn

n!

for the sth column of the triangle in (2). To do this, we extend the approach in
[2] that was used to find the exponential generating function L0(t). Recalling
this approach, we define

Ln(q) := Ln,0 + Ln,1q + Ln,2q
2 + · · ·+ Ln,nq

n

and note that

Ln,s =
L
(s)
n (0)

s!
.

In [2], the authors define the bivariate generating function

ω(q, t) =
∞
∑

n=0

Ln(q)
tn

n!

and use recurrence (4) to show that

ω(q, t) =
e(1−q)(−1+

√
1−2t)

√
1− 2t

,

thereby setting q = 0 to obtain

L0(t) =
e(−1+

√
1−2t)

√
1− 2t

7



as the exponential generating function for the first column of (2).
We can extend this observation by noting that

Ls(t) =

∞
∑

n=0

Ln,s

tn

n!
=

∞
∑

n=0

L
(s)
n (0)

s!

tn

n!
=

(

1

s!

∂sω

∂qs

∣

∣

∣

∣

q=0

)

and
1

s!

∂sω

∂qs
=

e(1−q)(−1+
√
1−2t)

√
1− 2t

· (1−
√
1− 2t)s

s!
.

Letting q = 0 in the last equation we obtain

Ls(t) =
e(−1+

√
1−2t)

√
1− 2t

· (1−
√
1− 2t)s

s!
.

Remark 1. Note that the preceding statement implies that the triangle in

(2) is an exponential Riordan array with initial function g = e(−1+
√

1−2t)
√
1−2t

and

multiplier function f = 1−
√
1− 2t. [1, 5] Furthermore, we may use Riordan

group algebra to count the total number of short chords among all linear chord
diagrams with n chords. To do this, we multiply triangle (2) by the infinite
column vector (0, 1, 2, 3, . . . )T , using Riordan group multiplication. Since tet

is the exponential generation function for the sequence 0, 1, 2, 3, 4, . . . , the
Riordan multiplication proceeds as follows:
(

e(−1+
√
1−2t)

√
1− 2t

, 1−
√
1− 2t

)

∗ tet =
e(−1+

√
1−2t)

√
1− 2t

(

1−
√
1− 2t

)

e1−
√
1−2t

=
1√

1− 2t
− 1

=

∞
∑

n=0

(2n− 1)!!
tn

n!
,

where (2n− 1)!! = 1 · 3 · 5 · (2n− 1) for n ≥ 1 and 0 otherwise. The result is
that the total number of short chords among all linear chord diagrams with
n chords is the same as the total number of linear chord diagrams with n

chords.

We now provide a combinatorial argument for the fact that the expected
number of short chords among all linear chord diagrams with n chords is one.
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Theorem 3 ([3]). The total number of short chords among all linear chord
diagrams with n chords is equal to the number of linear chord diagrams with
n chords.

Proof. We will construct a bijection which maps each short chord s in a linear
chord diagram D with n chords to a unique linear chord diagram Ds with n

chords.
To begin, identify a short chord s in any linear chord diagram D with n

chords. If s = {1, 2}, then s will be mapped to the diagram D that s is a
part of, that is, Ds = D. If s = {i, i + 1} in D, where i > 1, then s will
be mapped to the diagram Ds that has the same connectivity as D, except
that the chord {i, i + 1} in D has been replaced with the chord {1, i + 1}
and all start and endpoints between 1 and i− 1 have moved one position to
the right. It should be clear that if s1 and s2 are two different short chords,
either from the same or different diagrams, then Ds1 6= Ds2, and hence this
map is injective.

To invert this map, we do the following. Take a linear chord diagram D

and consider its first chord {1, i + 1}. If i = 1, associate D with its first
chord s = {1, 2}. If i > 1, create a new diagram by removing {1, i+ 1} from
D, shifting all the start and endpoints 2, . . . , i of D one position to the left
and inserting the chord s = {i, i + 1}. Associate D with the short chord
s = {i, i+1} from this new diagram. It should be clear from the description
of this inverse map that if D1 and D2 are two different linear chord diagrams,
then the short chord s1 associated with D1 will be different from the short
chord s2 associated with D2.

See Figure 3 for a depiction of this bijection when n = 3.
Hence, we have a bijection between the set of short chords among all

linear chord diagrams with n chords and the set of linear chord diagrams
with n chords.

3 The Second-Order Eulerian Triangle

In this section, we explore the second-order Eulerian triangle, which can be
thought of as another generalization of the Narayana triangle. The second-
order Eulerian triangle is given below, where entry E(n, k) is known to count
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Figure 3: An illustration of the bijective proof of Theorem 3 in the case
where n = 3. For each short chord s (highlighted in bold) above, see its
corresponding linear chord diagram Ds pictured below.
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the number of permutations of the multiset {1, 1, 2, 2, . . . , n, n} with k ascents
such that between any two copies of m there are only numbers less than m.

n\k 0 1 2 3 4 5 6
1 1
2 1 2
3 1 8 6
4 1 22 58 24
5 1 52 328 444 120
6 1 114 1452 4400 3708 720
7 1 240 5610 32120 58140 33984 5040
... · · ·

(This triangle is recorded as A008517 in the OEIS [9].)
The second-order Eulerian numbers are known to satisfy the recurrence:

E(n, k) = (k + 1)E(n− 1, k) + (2n− k − 1)E(n− 1, k − 1) (5)

where E(n, 0) = 1. This can be seen by the following argument.
One can form all permutations of the multiset {1, 1, 2, 2, . . . , n, n} with k

ascents in which between any two copies ofm there are only numbers less than
m by taking all such permutations of the multiset {1, 1, 2, 2, . . . , n−1, n−1}
with k ascents and first replacing all numbers m = 1, 2, . . . , n−1 with m+1.
Then insert the pair 1 1 at the end of the permutation or between any ascent,
which can be done in k + 1 ways. One can also form such a permutation by
taking any such permutation of the multiset {1, 1, 2, 2, . . . , n− 1, n− 1} with
k − 1 ascents and inserting the pair 1 1 at any place which is not an ascent,
which can be done in 2n− k − 1 ways.

The row reversal of the second-order Eulerian triangle gives the triangle

n\k 1 2 3 4 5 6 7
1 1
2 2 1
3 6 8 1
4 24 58 22 1
5 120 444 328 52 1
6 720 3708 4400 1452 114 1
7 5040 33984 58140 32120 5610 240 1
... · · ·

(6)
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whose entries we will denote by T (n, k). Note we have re-indexed the
columns to initialize with k = 1.

Proposition 1. The entries T (n, k) of the row reversed second-order Eule-
rian triangle (6), which satisfy

T (n, k) = (n− k + 1)T (n− 1, k − 1) + (n− 1 + k)T (n− 1, k) (7)

with n, k ≥ 1 and T (n, 1) = n!, count the number of linear chord diagrams
with n chords and k LR pairs.

Proof. The fact that T (n, k) satisfies recurrence (7) follows directly from
recurrence (5) for the second-order Eulerian triangle. We will show that the
number of linear chord diagrams with n chords and k LR pairs also satisfies
recurrence (7).

To form a linear chord diagram with n chords and k LR pairs, start with a
linear chord diagram with n−1 chords and k−1 LR pairs. Place a new start
point for a chord at the beginning of the diagram and place the end point for
the chord after any start point that isn’t in an LR pair. This can be done in
n− (k−1) = n−k+1 ways. One can also form a linear chord diagram with
n chords and k LR pairs by starting with a linear chord diagram with n− 1
chords and k LR pairs. Place a new start point for a chord at the beginning
of the diagram and place the end point for the chord after any end point or
after any start point that is in an LR pair. This can be done in (n− 1) + k

ways.

Thus we can consider the row-reversed second-order Eulerian triangle to
be a generalization of the Narayana triangle for all linear chords diagrams
(not just those that are non-nesting, which are those counted by the Narayana
triangle). Since the generalized Narayana triangle studied in Section 2 has
entries that we have proven to be unimodal and conjecture to be log-concave,
one might wonder if those properties hold for this second generalization of
the Narayana triangle as well.

Using the following lemma due to Kurtz [4], we may conclude that the
coefficients in each row of the (row-reversed) second-order Eulerian triangle
form a log-concave, and therefore unimodal, sequence.

Lemma 1 ([4]). Suppose
n
∑

k=0

R(n, k)qk is a polynomial for which R(n, k)

satisfies the recurrence relation
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R(n, k) = (a1n+ a2k + a3) R(n− 1, k)

+ (b1n+ b2k + b3) R(n− 1, k − 1),

for n ≥ k ≥ 1, with boundary conditions R(0, 0) > 0,

R(n,−1) = R(n, n + 1) = 0, for n ≥ 1,

a1 ≥ 0, a1 + a2 ≥ 0, a1 + a2 + a3 > 0, and

b1 ≥ 0, b1 + b2 ≥ 0, b1 + b2 + b3 > 0.

Then, for given n, the sequence {R(n, k)}0≤k≤n is log-concave.

Theorem 4. T (n, k) forms a log-concave sequence.

Proof. T (n, k) satisfies Lemma 1 with a1 = 1, a2 = 1, a3 = −1, b1 = 1, b2 =
−1, b3 = 1.

4 Summary and Future Work

We have given two generalizations of the Narayana numbers, the number of
linear chord diagrams with n chords and k short chords and the number of
linear chord diagrams with n chords and k LR pairs which give the Narayana
numbers when restricted to non-crossing linear chord diagrams (in the first
case) and nonnesting linear chord diagrams (in the second case), but which
are not themselves equidistributed. In addition, the first generalization gives
a study of the coefficients given by the polynomials in the first column of
table in Figure 2.

Since the results of this paper focus on generalizing the Narayana numbers
and the first column of the table in Figure 2, one might wonder if there are
interesting results that could be proven for the coefficients of the remaining
columns in Figure 2.

Another interesting observation is that all matchings can be considered
to be Fibonacci tableaux with no fixed points and all non-nesting match-
ings are both Fibonacci tableaux and 2 × n tableaux that are counted by
the Catalan numbers. Fibonacci tableaux with no fixed points correspond
to permutations that are 312, 321 and 123 avoiding, thus giving a relation
between matchings and pattern avoiding permutations. It would be interest-
ing to see results involving various statistics on these objects translated to
and/or from linear chord diagrams.
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