Arithmetic Progressions of Length Three in Multiplicative Subgroups of \mathbb{F}_{p}

Jeremy F. Alm

January 2018

Abstract

In this paper, we give an algorithm for detecting non-trivial 3-APs in multiplicative subgroups of \mathbb{F}_{p}^{\times}that is substantially more efficient than the naive approach. It follows that certain Var der Waerden-like numbers can be computed in polynomial time.

1 Introduction

Additive structures inside multiplicative subgroups of \mathbb{F}_{p}^{\times}have recently received attention. Alon and Bourgain [1] study solutions to $x+y=z$ in $H<\mathbb{F}_{p}^{\times}$, and Chang [2] studies arithmetic progressions in $H<\mathbb{F}_{p}^{\times}$. In this paper, we define a Van der Waerden-like number for $H<\mathbb{F}_{p}^{\times}$of index n, and give a polynomial-time algorithm for determining such numbers.

Definition 1. Let $V W_{3}^{\times}(n)$ denote the least prime $q \equiv 1(\bmod n)$ such that for all primes $p \equiv 1(\bmod n)$ with $p \geq q$, the multiplicative subgroup of \mathbb{F}_{p}^{\times} of index n contains a mod-p arithmetic progression of length three.

Our main results are the following two theorems:
Theorem 2. $V W_{3}^{\times}(n) \leq(1+\varepsilon) n^{4}$ for all sufficiently large n (depending on ع). In particular, $V W_{3}^{\times}(n) \leq 1.001 n^{4}$ for all $n \geq 45$.
Theorem 3. $V W_{3}^{\times}(n)$ can be determined by an algorithm that runs in $\mathcal{O}\left(\frac{n^{8}}{\log n}\right)$ time.

Chang [2] proves that if $H<\mathbb{F}_{p}^{\times}$and $|H|>c p^{3 / 4}$, then H contains nontrivial 3-progressions. This implies our Theorem 2 with $(1+\varepsilon) n^{4}$ replaced by $c n^{4}$. We prove our Theorem 2 because we need to make the constant explicit.

2 Proof of Theorem 2

Proof. We use one of the basic ideas of the proof of Roth's Theorem on 3progressions [3]. Let $A \subseteq \mathbb{F}_{p}$ with $|A|=\delta p$. Note that a 3-progression is a solution inside A to the equation $x+y=2 z$. Let \mathcal{N} be the number of (possibly trivial) solutions to $x+y=2 z$ inside A. We have that

$$
\frac{1}{p} \sum_{k=0}^{p-1} e^{\frac{-2 \pi i k}{p} x}=\left\{\begin{array}{lll}
1, & \text { if } x \equiv 0 \quad(\bmod p) \tag{1}\\
0, & \text { if } x \not \equiv 0 & (\bmod p)
\end{array}\right.
$$

Because of (1), we have

$$
\begin{equation*}
\mathcal{N}=\sum_{x \in A} \sum_{y \in A} \sum_{z \in A} \frac{1}{p} \sum_{k=0}^{p-1} e^{\frac{-2 \pi i k}{p}(x+y-2 z)} \tag{2}
\end{equation*}
$$

Rearranging (2), we get

$$
\begin{align*}
& \frac{1}{p} \sum_{k=0}^{p-1} \sum_{x \in A} \sum_{y \in A} \sum_{z \in A} e^{\frac{-2 \pi i k}{p} x} \cdot e^{\frac{-2 \pi i k}{p} y} \cdot e^{\frac{2 \pi i k}{p} z} \\
= & \frac{1}{p} \sum_{k=0}^{p-1}\left[\sum_{x \in A} e^{\frac{-2 \pi i k}{p} x} \cdot \sum_{y \in A} e^{\frac{-2 \pi i k}{p} y} \cdot \sum_{z \in A} e^{\frac{2 \pi i k}{p} 2 z}\right] \\
= & \frac{1}{p} \sum_{k=0}^{p-1}\left[\sum_{x \in \mathbb{F}_{p}} \mathrm{Ch}_{A}(x) e^{\frac{-2 \pi i k}{p} x} \cdot \sum_{y \in \mathbb{F}_{p}} \mathrm{Ch}_{A}(y) e^{\frac{-2 \pi i k}{p} y} \cdot \sum_{z \in \mathbb{F}_{p}} \mathrm{Ch}_{A}(-2 z) e^{\frac{2 \pi i k^{\prime}}{p} z}\right] \\
= & \frac{1}{p} \sum_{k=0}^{p-1} \hat{\mathrm{Ch}}_{A}(k)^{2} \cdot \hat{\mathrm{Ch}}_{A}(-2 k), \tag{3}
\end{align*}
$$

where Ch_{A} denotes the characteristic function of A, and \hat{f} denotes the Fourier
transform of f,

$$
\hat{f}(x)=\sum_{k=0}^{p-1} f(k) e^{\frac{-2 \pi i k}{p} x}
$$

Now we can pull out the $k=0$ term from (3):

$$
\text { (3) } \begin{aligned}
& =\frac{1}{p} \hat{\mathrm{Ch}}(0)^{3}+\frac{1}{p} \sum_{k=1}^{p-1} \hat{\mathrm{Ch}}_{A}(k)^{2} \cdot \hat{\mathrm{Ch}}_{A}(-2 k) \\
& =\frac{|A|^{3}}{p}+\frac{1}{p} \sum_{k=1}^{p-1} \hat{\mathrm{Ch}}_{A}(k)^{2} \cdot \hat{\mathrm{Ch}} \\
A & (-2 k) \\
& =\delta^{3} p^{2}+\frac{1}{p} \sum_{k=1}^{p-1} \hat{\mathrm{Ch}}_{A}(k)^{2} \cdot \hat{\mathrm{Ch}}_{A}(-2 k) .
\end{aligned}
$$

Let's call $\delta^{3} p^{2}$ the main term, and $\frac{1}{p} \sum_{k=1}^{p-1} \hat{\mathrm{Ch}}_{A}(k)^{2} \cdot \hat{\mathrm{Ch}}_{A}(-k)$ the error term. We now bound this error term.

Suppose $0<\alpha<1$ and $\left|\hat{\mathrm{Ch}}_{A}(k)\right| \leq \alpha p$ for all $0 \neq k \in \mathbb{F}_{p}$. In this case, we say that A is α-uniform. Then

$$
\begin{aligned}
\left|\frac{1}{p} \sum_{k=1}^{p-1} \hat{\mathrm{Ch}}_{A}(k)^{2} \cdot \hat{\mathrm{Ch}}_{A}(-2 k)\right| & \leq \frac{1}{p} \max \left|\hat{\mathrm{Ch}}_{A}(k)\right| \cdot\left|\sum_{k=1}^{p-1} \hat{\mathrm{Ch}}_{A}(k)^{2}\right| \\
& \leq \alpha\left|\sum_{k=1}^{p-1} \hat{\mathrm{Ch}}_{A}(k)^{2}\right| \\
& \leq \alpha p\left|\sum_{k=1}^{p-1} \mathrm{Ch}_{A}(k)^{2}\right| \\
& \leq \alpha \delta p^{2}
\end{aligned}
$$

Therefore $\mathcal{N} \geq \delta^{3} p^{2}-\alpha \delta p^{2}$. Subtracting off the trivial solutions gives $\mathcal{N}-\delta p \geq \delta^{3} p^{2}-\delta p-\alpha \delta p^{2}$. Hence there is at least one non-trivial solution if

$$
\delta^{3} p^{2}>\delta p+\alpha \delta p^{2}
$$

Let $A=H$ be a multiplicative subgroup of \mathbb{F}_{p} of index n. As is wellknown (see for example [4, Corollary 2.5]), if H is a multiplicative subgroup
of \mathbb{F}_{p}^{\times}, then H is α-uniform for $\alpha \leq p^{-1 / 2}$. Thus it suffices to have

$$
\begin{align*}
\delta^{3} p^{2} \geq \delta p+p^{-1 / 2} \delta p^{2} & \Longleftrightarrow \delta^{3} p^{2} \geq \delta p+\delta p^{3 / 2} \tag{4}\\
& \Longleftrightarrow \delta^{2} p \geq 1+p^{1 / 2} \tag{5}\\
& \Longleftrightarrow(p-1)^{2} \geq n^{2} p\left(1+p^{1 / 2}\right) \tag{6}
\end{align*}
$$

where the last line follows from $\delta=(p-1) /(n p)$. It is straightforward to check that (6) is satisfied by $p=(1+\varepsilon) n^{4}$ for sufficiently large n.

The data gathered for $V W_{3}^{\times}(n), n \leq 100$, suggest that the exponent of 4 on n is too large; see Figure 11. These data are available at www. oeis.org, sequence number A298566.

Figure 1: $V W_{3}^{\times}(n)$ for $n \leq 100$

3 A More General Framework

Before we establish our algorithm, it will helpful to generalize to arbitrary linear equations in three variables over \mathbb{F}_{p}. Suppose we're looking for solutions to $a x+b y=c z$ in $H<\mathbb{F}_{p}^{\times}$, for fixed $a, b, c \in \mathbb{F}_{p}^{\times}$. There is a solution just in case $(a H+b H) \cap c H$ is nonempty.

The following result affords an algorithmic speedup in counting solutions to $a x+b y=c z$ inside H :

Lemma 4. For $a, b, c \in \mathbb{F}_{p}^{\times}$and $H<\mathbb{F}_{p}^{\times}$,

$$
(a H+b H) \cap c H \neq \varnothing \text { if and only if }(c-a H) \cap b H \neq \varnothing
$$

Notice that while the implied computation on the left side of the biconditional is $\mathcal{O}\left(p^{2}\right)$, the one on the right is $\mathcal{O}(p)$, since we compute $|H|$ subtractions and $|H|$ comparisons. (We consider the index n fixed.)

Proof. Let $H=\left\{g^{k n}: 0 \leq k<(p-1) / n\right\}$, where n is the index of H and g is a primitive root modulo p. Fix $a, b, c \in \mathbb{F}_{p}$.

For the forward direction, suppose $(a H+b H) \cap c H \neq \varnothing$, so there are $x, y, z \in H$ such that $a x+b y=c z$. Then $b y=c z-a x$. Multiplying by $z^{-1} \in H$ yields $b\left(y z^{-1}\right)=c-a\left(x z^{-1}\right)$. Therefore $(c-a H) \cap b H \neq \varnothing$. The other direction is similar.

Lemma 4 allows us to detect solutions to linear equations in linear time. The caveat for the case $a=b=1, c=2$ is that $H+H$ always contains $2 H$, since $h+h=2 h$ for all $h \in H$; these solutions correspond to the trivial 3-APs h, h, h. (Similarly, $(2-H) \cap H$ is always nonempty, since $1 \in H$ and $2-1=1$.) To account for this, we simply consider $H^{\prime}=H \backslash\{1\}$, and calculate $\left(2-H^{\prime}\right) \cap H^{\prime}$ instead.

4 Proof of Theorem 3

Proof. Here is the algorithm.
Data: An integer $n>1$
Result: The value of $V W_{3}^{\times}(n)$
Let $\mathcal{P}=\left\{p\right.$ prime : $\left.p \leq(1+\varepsilon) n^{4}, p \equiv 1(\bmod n)\right\}$.
Set $p_{0}=1$.
Set Prev_boolean $=$ False and Current_boolean $=$ True.
for $p \in \mathcal{P}$ do
Let H be the subgroup of \mathbb{F}_{p}^{\times}of index n.
Set Current_boolean to True if $\left(2-H^{\prime}\right) \cap H^{\prime}$ is non-empty, and
False otherwise.
if Current_boolean is True and Prev_boolean is False then set $p_{0}=p$.
end
Set Prev_boolean to the value of Current_boolean.
end
Return p_{0}
Algorithm 1: Algorithm for determining $V W_{3}^{\times}(n)$
We now argue that Algorithm 1 runs in $\mathcal{O}\left(\frac{n^{8}}{\log n}\right)$ time. Since calculating $\left(2-H^{\prime}\right) \cap H^{\prime}$ is $\mathcal{O}(p)$ for each prime p, our runtime is bounded by

$$
\sum_{\substack{p \leq(1+\varepsilon) n^{4} \\ p \equiv 1 \\(\bmod n)}} \mathcal{O}(p)=\mathcal{O}\left(\sum_{\substack{p \leq(1+\varepsilon) n^{4} \\ p \equiv 1 \\(\bmod n)}} p\right) .
$$

A standard estimate on the prime sum

$$
\sum_{\substack{p \leq x \\ p \equiv 1 \\(\bmod n)}} p
$$

is asymptotically $\frac{x^{2}}{\varphi(n) \log x}$, giving

$$
\begin{aligned}
\mathcal{O}\left(\sum_{\substack{p \leq(1+\varepsilon) n^{4} \\
p \equiv 1 \\
(\bmod n)}} p\right) & =\mathcal{O}\left(\frac{n^{8}}{\varphi(n) \log \left(n^{4}\right)}\right) \\
& =\mathcal{O}\left(\frac{n^{8}}{\log (n)}\right)
\end{aligned}
$$

as desired.
Our timing data suggest that the correct runtime might be more like $\mathcal{O}\left(n^{6}\right)$; see Figure 2 .

Figure 2: Runtime in seconds to determine $V W_{3}^{\times}(n)$

5 Further Directions

For any $a, b, c \in \mathbb{Z}^{+}$, we can define an analog to $V W_{3}^{\times}(n)$ by considering the equation $a x+b y=c z$ instead of $x+y=2 z$. (Assume p is greater than a, b, and c.) The bound from Theorem 2 stays the same if $a+b=c$ and goes down to $n^{4}+5$ otherwise. But as suggested by the data in Figure 1, these bounds are not tight. How does the choice of a, b, and c affect the growth rate of the corresponding Van der Waerden-like number? Clearly $V W_{3}^{\times}(n)$ is not monotonic, but it appears to bounce above and below some "average" polynomial growth rate. Will that growth rate vary with the choice of a, b, and c ? Does it depend on whether $a+b=c$ only?

6 Acknowledgements

The author wishes to thank Andrew Shallue and Valentin Andreev for many productive conversations.

References

[1] Noga Alon and Jean Bourgain. Additive patterns in multiplicative subgroups. Geom. Funct. Anal., 24(3):721-739, 2014.
[2] Mei-Chu Chang. Arithmetic progressions in multiplicative groups of finite fields. Israel J. Math., 222(2):631-643, 2017.
[3] K. F. Roth. On certain sets of integers. J. London Math. Soc., 28:104-109, 1953.
[4] Tomasz Schoen and Ilya D. Shkredov. Additive properties of multiplicative subgroups of $\mathbb{F}_{p} . Q . J$. Math., 63(3):713-722, 2012.

