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Abstract

We consider the problem of designing succinct data structures for interval graphs with n vertices while
supporting degree, adjacency, neighborhood and shortest path queries in optimal time in the Θ(logn)-
bit1 word RAM model. The degree query reports the number of incident edges to a given vertex in
constant time, the adjacency query returns true if there is an edge between two vertices in constant time,
the neighborhood query reports the set of all adjacent vertices in time proportional to the degree of the
queried vertex, and the shortest path query returns a shortest path in time proportional to its length,
thus the running times of these queries are optimal. Towards showing succinctness, we first show that
at least n logn− 2n log logn−O(n) bits are necessary to represent any unlabeled interval graph G with
n vertices, answering an open problem of Yang and Pippenger [Proc. Amer. Math. Soc. 2017]. This is
augmented by a data structure of size n logn + O(n) bits while supporting not only the aforementioned
queries optimally but also capable of executing various combinatorial algorithms (like proper coloring,
maximum independent set etc.) on the input interval graph efficiently. Finally, we extend our ideas
to other variants of interval graphs, for example, proper/unit interval graphs, k-proper and k-improper
interval graphs, and circular-arc graphs, and design succinct/compact data structures for these graph
classes as well along with supporting queries on them efficiently.

1 Introduction

A simple undirected graph G is called an interval graph if its vertices can be assigned to intervals on the real
line so that two vertices are adjacent in G if and only if their assigned intervals intersect. The set of intervals
assigned to the vertices of G is called a realization of G. These graphs were first introduced by Hajós [25] who
also asked for the characterization of them. The same problem was also asked, independently, by Benser [4]
while studying the structure of genes. Interval graphs naturally appear in a variety of contexts, for example,
operations research and scheduling theory [3], biology especially in physical mapping of DNA [35], temporal
reasoning [21] and many more. We refer the reader to [19, 20] for a thorough treatment of interval graphs
and its applications. Eventually answering the question of Hajós [25], several researchers came up with
different characterizations of interval graphs, including linear time algorithms for recognizing them; see,
for example, [20, Chapter 8] for characterizations, and [5] and [24] for linear time algorithms. Moreover,
exploiting the special structure of interval graphs, many otherwise NP-hard problems in general graphs are
also shown to have polynomial time algorithms for interval graphs [19]. These include computing maximum
independent set, reporting a proper coloring, returning a maximum clique etc. In spite of having many
applications in practically motivated problems, we are not aware of, to the best of our knowledge, any study
of interval graphs from the point of view of succinct data structures where the goal is to store a set Z of
objects using the information theoretic minimum log(|Z|) + o(log(|Z|)) bits of space while still being able to
support the relevant set of queries efficiently, and which is what we focus on in this paper. We also assume
the usual model of computation, namely a Θ(log n)-bit word RAM model where n is the size of the input.
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1throughout the paper, we use log to denote the logarithm to the base 2
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1.1 Related Work

There already exists a large body of work on representing various classes of graphs succinctly. This is partly
motivated by theoretical curiosity and partly by the practical needs as these combinatorial structures do arise
quite often in various applications. A partial list of such special graph classes would be trees [28], planar
graphs [1], chordal graphs [29], partial k-tree [15] among others, while succinct encoding for arbitrary graphs
is also considered [16] in the literature. For interval graphs, other than the algorithmic works mentioned
earlier, there are plenty of attempts in exactly counting the number of unlabeled interval graphs [26, 27],
and the state-of-the-art result is due to [34], which is what we improve in this work. For the variants of the
interval graphs that we study in this paper, there exists also a fairly large number of algorithmic results on
them as well as structural results. See [19,20] for details.

1.2 Our Results and Paper Organization

Given an unlabeled interval graph G with n vertices, in Section 3 we first show that at least n log n −
2n log log n−O(n) bits are necessary to represent G, answering an open problem of Yang and Pippenger [34].
More specifically, Yang and Pippenger [34] showed a lower bound of (n log n)/3 +O(n)-bit for representing
any unlabeled interval graph and asked whether this lower bound can be further improved. Augmenting this
lower bound, in Section 4 we also propose a succinct representation of G using n log n+O(n) bits while still
being able to support the relevant queries optimally, where the queries are defined as follows. For any two
vertices u, v ∈ G,

• degree(v): returns the number of vertices that are adjacent to v in G,

• adjacent(u, v): returns true if u and v are adjacent in G, and false otherwise,

• neighborhood(v): returns all the vertices that are adjacent to v in G, and

• spath(u, v): returns the shortest path between u and v in G.

We show that all these queries can be supported optimally using our succinct data structure for interval
graphs. More precisely, for any two vertices v, u ∈ G, we can answer degree(v) and adjacent(u, v) queries
in O(1) time, neighborhood(v) queries in O(degree(v)) time, and spath(u, v) queries in O(|spath(u, v)|) time.
Furthermore, we also show how one can implement various fundamental graph algorithms in interval graphs,
for example depth-first search (DFS), breadth-first search (BFS), computing maximum independent set,
determining a maximum clique etc, both time and space efficiently using our succinct representation for
interval graphs. In Section 5, we extend our ideas to other variants of interval graphs, for example, proper/unit
interval graphs, k-proper and k-improper interval graphs, and circular-arc graphs, and design succinct data
structures for these graph classes as well along with supporting queries on them efficiently. For definitions of
these graphs, see Section 5. Finally we conclude in Section 6 with some remarks on possible future directions
for exploring. We list all the preliminary data structures and graph theoretic terminologies that will be used
throughout this paper, in Section 2.

2 Preliminaries

We will use the following data structures in the rest of this paper.

Rank and Select queries: Let S = s1, . . . , sn be a sequence of size n over an alphabet Σ = {0, 1, . . . , σ−1}.
Then for 1 ≤ i ≤ n, and α ∈ Σ, one can define rank and select queries as follows.

• rankα(S, i) = the number of occurrences of α in s1 . . . si.

• selectα(S, i) = the position j where sj is the i-th α in S.
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The following lemma shows that these operations can be supported efficiently using optimal space.

Lemma 2.1 ( [11, 22]). Given a sequence S = s1, . . . , sn of size n over an alphabet Σ = {0, 1, . . . , σ − 1},
for any α ∈ Σ, there exists data structures as follows.

• when σ = 2, n+ o(n)-bit data structure which answers rankα and selectα queries on S in O(1) time.

• when σ > 2, n log σ + o(n log σ)-bit data structure which answers rankα queries on S in O(log log σ)
time and selectα queries on S in O(1) time.

Note that the one can access the any element of the input sequence (at a given index) in O(1) (resp.
O(log log σ)) time with the n+ o(n) (resp. n log σ + o(n log σ))-bit data structure of Lemma 2.1

Range Maximum Queries: Given a sequence S = s1, . . . , sn of size n, for 1 ≤ i, j ≤ n, the
Range Maximum Query on range [i, j] (denoted by RMaxS(i, j)) returns the position i ≤ k ≤ j such that sk
is a maximum value in si . . . sj (if there is a tie, we return the leftmost such position). One can define the
Range Minimum Queries on range [i, j] (RMinS(i, j)) analogously. The following lemma shows that there
exist data structures which can answer these queries efficiently using optimal space.

Lemma 2.2 ( [7, 18]). Given a sequence S of size n and for any 1 ≤ c ≤ n,

1. there exists a data structure of size O(n/c) bits, in addition to storing the sequence S, which supports
RMaxS and RMinS queries in O(c) time while supporting access on S in O(1) time.

2. there exists a data structure of size 2n+ o(n) bits (that does not store the sequence S) which supports
RMaxS or RMinS queries in O(1) time.

Graph Terminology and Input Representation: We will assume the knowledge of basic graph theoretic
terminology as given in [13] and basic graph algorithms as given in [12]. Throughout this paper, G = (V,E)
will denote a simple undirected graph with the vertex set V of cardinality n and the edge set E having
cardinality m. We call G an interval graph if (a) with every vertex we can associate a closed interval on
the real line, and (b) two vertices share an edge if and only if the corresponding intervals are not disjoint
(see Figure 1 for an example). It is well known that given an interval graph with n vertices, one can assign
intervals to vertices such that every end point is a distinct integer from 1 to 2n using O(n log n) time [26],
and in the rest of this paper, we deal exclusively with such representation. Moreover, for vertex v ∈ V , we
refer to Iv as the interval corresponding to v.

3 Counting the number of unlabeled interval graphs

This section deals with counting unlabeled interval graphs on n vertices, and let In denote this quantity.
(This is the sequence with id A005975 in the On–Line Encyclopedia of Integer Sequences [32].) Initial values
of this sequence are given by Hanlon [26] but he did not prove an asymptotic form for enumerating the
sequence. Answering a question posed by Hanlon [26], Yang and Pippenger [34] proved that the generating
function I(x) =

∑
n≥1 Inxn diverges for any x 6= 0 and they established the bounds

n log n

3
+O(n) ≤ log In ≤ n log n+O(n). (1)

The upper bound in (1) follows from In ≤ (2n − 1)!! =
∏n
j=1(2j − 1), where the right hand side is the

number of matchings on 2n points on a line. For the lower bound, the authors showed I3k ≥ k!/33k by
finding an injection from Sk, the set of permutations of length k, to three-colored interval graphs of size
3k. Furthermore, they left it open whether the leading terms of the lower and upper bounds in (1) can
be matched, which is what show in affirmative by improving the lower bound. In other words, we find the
asymptotic value of log In. In what follows, for a set S, we denote by

(
S
k

)
the set of k-subsets of S.
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Theorem 1. Let In be the number of unlabeled interval graphs with n vertices. As n→∞, we have

log In ≥ n log n− 2n log log n−O(n). (2)

Proof. We consider certain interval graphs on n vertices with colored vertices. Let k be a positive integer
smaller than n/2 and ε a positive constant smaller than 1/2. For 1 ≤ j ≤ k, let Bj and Rj denote the
intervals [−j − ε,−j + ε] and [j − ε, j + ε], respectively. These 2k pairwise-disjoint intervals will make up
2k vertices in the graphs we consider. Now let W denote the set of k2 closed intervals with one endpoint in
{−k, . . . ,−1} and the other in {1, . . . , k}. We color B1, . . . , Bk with blue, R1, . . . , Rk with red, and the k2

intervals in W with white.
Together with S := {B1, . . . , Bk, R1, . . . , Rk}, each {J1, . . . , Jn−2k} ∈

( W
n−2k

)
gives an n-vertex, three-

colored interval graph. For a given J = {J1, . . . , Jn−2k}, let GJ denote the colored interval graph whose
vertices correspond to n intervals in S ∪ J , and let G denote the set of all GJ .

Now let G ∈ G. For a white vertex w ∈ G, the pair (dB(w), dR(w)), which represents the numbers
of blue and red neighbors of w, uniquely determine the interval corresponding to w; this is the interval

[−dB(w), dR(w)]. In other words, J can be recovered from GJ uniquely. Thus |G| =
(
k2

n−2k
)
. Since there

are at most 3n ways to color the vertices of an interval graph with blue, red, and white, we have

In · 3n ≥ |G| =
(

k2

n− 2k

)
≥
(

k2

n− 2k

)n−2k
≥
(
k2

n

)n−2k
for any k < n/2. Setting k = bn/ log nc and taking the logarithms, we get

log In ≥ (n− 2k) log(k2/n)−O(n) = n log n− 2n log log n−O(n).

Remark. Yang and Pippenger [34] also posed the question whether log In = Cn log n + O(n) for some C
or not. According to Theorem 1, this boils down to getting rid of the 2n log log n term in (2). Such a
result would imply that the exponential generating function J(x) =

∑
n≥1 Inx

n/n! has a finite radius of
convergence. (As noted in [34], the bound In ≤ (2n− 1)!! implies that the radius of convergence of J(x) is
at least 1/2).

4 Succinct representation of interval graphs

In this section, we introduce a succinct n log n+(2+ε)n+o(n)-bit representation of unlabeled interval graph
G on n vertices with constant ε > 0, and show that the navigational queries (degree, adjacent, neighborhood,
and spath queries) and some basic graph algorithms (BFS, DFS, PEO traversals, proper coloring, computing
the size of maximum clique and maximum independent set etc.) on G can be answered/executed efficiently
using our representation of G.

4.1 Succinct Representation of G

We first label the vertices of G using the integers from 1 to n, as described in the following. By the assumption
in Section 2, the vertices in G can be represented by n intervals I = {I1 = [l1, r1], I2 = [l2, r2], . . . , In =
[ln, rn]} where all the endpoints in I are distinct integers in the range [1, 2n]. Since there are 2n distinct
endpoints for the n intervals in I, every integer in [1, 2n] corresponds to a unique li or ri for some 1 ≤ i ≤ n.
We assign the labels to the vertices in G based on the sorted order of left endpoints of their corresponding
intervals, i.e., for any two vertices a, b ∈ G, a < b if and only if la < lb.

Now we describe the representation of G. Let S = s1 . . . s2n be the binary sequence of length 2n such
that for 1 ≤ i ≤ 2n, si = 0 if i ∈ {l1, l2, . . . , ln} (i.e., if i corresponds to the left end point of an interval in
I), and si = 1 otherwise. If i = lk or i = rk, we say that si corresponds to the interval Ik. We represent
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S = 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1
r = 6 5 9 8 12 18 15 17 16

2

81

2 3

4

5

6

7

9

1 3 4 65 7 8 109 11 12 1413 15 16 17 18

I1 = [1,6]
I2 = [2,5]

I4 = [4,8]
I3 = [3,9]

I5 = [7,12] I9 = [14,16]
I6 = [10,18]

I7 = [11,15]
I8 = [13,17]

Figure 1: Example of the interval graph and its representation.

the the sequence S using the data structure of Lemma 2.1, using a 2n+ o(n) bits to support rank and select
queries on S in O(1) time. Next, we store the sequence r = r1 . . . rn, and for some fixed constant ε > 0, we
also store an εn-bit data structure of Lemma 2.2(1) (with c = 1/ε) to support RMax and RMin queries on
r in O(1) time. Using the representations of S and r, it is easy to show that for any vertex v ∈ G, we can
return its corresponding interval Iv = [lv, rv] in O(1) time by computing lv = select0(S, v), and rv can be
accessed from the sequence r. Thus, the total space usage of our representation is n log n+ (3 + ε)n+ o(n)
bits. See Figure 1 for an example.

4.2 Supporting Navigational Queries

In this section, we show that degree, adjacent, neighborhood, and spath queries on G can be answered in
asymptotically optimal time using the representation described in the Section 4.1.

degree(v)(v)(v) query: We count the number of vertices in G which are not adjacent to v, which is a
disjoint union of the two sets: (i) the set of intervals that end before the starting point lv, and (ii) the set
of intervals that start after the end point rv. Using our representation the cardinalities of these two sets
can be computed as follows. The number of intervals u with ru < lv is given by rank1(S, lv). Similarly, the
number of intervals u with rv < lu is given by n − rank0(S, rv). Therefore, we can answer degree(v) query
in O(1) time by returning n− rank1(S, lv)− (n− rank0(S, rv)) = rank0(S, rv)− rank1(S, lv).

adjacent(u, v)(u, v)(u, v) query: Since we can compute the intervals Iu and Iv in O(1) time, adjacent(u, v)(u, v)(u, v)
query can be answered in O(1) by checking ru < lv or rv < lu (u and v are not adjacent if and only if one
of these conditions is satisfied).

neighborhood(vvv) query: The set of all neighbors of a vertex v can be reported by considering all
the intervals Iu whose left end points are in within the range [1, . . . , rv] and returning all such u’s with
ru > lv (i.e., which start to the left of rv and end after lv). With our data structure, this query can be
supported by returning the set {u | 1 ≤ u ≤ rank0(S, rv) and ru > lv}. Using the RMax structure stored on
r, this can be supported in O(degree(v)) time. Note that, given a threshold value t and a query range [a, b]
of the sequence r, the range max data structure can be used to report all the elements ru within the range
[a, b] such that ru > t, in O(1) time per element, using the following recursive procedure. Compute the
position c = RMaxr(a, b). If rc > rv, then return rc, and recurse on the subintervals [a, c− 1] and [c+ 1, b];
else stop.
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spath(u,v) query: We first define the SUCC query as described in [10]. For an interval Iu, SUCC(Iu)
returns the interval Iu′ such that Iu ∩ Iu′ 6= ∅ and there is no Iu′′ with Iu ∩ Iu′′ 6= ∅ and ru′ < ru′′ . (For
example in Figure 1, SUCC(I2) = I3 and SUCC(I5) = I6.) To answer the spath(u, v) query, let Puv be the
shortest path from u to v initialized with ∅ (without loss of generality, we assume that u ≤ v). If u and v
are identical, we simply add u to Puv and return Puv. If not, we first add u to Puv and consider two cases
as follows [10].

• If u is adjacent to v, add v to Puv and return Puv.

• If Iu is not adjacent to Iv, we perform spath(SUCC(u), v) query recursively.

Since we can answer adjacent queries in O(1) time, it is enough to show how to answer the SUCC queries
in O(1) time. Let k be the number of vertices v which satisfies lv < ru, which can be answered in O(1) time
by k = rank0(S, ru)). Then by the definition of SUCC query, Ii with i = RMaxr(1, k) gives an answer of
SUCC(Iu) if ri > lu (if not, there is no vertex in G adjacent to u). Therefore we can answer the SUCC query
in O(1) time, which implies spath(u, v) query can be answered in O(|spath(u, v)|) time.

In Appendix A we discuss how to support some basic graph algorithms (BFS, DFS, PEO traversals,
proper coloring, computing the size of maximum clique, maximum independent set and minimum vertex
cover) efficiently on G with the above set of operations along with the representation of Section 4.1.

5 Representation of some related families of interval graphs

In this section, we propose space-efficient representations for proper interval graphs, k-proper and k-improper
interval graphs, and circular arc graphs. Since these graphs are restrictions or extensions (i.e., sub/super-
classes) of interval graphs, we can represent them by modifying the representation in Section 4.1 (to make
the representation asymptotically optimal in terms of space). We also show that navigation queries on these
graph classes can be answered efficiently with the modified representation.

5.1 Proper interval graphs

An interval graph G is proper if there exists an interval representation of G such that for any two vertices
u, v ∈ G, Iu 6⊂ Iv and Iv 6⊂ Iu (let such interval representation of G be proper representation of G). Also
it is known that proper interval graphs are equivalent to the unit interval graphs, which have an interval
representation such that every interval has the same length [31].

Now we consider how to represent a proper interval graph G with n vertices while support navigational
queries efficiently on G. We first obtain an interval representation of the graph G where the intervals satisfy
the property of proper interval graph. We then assign labels to vertices of G based on the sorted order left
end points of their corresponding intervals, as described in Section 4.1. Let S be the bit sequence obtained
from this representation, as defined in the Section 4.1. Then by the definition of G, there are no two vertices
u, v ∈ G with lu < lv and ru > rv (if so, Iv ⊂ Iu). Thus by the Lemma 2.1, for any vertex i ∈ G we can
compute li and ri in O(1) time by select0(S, i) and select1(S, i) respectively using 2n+ o(n) bits. Also note
that r is strictly increasing sequence when G is a proper interval graph, and hence one can support the
RMax queries on r = r1 . . . rn in O(1) time without maintaining any data structure, by simply returning the
rightmost position of the query range. Thus, we obtain a following theorem.

Theorem 2. Given a proper interval graph or unit interval graph G with n vertices, there exists a 2n+o(n)-
bit representation of G which answers degree(v) and adjacent(u, v) queries in O(1) time, neighborhood(v)
queries in O(degree(v)) time, and spath(u, v) queries in O(|spath(u, v)|) time, for any vertices u, v ∈ G.

It is known that there are asymptotically 1
8κ
√
π
n−3/24n non-isomorphic unlabeled unit interval graphs

with n vertices, for some constant κ > 0 [17], and hence 2n−O(log n) bits is an information-theoretic lower
bound on representing an arbitrary proper interval graph. Thus our representation in Theorem 2 gives a
succinct representation for proper interval graphs.
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5.2 k-proper and k-improper interval graphs

One can generalize the proper interval graph to the following two sub-classes of interval graphs. For an
interval graph G with n vertices, G is k-proper interval graph (resp. k-improper interval graph) if there
exists an interval representation G such that for any vertex v ∈ G, Iv is contained by (resp., contains)
at most k ≤ n intervals in G other than Iv. We call such an interval representation of G as the k-proper
representation (resp. k-improper representation) of G. Note that, every proper interval graph is both a
0-proper and a 0-improper graph. The graph in Figure 1 is a 2-proper, and a 3-improper graph. Now
we consider how to represent a k-proper interval graph G with n vertices and support navigation queries
efficiently on G. We first represent G k-properly into n intervals, and assign the labels to vertices of G
based on the sorted order of their left end points, as described in Section 4.1. Same as the representation in
Section 4.1, we first maintain the data structure for supporting rank and select queries on S in O(1) time,
using 2n+o(n) bits in total. Also we maintain the 2n+o(n)-bit data structure of Lemma 2.2 on r = r1, . . . , rn
for supporting RMax queries on r in O(1) time. Next, to access r without using n log n bits, we define the
sequence T = t1 . . . t2n of size 2n over the alphabet {0, . . . , 2k + 1} such that ti = 2k′ (resp. ti = 2k′ + 1) if
si = 0 (resp. si = 1) and its corresponding interval is contained by k′ ≤ k intervals in I = {I1 . . . In}. Now
for any 0 ≤ i ≤ k, let Ri ⊂ I be the set of all intervals such that for any [a, b] ∈ Ri, ta = 2i and tb = 2i+1. It
is easy to show that each Ri corresponds to the proper interval graph. For example the graph in Figure 1 is
2-proper interval graph, and T = 0 2 0 2 3 1 0 3 1 0 2 1 2 4 3 5 3 1, R0 = {I1, I3, I5, I6}, R1 = {I2, I4, I7, I8},
and R2 = {I9}. By Lemma 2.1, we can maintain T using 2n log (2k + 2)+o(n log k) = 2n log k+2n+o(n log k)
bits with supporting rank and select queries in O(log log k) and O(1) time respectively. Then for any vertex
v ∈ G, we can answer its corresponding interval Iv = [lv, rv] in O(log log k) time by lv = select0(S, v) and
rv = select(tlv+1)(T, ranktlv (T, lv)). Thus, we obtain a following theorem.

Theorem 3. Given a k-proper interval graph G with n vertices, there exists a (2n log k+ 6n+o(n log k))-bit
representation of G which answers degree(v) and adjacent(u, v) queries in O(log log k) time, neighborhood(v)
queries in O(log log k · degree(v)) time, and spath(u, v) queries in O(log log k · |spath(u, v)|) time, for any
vertices u, v ∈ G.

Note that we can represent k-improper interval graphs in same space with same query time as in The-
orem 3 by changing the definition of T to be ti = 2k′ (resp. ti = 2k′ + 1) if si = 0 (resp. si = 1) and its
corresponding interval contains k′ ≤ k intervals in {I1 . . . In}.

5.3 Circular-arc graphs

In this section, we propose a succinct representation for circular-arc graphs, and show how to support
navigation queries efficiently on the representation. A circular-arc graph G is a graph whose vertices can be
assigned to arcs on a circle so that two vertices are adjacent in G if and only if their assigned arcs intersect.
It is easy to see that every interval graph is a circular-arc graph. Thus, by the Lemma 3, we need at least
n log n− 2n log log n−O(n) bits to represent an arbitrary circular-arc graph G.

Suppose that G is represented by the circle C together with n arcs of C. For an arc, we define its start
point to be the unique point on it such that the arc continues from that point in the clock-wise direction
but stops in the anti-clockwise direction; and similarly define its end point to be the unique point on it such
that the arc stops in the clockwise direction but continues in the anti-clockwise direction. As in the case of
interval graphs, we assume, without loss of generality, that all the start and end points of all the arcs are
distinct. We label the vertices of G with the integers form 1 to n as described below. We first select an
arbitrary arc, and label the vertex (and the arc) corresponding to this arc by 1. We then traverse the circle
from the starting point of that arc in the clockwise direction, and label the remaining vertices and arcs in
the order in which their starting points are encountered during the traversal, and finish the traversal when
we return to the starting point of the first arc. We also map all the start and end points of all arcs, in the
order in which they are encountered in the above traversal, into the range [1, . . . , 2n] (since the start and
end points of all the n arcs are distinct). With the above defined labeling of the arcs, and the numbering
of their start and end points, let li and ri start and end points of the arc labeled i, for 1 ≤ i ≤ n. Now

7



the arcs can be thought of as two types of intervals in the range [1, . . . , 2n]; we call an interval i as normal
if li < ri (i.e., we traverse li prior to ri), and reversed otherwise. A normal interval i corresponds to the
interval [li, ri], while a reversed interval i actually corresponds to the union of the two intervals [1, . . . , ri]
and [li, . . . , 2n]. See Figure 2 for an example; intervals numbered 4 and 7 are reversed, while the others are
normal. Our representation of G consists of the following substructures.

6
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S = 0 1 0 1 0 1 0 1 0 1 0 1 0 1
S′� = 0 3 0 1 0 1 2 1 0 3 0 1 2 1
R1 = {(1,1), (2,2), (3,3), (4,5), (5,4)}
R2 = {(1,1), (2,2)}

Figure 2: Example of the circular graph and its representation.

1. Define a binary sequence S = s1, . . . , s2n of length 2n such that for 1 ≤ i ≤ 2n, si = 0 (resp.
si = 1) if i-th end point encountered during the traversal of C is in {l1, . . . , ln} (resp. {r1, . . . , rn}).
Now, construct a sequence S′ = s′1, . . . , s

′
2n of size 2n over an alphabet {0, 1, 2, 3} such that for all

1 ≤ i ≤ 2n, s′i = si + 2 if the position si corresponds to the end point of a reversed interval, and
s′i = si otherwise (i.e., if si corresponds to a normal interval). We represent S′ using the structure of
Lemma 2.1, using 4n + o(n) bits, so that we can answer rank and select queries on S′ in O(1) time.
In addition, we also store auxiliary structures (of o(n) bits) on top of S′ to support rank and select
queries on S (without explicitly storing S – note that, one can efficiently reconstruct any subsequence
of S from S′).

2. To store the interval end points efficiently, we introduce two 2-dimensional grids of points, R1 and
R2, defined as follows. Suppose there are q ≤ n vertices in G which correspond to normal intervals
(and n − q vertices correspond to reversed intervals). Then let R1 be a set of q points on the 2-
dimensional grid [1, q]× [1, q] which consist of (rank0(S′, li), rank1(S′, ri)), for all 1 ≤ i ≤ n with li < ri.
Similarly let R2 be a set of n− q points on the 2-dimensional grid [1, n− q]× [1, n− q] which consist
of (rank2(S′, li), rank3(S′, ri)), for all 1 ≤ i ≤ n with ri < li. Given a set of points P on 2-dimensional
grid, we define the following queries

• Y (R, x): returns y with (x, y) ∈ R.

• count(R,A): returns number of points in R within the rectangular range A.

We represent R1 and R2 using n log n+ o(n log n) bits in total, such that Y and count queries can be
supported in O(log n/ log log n) time [6].

Using these data structures, when the vertex 1 ≤ i ≤ n is given, we can answer li and ri in O(log n/ log log n)
time by li = select0(S, i), and ri = select1(S′, Y (R1, rank0(S′, li))) if S′li = 0 (i.e., if li is the left end point of a
normal interval), and r′i = select3(Y (R2, rank2(S′, l′i))) otherwise (i.e., if if li is the left end point of a reversed
interval). Finally, let r′ = r′1, . . . , r

′
q be a sequence such that for 1 ≤ i ≤ q, r′i = rji with ji = select0(S′, i).
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Similarly, let r′′ = r′′1 , . . . , r
′′
n−q be a sequence such that for 1 ≤ i ≤ n − q, r′′i = rji with ji = select2(S′, i).

Then we maintain the data structure of Lemma 2.2 on r′ and r′′, using a total of 2n+ o(n) bits, to support
RMax queries on each of them. Thus, the overall representation takes n log n+ o(n log n) bits in total. Now
we prove the following theorem (See Appendix B for the proof).

Theorem 4. Given a circular arc graph G with n vertices, there exists a (n log n+ o(n log n))-bit represen-
tation of G which answers degree(v) and adjacent(u, v) queries in O(log n/ log log n) time, neighborhood(v)
queries in O(log n/ log logn · degree(v)) time, and spath(u, v) queries in O(|spath(u, v)| log n/ log log n) time
for any two vertices u, v ∈ G.

6 Conclusion and Final Remarks

We considered the problem of succinctly encoding an unlabeled interval graph with n vertices so as to
support adjacency, degree, neighborhood and shortest path queries. To this end, we designed a succinct
data structure that can support these queries optimally. We also showed how one can implement various
combinatorial algorithms in interval graphs using our succinct data structure in both time and space efficient
manner. Extending these ideas, finally, we also showed succinct/compact data structures for multiple other
variants of interval graphs. For some of these variants, the query times of our data structures are super
constant, hence non-optimal and we leave them as open problems whether we can design data structures for
supporting these queries in constant time.
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A Some graph algorithms on the succinct representation of inter-
val graphs

Depth-first search (DFS) and Breath-first search (BFS) : DFS and BFS are the two most widely
known and popular graph search methods because of their versatile usage as the backbone of so many other
powerful and important graph algorithms. In what follows, we show that essentially the vertices sorted by
its ascending order of the labels i.e., 1, . . . , n gives both DFS and BFS vertex ordering of the G. Note that
there may be more than one valid DFS or BFS ordering on G, but here we are interested in any of those
valid and correct orderings. Moreover along the lines of recent papers [2,8,9], here we are interested only in
the ordering of the vertices in DFS and BFS traversals i.e., the order in which the vertices are visited for the
first time during the DFS/BFS traversal of the input graph G, not in actually reporting the final DFS/BFS
tree. Towards this, we show the following,

Theorem 5. Given an interval graph G with n vertices, suppose we label the vertices of G to {1, . . . , n} to
be for any vertices a, b ∈ G, a < b if and only if la < lb. Then ascending order from 1 to n gives a valid DFS
and BFS ordering of G.

Proof. We only consider the DFS traversal in the proof (the case of BFS traversal can be proved using the
similar argument). We prove by induction on the number of visited vertex. Since we can start from arbitrary
vertex in G, the theorem statement holds with starting the traversal with the vertex 1. Next, suppose that
we already visited the vertices 1 . . . i with i < n − 1 (the case i = n − 1 is trivial) and for every valid DFS
traversal, there exists a vertex i′ > i + 1 which is visited prior to i + 1. This implies that there exists at
least one vertex v ∈ {1, . . . , i} such that v is adjacent to i′ but not i + 1, contradicting to the fact that
lv < li+1 < li′ . Therefore there exists a valid DFS traversal which visits the vertex i + 1 after visiting the
vertex i.

Perfect Elimination Ordering (PEO) : PEO of a graph G, if it exists, is defined as an ordering of the
vertices of G such that, for each vertex v, v and the neighbors of v that occur before v in the order form a
clique [20]. If we order the vertices corresponding to the intervals by sorting based on their left endpoints,
then the resulting vertex order is a PEO, as the predecessor set of every vertex forms a clique. Thus, from
our representation it is trivial to generate a PEO of the given interval graph.

Maximum Independent Set (MIS) and Minimum Vertex Cover (MVC) : To compute an
MIS, we simulate the greedy algorithm of [23] which works as follows. Initialize the sets E and M to ∅.
We first find the vertex i such that ri is the leftmost among all the right endpoints of the intervals in
I − E. If such an i exists, we add i to M and add E = E ∪ I ′ where I ′ ⊆ I is the set of all intervals whose
corresponding vertices are adjacent to i. We repeat this procedure until no such vertex i exists, and return
M . Also MVC can be computed from MIS by returning the complement of MIS, in O(n) time. (For the
graph in Figure 1, MIS = {2, 5, 9} and MVC = {1, 3, 4, 6, 7, 8}.)

Now we show how the algorithm can be implemented in time linear in the size of the input, with our
representation of G. We first initialize the set M to ∅ and compute i = RMin(1, n) (which returns the
interval with the smallest right end point among all the intervals), and add vertex i to M . Then the greedy
algorithm picks the next interval with the smallest right end point in the range [rank0(S, ri) + 1, n] of the
sequence r. In general, suppose M = {m1,m2 . . .mk} and mk is the last vertex added to M . Then we
compute mk+1 = RMin(rank0(S, rmk

) + 1, n), and add mk+1 to M , if it exists. Thus, we can compute MIS
in time linear in the size of MIS.

Computing a Maximum Clique : In order to find a maximum clique in G, we define a sequence
D = d1, . . . , d2n of length 2n where (i) d1 = 0, and (ii) for 1 < i ≤ 2n, di = di−1 + 1 if si = 0 and
di = di−1 − 1 otherwise. From the definition of di, if si = 0, there are exactly di vertices in G such that
all corresponding intervals of these vertices have left endpoints at most i and right endpoints larger then i.
Thus all such di vertices form a clique. This gives an algorithm for computing a maximum clique in G as
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follows. While constructing the sequence D in O(n) time, we maintain the index k such that dk is a largest
value in D. We then scan all the intervals and return those intervals whose left end point is at most k and
right end point is larger than k. Therefore we can compute the maximum clique in G in O(n) time in total.

Computing a Proper Coloring: It is well-known that the greedy algorithm on G yields the opti-
mal proper coloring if we process the vertices of G in the order of their corresponding intervals’ left
endpoints [20]. Thus, we simply implement this greedy coloring on G from the vertex 1 to n as follows.
We first maintain n values c1, . . . , cn such that for 1 ≤ i ≤ n, ci ≤ degree(i) stores the color of vertex i.
Since each ci can be stored using O(log(degree(i))) bits, we can maintain all ci’s using O(n log(m/n)) bits
in total, where m denotes the number of edges in G. To access the color of a given vertex in O(1) time, we
also store a parallel bit vector which stores a 1 at the beginning of each vertex’s color, and 0 in all other
positions; and store auxiliary data structure to support select queries on it. Now initialize all c1, . . . , cn to 0
and scan the vertices from 1 to n. While we visit the vertex i, we perform the neighborhood(i) query and
choose the minimum color in {1 . . . degree(i)}−{cv|v ∈ neighborhood(i)}. Since we use O(degree(i)) time for
each neighborhood(i) query to assign the color of i, we can assign the color of all vertices in G in O(n+m)
time, using O(n log(m/n)) extra bits of space.

Another alternative way to implement the greedy coloring on G is to use a priority queue. In this case, we
first compute χ(G), which is a chromatic number of G. Since G is an interval graph, we can compute χ(G)
in O(n) time on our representation by computing the size of the maximum clique of G. Now we initialize
c1, . . . , cn to 0 and insert 1, . . . , χ(G) to the priority queue PQ, and scanning S from left to right. Suppose
we currently access si which corresponds to Ij (we can compute the index j in O(1) time). If si = 0, we
assign the minimum element of PQ to cj , and delete cj from PQ. Otherwise, we insert cj to PQ. Note
that we exactly perform 2n insert operations and n delete operations on PQ. Therefore we can compute a
proper coloring of G in O(n log logχ(G)) time using O(n log n) bits of space, using the integer priority queue
structure of [33].

Note that these two solutions use Ω(n) bits of space, With O(n) bits, we cannot store the colors of all
the vertices simultaneously (unless the graph is sparse), and this poses a challenge for the greedy algorithm.
We leave open the problem to find a proper coloring of interval graphs using extra O(n) bits.

B Proof of Theorem 4

Theorem 4. Given a circular arc graph G with n vertices, there exists a (n log n+ o(n log n))-bit represen-
tation of G which answers degree(v) and adjacent(u, v) queries in O(log n/ log log n) time, neighborhood(v)
queries in O(log n/ log logn · degree(v)) time, and spath(u, v) queries in O(|spath(u, v)| log n/ log log n) time
for any two vertices u, v ∈ G.

Proof. Suppose we have the n log n+ o(n log n)-bit representation described in Section 5.3. Now we consider
the following queries, which extends the proof in Section 4.2.

degree(v)(v)(v) query: To answer degree(v) query, We first compute (i) counting the vertices u with
lu < ru, and (ii) counting the vertices u with ru < lu and return the sum of them. Now we consider the two
cases based on lv and rv as follows.

• lv < rv : We can count the number of vertices in (i) inO(log n/ log log n) time by returning rank0(S, rv)−
rank1(S, lv), same as in Section 4.2. Next, we classify the vertices u in (ii) into three cases as 1)
lu < lv, 2) rv < ru, and 3) lv < lu < rv or lv < ru < rv and return the sum of them. First,
number of vertices in case 1) and 2) can be easily answered in O(log n/ log log n) time by returning
rank2(S′, l′v) and rank3(S′, r′v) respectively. To count the number of vertices in case 3), we first count
the number of start and end points between lv and rv by returning (rank2(S′, rv) − rank2(S′, lv)) +
(rank3(S′, rv) − rank3(S′, lv)). After that we subtract the number of vertices whose both start and
end points exist between lv and rv, which is count(R2, R) where R = [rank2(S′, lv), rank2(S′, rv)] ×
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[rank3(S′, lv), rank3(S′, rv)]. Thus we can count the number of vertices in this case in O(log n/ log log n)
time.

• lv > rv : We classify the number of vertices in case (i) into three cases as 1) ru < rv, 2) lv < lu, and
3) rv < lu < lv or rv < ru < lv separately and return the sum of them. This can be answered in
O(log n/ log log n) time by the same argument as above. For counting the vertices in (ii), we simply
return rank2(S′, 2n)− 1 since all the vertices corresponds to the reverse interval cross l1 in C, i.e., all
such vertices form a clique in G.

adjacent(u, v)(u, v)(u, v) query: This can be answered in O(log n/ log log n) time by checking lu, ru, lv, and rv.

neighborhood(vvv) query: We only describe how to answer the vertices u adjacent to v when the
corresponding interval of v is normal. The case when the interval is reverse can be handled similarly.
First we can return the all vertices u with lu < ru in O(log n/ log log n · degree(v)) time using the
same argument in Section 4.2. Next, the set of vertices u adjacent to v with lu > ru, is a disjoint
union of the following two sets: 1) the set S1 of all vertices u with lu < rv, and 2) the set S2 of
all vertices u with lv < ru. We can answer all the vertices in S1 in O(degree(v)) time by returning
rank0(S, select2(S′, 1)), . . . , rank0(S, select2(S′, rank2(S′, rv))), which takes O(1) time per each element.
Finally vertices in S2−S1 is equivalent to the the vertices u in {rank0(S, rv) + 1, . . . , n} with lv < ru. Using
the data structure RMax on r′′ with a query range [rank2(S, rv) + 1, . . . , n − q] on r′′, these vertices can be
answered in O(log n/ log log n) time per element by the same procedure to answer the neighborhood queries
on interval graphs. Thus, we can answer neighborhood(v) query in O(log n/ log log n ·degree(v)) time in total.

spath(u, vu, vu, v) query: We simulate the algorithm of [10] with our representation of G. We first define
SUCC query on circular arc graphs and show how to answer the SUCC(u) query in O(log n/ log log n)
time. For a set of vertices V of G, let V1 = {u ∈ V |lu < ru} and V2 = V − V1. Then for vertex u ∈ V1 we
can define SUCC(u) as follows.

• If there exists a vertex V2 − Vu where Vu = {u′|max (lu, ru) < lu′}, SUCC(u) returns a vertex
u′ ∈ V2 − Vu with the arc u and u′ are intersect, and there is no vertex u′′ ∈ V2 − Vu with the arc u
and u′′ are intersect and ru′ < ru′′ < ru. Let this vertex be u1.

• Otherwise, SUCC(u) returns a vertex u′ ∈ V1 with the arc u and u′ are intersect, and there is no
vertex u′′ ∈ V1 with the arc u and u′′ are intersect and ru < ru′ < ru′′ let this vertex be u2.

To answer u1, we consider two cases as follows. If u ∈ V1, We can find u1 by returning rank0(S, select2(S′, v′))
where v′ = RMaxr′′(1, rank2(S′, ru)), which can be answered in O(log n/ log log n) time. Similarly if
u ∈ V2, we can find u1 in O(log n/ log log n) time by returning rank0(S, select2(S′, v′)) where v′ =
RMaxr′′(1, rank2(S′, lu)). Also we can find u2 in O(log n/ log log n) time by the same argument for answering
SUCC queries on interval graphs.

To answer the spath(u, v) query, we do a same procedure for answering spath(u, v) and spath(v, u) queries
on interval graphs (with the SUCC function defined on circular arc graphs) in parallel, and return one of
them which completes the procedure earlier. Since we can answer SUCC query in log n/ log log n time, we
can answer spath(u, v) query in O(log n/ log log n · |spath(u, v)|) time.

It is easy to prove that we can answer Y and count queries on R1 and R2 in O(log n) time with n log n+
o(n log n) bits of space by maintaining the wavelet tree [30] on r′ and r′′, instead of maintaining the data
structure of [6] on R1 and R2. This gives a simple succinct representation of G while using the same space
and support degree and adjacent queries in O(log n) time, neighborhood queries in O(log n · degree(v)) time,
and spath(u, v) queries in O(|spath(u, v)| log n) time. Also the difference in query time on interval graphs
and circular-arc graphs comes from the fact that when Av is given, we need to know the number of arcs
which contained in Av on circular-arc graphs to answer degree(v) query. We can improve the query time
by maintaining i) use n log n + O(n/c)-bit data structure on r′ and r′′ to support RMax on them, and ii)
for every vertex v ∈ G, store degree(v) explicitly using dn log ne bits [14], instead of maintaining the data
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structures on R1 and R2. In this case, we can support degree, adjacent, neighborhood, and spath queries in
same time as interval graphs, using 2n log n+ o(n log n) bits of space.
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