CONSTRUCTION METHODS FOR GAUSSOIDS

TOBIAS BOEGE AND THOMAS KAHLE

Abstract

The number of n-gaussoids is shown to be a double exponential function in n. The necessary bounds are achieved by studying construction methods for gaussoids that rely on prescribing 3 -minors and encoding the resulting combinatorial constraints in a suitable transitive graph. Various special classes of gaussoids arise from restricting the allowed 3-minors.

1. Introduction

Gaussoids are combinatorial structures that encode independence among Gaussian random variables, similar to how matroids encode independence in linear algebra. They fall into the larger class of CI structures which are arbitrary sets of conditional independence statements. The work of Fero Matúš is in particular concerned with special CI structures such as graphoids, pseudographoids, semigraphoids, separation graphoids, etc. In his works Fero Matúš followed the idea that conditional independence can be abstracted away from concrete random variables to yield a combinatorial theory. This should happen in the same manner as matroid theory abstracts away the coefficients from linear algebra. His work [Mat97] on minors of CI structures displays the inspiration from matroid theory very clearly.

In 2007, Lněnička and Matúš defined gaussoids [LM07] of dimension n as sets of symbols $(i j \mid K)$, denoting conditional independence statements, which satisfy the following Boolean formulas, called the gaussoid axioms:

$$
\begin{align*}
& (i j \mid L) \wedge(i k \mid j L) \Rightarrow(i k \mid L) \wedge(i j \mid k L) \tag{G1}\\
& (i j \mid k L) \wedge(i k \mid j L) \Rightarrow(i j \mid L) \wedge(i k \mid L) \tag{G2}\\
& (i j \mid L) \wedge(i k \mid L) \Rightarrow(i j \mid k L) \wedge(i k \mid j L) \tag{G3}\\
& (i j \mid L) \wedge(i j \mid k L) \Rightarrow(i k \mid L) \vee(j k \mid L) \tag{G4}
\end{align*}
$$

for all distinct $i, j, k \in[n]$ and $L \subseteq[n] \backslash i j k$. Here and in the following, we use the efficient "Matúš set notation" where union is written as concatenation and singletons are written without curly braces. For example, $i j k$ is shorthand for $\{i\} \cup\{j\} \cup\{k\}$.

[^0]A gaussoid is realizable if its elements are exactly the conditional independence statements that are valid for some n-variate normal distribution. Realizability was characterized for $n=4$ in [LM07] and a characterization for $n=5$ is open. There is no general forbidden minor characterization for realizability of gaussoids [Šim06, Sul09]. We therefore think about gaussoids as synthetic conditional independence in the sense of Felix Klein [Kle16, Chapter V]. This view is inspired by the parallels to matroid theory. The algebra and geometry of gaussoids was developed with this in mind in [BDKS17]. Gaussoids are also the singleton-transitive compositional graphoids according to [Sad17, Section 2.3].

In the present paper we view gaussoids as structured subsets of 2 -faces of an n cube. This readily simplifies the definition of a gaussoid, but it has several additional advantages. For example, it makes the formation of minors more effective, as this now corresponds to restricting to faces of the cube. To start, consider the usual 3dimensional cube. A knee in the cube consists of two squares that share an edge. A belt consists of all but two opposing squares of the cube. The following combinatorial definition of a gaussoid can be confirmed (for example by examining Figure 2) to agree with the gaussoid axioms.

Definition 1.1. An n-gaussoid is a set G of 2 -faces of the n-cube such that for any 3 -face c of the n-cube it holds:
(1) If G contains a knee of c, then it also contains a belt that contains that knee.
(2) If G contains two opposing faces of c, then it also contains a belt that contains these two faces.

The dimension n of the ambient cube is also the dimension of $G . \mathfrak{G}_{n}$ is the set of n-dimensional gaussoids and $\mathfrak{G}:=\bigcup_{n \geq 3} \mathfrak{G}_{n}$ the set of all gaussoids.

This definition is illustrated in Figure 1. As with the gaussoid axioms, this definition applies certain closure rules in every 3 -face of the n-cube, but whereas \mathcal{S}_{3} acts on the axes of the cube in the gaussoid axioms, the group acting on the two pictures in Figure 1 is the full symmetry group of the 3 -cube, B_{3}. This bigger group conflates the first three axioms into the first picture.

The gaussoid axioms and also Definition 1.1 only work with 3 -cubes. This locality can be expressed as in Lemma 3.3: For any $k \geq 3$, being an n-gaussoid is equivalent to all restrictions to k-faces being k-gaussoids. The aim of this work is to explore gaussoid puzzling, the reversal of this idea, that is, constructing n-gaussoids by prescribing their k-gaussoids. The implementation hinges on an understanding of how exactly the k faces of the n-cube intersect, because these intersections are obstructions to the free specification of k-gaussoids. In Section 3 we encode these obstructions in a graph and then Brooks' theorem gives access to large independent sets, where gaussoids can be freely placed. This yields a good estimate of the number of gaussoids in Theorem 3.12.

(G1)-(G3): Any knee in the cube is completed to the unique belt which contains it.

(G1)—(G3) ○ (G4): Two opposite squares are completed to (at least) one of the two belts which contain them.

Figure 1. The gaussoid axioms in the 3-cube. Premises of the axioms are colored in purple, possible conclusions in different shades of green. The pictures encode the gaussoid axioms mod B_{3}, the symmetry group of the 3 -cube.

In Section 4 we explore classes of special gaussoids that arise by restricting the puzzling of 3 -gaussoids to subsets of the 11 possibilites. Several of these classes have nice interpretations and can be matched to combinatorial objects.

Acknowledgement. The authors are supported by the Deutsche Forschungsgemeinschaft (314838170, GRK 2297, "MathCoRe").

2. The cube

Consider the face lattice \mathcal{F}^{n} of the n-cube. This lattice contains \emptyset, the unique face of dimension $-\infty$. To specify a face of non-negative dimension k, one needs to specify the k dimensions in which the face extends, and then the location of the face in the remaining $n-k$ dimensions. We employ two natural ways to work with faces. The first is string notation. In this notation a face f is an element of $\{0,1, *\}^{n}$ where the $*$ s indicate dimensions in which the face extends and the remaining binary string determines the location; a 1 at position p means that the face is translated along the p-th axis inside the cube. This string notation naturally extends the binary string notation for the vertices of the n-cube: if $f \in\{0,1, *\}^{n}$, then its vertices are

$$
\left\{a \in\{0,1\}^{n}: a_{i}=f_{i} \text { whenever } f_{i} \neq *\right\} .
$$

The second choice is set notation. In this notation, a face $f=\left(I_{f} \mid K_{f}\right)$ of dimension $k=\left|I_{f}\right|$ is specified by two sets $I_{f} \subseteq[n]$ and $K_{f} \subseteq[n] \backslash I_{f}$, where $I_{f}=\left\{i \in[n]: f_{i}=*\right\}$ and $K_{f}=\left\{i \in[n]: f_{i}=1\right\}$.

The set of k-faces of the n-cube is \mathcal{F}_{k}^{n}. As in [BDKS17], the squares of the n-cube are denoted by $\mathcal{A}_{n}:=\mathcal{F}_{2}^{n}$. Of special interest in this article are also the 3-cubes $\mathcal{C}_{n}:=\mathcal{F}_{3}^{n}$. The constructions in Section 3 based on Lemma 3.3 frequently exploit the following
Fact. For $3 \leq k \leq m$, a k-face shares at most $\binom{k-1}{2} 2^{k-3}$ squares with an m-face or is already included in it. In particular for $k=3$, if a cube shares more than a single square with an m-face, then it is already contained in it.

Minors are important in matroid theory and gaussoid theory. When a simple matroid is represented as the geometric lattice of its flats, a minor corresponds to an interval of the lattice [Wel10, Theorem 4.4.3], which is again a geometric lattice. For gaussoid minors the lattice is replaced by the set of squares in the hypercube and the lattice intervals are replaced by hypercube faces.

Minors for arbitrary CI structures have been studied for example in [Mat97]. There, a minor of a CI structure is obtained by choosing two disjoint sets $L, M \subseteq[n]$ and performing restriction to $L M$ followed by contraction by $[n] \backslash L$, which are in symbols:

$$
\begin{aligned}
\operatorname{contr}_{L} A & =\left\{(i j \mid K) \in \mathcal{A}_{L}:(i j \mid K([n] \backslash L)) \in A\right\} \subseteq \mathcal{A}_{L} \\
\operatorname{restr}_{L} A & =A \cap \mathcal{A}_{L} \subseteq \mathcal{A}_{L}
\end{aligned}
$$

In [BDKS17], minors were also defined specifically for gaussoids using statistical terminology with an emphasis on the parallels to matroid theory. A minor is every set of squares arising from a gaussoid via any sequence of marginalization and conditioning:

$$
\begin{aligned}
\operatorname{marg}_{L} A & =\{(i j \mid K) \in A: L \subseteq[n] \backslash i j K\} \subseteq \mathcal{A}_{[n] \backslash L} \\
\operatorname{cond}_{L} A & =\left\{(i j \mid K) \in \mathcal{A}_{[n] \backslash L}:(i j \mid K L) \in A\right\} \subseteq \mathcal{A}_{[n] \backslash L}
\end{aligned}
$$

These operations are dual to the ones defined by Matúš: $\operatorname{cond}_{L}=\operatorname{contr}_{[n] \backslash L}$ and $\operatorname{marg}_{L}=\operatorname{restr}_{[n] \backslash L}$. Furthermore, either operation can be the identity, $\operatorname{restr}_{[n]}=\mathrm{id}$ and contr ${ }_{[n]}=\mathrm{id}$, and finally, the two sets L and M in Matúś' definition of minor can be decoupled: contr $\operatorname{lestr}_{L M}=\operatorname{restr}_{L} \operatorname{contr}_{[n] \backslash M}$. Thus both notions of minor coincide.

Our aim is to provide a geometric intuition for the act of taking a gaussoid minor. A face $(L \mid M)$ of the n-cube is canonically isomorphic to the L-cube by deleting from the [n]-cube $\{0,1\}^{[n]}$ all coordinates outside of L. This deletion is a lattice isomorphism $\pi_{(L \mid M)}: \mathcal{F}^{n} \cap(L \mid M) \leftrightarrow \mathcal{F}^{L}$, with the face lattice \mathcal{F}^{L} of an $|L|$-dimensional cube. We can interpret taking the minor $\operatorname{restr}_{L} \operatorname{cond}_{M}$ as an operation in the hypercube.
Proposition 2.1. Let $A \subseteq \mathcal{A}_{n}$, then $\operatorname{restr}_{L} \operatorname{cond}_{M} A=\pi_{(L \mid M)}(A \cap(L \mid M))$.
Proof. Take $\left(i j \mid K^{\prime}\right) \in \operatorname{restr}_{L} \operatorname{cond}_{M} A$. Then $i j$ and K^{\prime} can be seen as subsets of $[n]$ and they satisfy $i j K^{\prime} \subseteq L$ and $\left(i j \mid K^{\prime} M\right) \in A$. From this it is immediate that $i j \subseteq L$ and $K^{\prime} M \subseteq L M$. Furthermore, $[n] \backslash i j K^{\prime} M=\left([n] \backslash i j K^{\prime}\right) \cap([n] \backslash M) \subseteq L \tilde{M}$, hence $\left(i j \mid K^{\prime} M\right) \subseteq(L \mid M)$ and $\left(i j \mid K^{\prime}\right) \in \pi_{(L \mid M)}(A \cap(L \mid M))$.

In the other direction, suppose that $\left(i j \mid K^{\prime}\right) \in \pi_{(L \mid M)}(A \cap(L \mid M))$ and let $(i j \mid K)$ be its preimage under $\pi_{(L \mid M)}$. Then $(i j \mid K) \in A \cap(L \mid M)$ and it follows $i j \subseteq L, K \subseteq L M$
and also $M \subseteq K$ because $\tilde{K} \subseteq L \tilde{M}$. Thus K decomposes into $K=K^{\prime} M$ where naturally $K^{\prime} \cap M=\emptyset$. This proves that $\left(i j \mid K^{\prime}\right) \in \operatorname{restr}_{L} \operatorname{cond}_{M} A$.

Proposition 2.1 compactly encodes the definitions of minor. The following definition introduces notation reflecting this as well as an opposite embedding, which mounts a set of squares from the I-cube into an $|I|$-dimensional face of a higher hypercube.

Definition 2.2. (1) For a set $A \subseteq \mathcal{A}_{n}$ and $(I \mid K) \in \mathcal{F}_{k}^{n}$, the $(I \mid K)$-minor of A is the set $A \downarrow(I \mid K):=\pi_{(I \mid K)}(A \cap(I \mid K)) \subseteq \mathcal{A}_{I}$. A k-minor is an $(I \mid K)$-minor with $|I|=k$.
(2) For a set $A \subseteq \mathcal{A}_{I}$ and $(I \mid K) \in \mathcal{F}_{k}^{n}$, the embedding of A into $(I \mid K)$ is the preimage $A \uparrow(I \mid K):=\pi_{(I \mid K)}^{-1} A \subseteq \mathcal{A}_{n}$.

3. Gaussoid puzzles

Several theorems in matroid theory concern the (impossibility of a) characterization of classes of matroids in terms of forbidden and compulsory minors. For CI structures such as gaussoids the definitions read as follows.
Definition 3.1. (1) A class $\mathfrak{A} \subseteq \bigcup_{n} 2^{\mathcal{A}_{n}}$ of sets of squares is minor-closed if with $A \in \mathfrak{A}$ all minors of A belong to \mathfrak{A}.
(2) A set of squares X is a forbidden minor for a minor-closed class \mathfrak{A} if it is minimal with the property that it does not belong to \mathfrak{A}, in the sense that all its proper minors do belong to \mathfrak{A}.
(3) If there is a forbidden k-minor for some k, then all non-forbidden k-minors are called compulsory k-minors for the class \mathfrak{A}.
It is easy to see that gaussoids are minor-closed, i.e. any k-minor of an n-gaussoid is always a k-gaussoid. But even more is true: given any set of squares in the n-cube, if all of its k-minors, for any $k \geq 3$, are k-gaussoids, then the whole is an n-gaussoid. This claim is proved in Lemma 3.3. The present section uses this property to construct gaussoids by prescribing their k-minors. Section 4 investigates subclasses of gaussoids which have the same anatomy. We formalize this property in

Definition 3.2. A class $\mathfrak{A}=\bigcup_{n \geq n_{0}} \mathfrak{A}_{n}$ of sets of squares stratified by dimension, i.e. $\mathfrak{A}_{n} \subseteq 2^{\mathcal{A}_{n}}$, has a puzzle property if it is minor-closed and its n-th stratum is generated via embeddings from the strata below n, i.e. if for some $A \subseteq \mathcal{A}_{n}$ all its k-minors, $k<n$, are in \mathfrak{A}_{k}, then already $A \in \mathfrak{A}_{n}$. The lowest stratum $\mathfrak{A}_{n_{0}}$ is the basis of \mathfrak{A} and the puzzle property is based in dimension n_{0}.
Lemma 3.3. The set of gaussoids has a puzzle property based in dimension 3, whose basis are the eleven 3 -gaussoids.

Proof. Let $G \subseteq \mathcal{A}_{n}$ and $3 \leq k \leq n$. We show that G is an n-gaussoid if and only if $G \downarrow d$ is a k-gaussoid for every $d \in \mathcal{F}_{k}^{n}$. First consider the case $k=3$. The gaussoid axioms are quantified over arbitrary cubes $(i j k \mid L)$ together with an order on the set
$i j k$, and each axiom refers to squares inside the cube $(i j k \mid L)$ only. Confined to this cube, the axioms state precisely that this 3 -minor is a 3 -gaussoid. The case of $k>3$ is reduced to the statement for $k=3$. Indeed, all 3 -minors of G are gaussoids if and only if all 3 -minors of k-minors of G are gaussoids, because those two collections of minors both arise from the same set \mathcal{C}_{n} of cubes of the n-cube.

Turning Definition 3.2 upside down, the construction of an n-gaussoid can be seen as a high-dimensional jigsaw puzzle. The puzzle pieces are lower-dimensional gaussoids which are to be embedded into faces of the n-cube. The difficulty comes from the fact that every square is shared by $\binom{n-2}{k-2} k$-faces. The minors must be chosen so that all of them agree on whether a shared square is an element of the n-gaussoid under construction or not. The incidence structure of k-faces in the n-cube is important. We study it via the following graph.

Definition 3.4. Let $Q(n, k, p, q)$, for $n \geq k \geq p \geq q$, be the undirected simple graph with vertex set \mathcal{F}_{k}^{n} and an edge between $d, f \in \mathcal{F}_{k}^{n}$ if and only if there is a p-face s such that $\operatorname{dim}(d \cap s) \geq q$ and $\operatorname{dim}(f \cap s) \geq q$.

The idea behind this definition is that for suitable choices of p and q, the faces indexed by an independent set in these graphs will be just far enough away from each other in the n-cube to allow free puzzling of k-gaussoids without one minor choice creating constraints for other minors.

Theorem 3.5. The graph $Q(n, k, p, q)$ is transitive, hence regular. It is complete if and only if $n+q \leq p+k$. The degree of any vertex can be calculated as follows:

$$
\operatorname{deg} Q(n, k, p, q)=-1+\sum_{m, j(\dagger)}\binom{k}{j} 2^{k-j}\binom{n-k}{k-j}\binom{n-2 k+j}{m},
$$

where the sum extends over pairs $(m, j) \in[n-k] \times[k]$ which satisfy the feasibility and connectivity conditions

$$
n-2 k+j \geq m \quad \wedge \quad p \geq m+2 q-\min \{q, j\}
$$

Proof. The symmetry group B_{n} acts on the n-cube as automorphisms of the face lattice. The group action is transitive on k-faces for any k and respects meet and join. Therefore B_{n} acts transitively on the graph $Q(n, k, p, q)$.

The characterization of completeness rests on Lemma 3.6. Using the gap function ρ_{q} defined there, it is shown that $\rho_{q}(d, f) \leq p$ is equivalent to the adjacency of d and f in $Q(n, k, p, q)$ and that if f^{\prime} is a face with smaller gap, then f^{\prime} is adjacent to d. Since $Q(n, k, p, q)$ is regular, it is complete if and only if some vertex is adjacent to all others. For that to happen, the vertex must be adjacent to one which has the largest gap to it. As shown in the lemma, the maximum of ρ_{q} is $n-k+q$ and hence completeness is equivalent to $n-k+q \leq p$.

The exact degree also follows from Lemma 3.6. Fix any vertex d of $Q(n, k, p, q)$. By regularity it suffices to count the adjacent vertices f of d. We subdivide vertices f according to two parameters: $m=\left|\left(K_{d} \oplus K_{f}\right) \backslash I_{d} I_{f}\right|$ is a disagreement between d and f and $j=\left|I_{d} \cap I_{f}\right|$ is the number of common dimensions of d and f. A priori, m ranges in $[n-k]$ and j ranges in $[k]$, but not all combinations allow f to be a k-face adjacent to d. First, we determine the pairs (m, j) for which an adjacent k-face exists and then count how many of them exist for fixed parameters. Let $(m, j) \in[n-k] \times[k]$. For $j=\left|I_{d} \cap I_{f}\right|$ it must hold that $n \geq 2 k-j$, since d and f are k-faces. Assuming this, f can be constructed if and only if the $k-j$ dimensions in $I_{f} \backslash I_{d}$ leave enough space to create the prescribed disagreement of size m. As an inequality this is $n-k \geq$ $m+(k-j)$, or $n-2 k+j \geq m$. Together with $m \geq 0$, this inequality already entails the condition $n \geq 2 k-j$ imposed by the choice of j. Thus it is sufficient to require $n-2 k+j \geq m$, which is the first condition in (\dagger). Given a k-face f with parameters m and j, the existence of an edge between d and f in $Q(n, k, p, q)$ imposes the condition Lemma 3.6 (1), which is the right half of (\dagger).

As for the counting, let d be a fixed k-face and let $(m, j) \in[n-k] \times[k]$ satisfy (\dagger). We count the k-faces f with parameters m and j. There are $\binom{k}{j}$ ways to place the * for $I_{f} \cap I_{d}$. On $I_{d} \backslash I_{f}$, there are 2^{k-j} independent choices from $\{0,1\}$. The choices so far fix f in I_{d}. There are now $\binom{n-k}{k-j}$ choices for the remaining $* \mathrm{~s}$ in $I_{f} \backslash I_{d}$. Then I_{f} is fixed. Now to finish f, we may only place 0 and 1 in $[n] \backslash I_{d} I_{f}$ where d has only 0 s and 1 s as well. Among the remaining $n-2 k-j$ positions, a set of size m must be chosen, where f is already determined by the condition that it differs from d. On the remaining $n-2 k-j-m$ positions, f is determined by not differing from d. The feasibility of all the choices enumerated so far is guaranteed by (\dagger). The tally is

$$
\sum_{m, j(\dagger)}\binom{k}{j} 2^{k-j}\binom{n-k}{k-j}\binom{n-2 k+j}{m}
$$

Since d is not adjacent to itself, which is uniquely described by the feasible parameters $j=k$ and $m=0$, subtracting 1 concludes the proof.

Lemma 3.6. Let d, f be k-faces and $\rho_{q}(d, f):=m+2 q-\min \{q, j\}$, with $j=\left|I_{d} \cap I_{f}\right|$ and $m=\left|\left(K_{d} \oplus K_{f}\right) \backslash I_{d} I_{f}\right|$. The following hold:
(1) $\rho_{q}(d, f) \leq p$ if and only if d and f are adjacent in $Q(n, k, p, q)$,
(2) the range of ρ_{q} is $[q, n-k+q]$,
(3) ρ_{q} is strictly isotone with respect to q, i.e. $\rho_{q}<\rho_{q+1}$,
(4) for $d, d^{\prime}, f \in \mathcal{F}_{k}^{n}$ with $\rho_{q}\left(d, d^{\prime}\right) \leq \rho_{q}(d, f)$, if d and f are adjacent in $Q(n, k, p, q)$, then so are d and d^{\prime}.

Proof. Given two k-faces d and f, the ground set $[n]$ splits into three sets: (i) ($K_{d} \oplus$ $\left.K_{f}\right) \backslash I_{d} I_{f}$ of cardinality m where both have 0 and 1 symbols only but differ, (ii) $I_{d} \cap I_{f}$ of cardinality j of shared $*$ symbols, and (iii) everything else, i.e. positions where 0
and 1 patterns agree or where 0 and 1 are in one face and $*$ in the other. In order to connect two k-faces in $Q(n, k, p, q)$, there needs to be a p-face which intersects either of them in at least dimension q. Such a face has to cover the set of size m with $*$, as it otherwise it will not intersect both faces. Conversely, once m is covered, a 0 dimensional intersection with both faces is ensured by placing 0s and 1s appropriately. To achieve a q-dimensional intersection, $q *$ have to be placed on I_{d} and I_{f} each. By using the j shared $*$ s, one needs at least $2 q-\min \{q, j\}$ further $*$ to construct a connecting p-face. Thus $\rho_{q}(d, f)$ is the minimum dimension p necessary to connect d and f in $Q(n, k, p, q)$. This proves claim (1).

It is clear that ρ_{q} is minimal when m is minimal and j is maximal. This can be achieved simultaneously by choosing $f=d$ and there $\rho_{q}(d, d)=q$. Now consider the opposing face $d^{\circ}=\left(I_{d},[n] \backslash K_{d} I_{d}\right)$ of d. The gap is $\rho\left(d, d^{\circ}\right)=n-\left|I_{d}\right|+2 q-\min \left\{q,\left|I_{d}\right|\right\}=$ $n-k+q$ assuming d is a vertex of $Q(n, k, p, q)$ where in particular $\left|I_{d}\right|=k \geq q$. Increasing this value would require reducing j since m is already maximal. Un-sharing *s with d consumes positions inside the block of 0s and 1s in d of size $n-k$ which reduces m by an equal amount. Hence $n-k+q$ is maximal. Furthermore, by varying m but keeping $j=k$, all values in the range $[q, n-k+q]$ can be attained, proving claim (2).

Claim (3) follows from a straightforward calculation:

$$
\begin{aligned}
\rho_{q+1}(d, f)-\rho_{q}(d, f) & =2-(\min \{q+1, j\}-\min \{q, j\}) \\
& = \begin{cases}2, & j \leq q, \\
1, & j \geq q+1 .\end{cases}
\end{aligned}
$$

In the situation of claim (4), since d and f are adjacent in $Q(n, k, p, q)$, we have $\rho_{q}\left(d, d^{\prime}\right) \leq \rho_{q}(d, f) \leq p$ by (1). Applying this property in reverse proves the claim.
Corollary 3.7. (1) $Q(n, 3,2,2)$ is complete for $n \leq 3$. Otherwise its degree is $6(n-3)$ $\leq 6(n-2)$.
(2) $Q(n, 3,3,2)$ is complete for $n \leq 4$. Otherwise its degree is $12(n-3)(n-4)+$ $7(n-3) \leq 12(n-1)(n-2)$.
Remark 3.8. For the theory of gaussoids, the cases $k=3, q=2,3, p=2$ are relevant. We consider it an interesting problem to study growth of the degree formula for other parameters. Certainly the graph can be complete, where the degree is as large as $\binom{n}{k} 2^{n-k}$. To construct large independent sets, one wants smaller degrees. It is proved below that a maximal independent set in $Q(n, 3,3,2)$ has cardinality in $\Theta\left(n 2^{n}\right)$ of which one inequality follows from the degree formula.

Proposition 3.9. Let \mathcal{F} be an independent set in $Q(n, k, 3,2)$, then the following inequality holds: $\left|\mathfrak{G}_{n}\right| \geq\left|\mathfrak{G}_{k}\right|^{|\mathcal{F}|}$.
Proof. Let $d, f \in \mathcal{F}$. Since \mathcal{F} is independent, there is no 3-cube sharing a square with d and with f. Since $k \geq 3$, also d and f share no square. Thus an assignment of
k-gaussoids $\alpha: \mathcal{F} \rightarrow \mathfrak{G}_{k}$ lifts to a well-defined set of squares $G:=\bigsqcup_{d \in \mathcal{F}} \alpha d \uparrow d \subseteq \mathcal{A}_{n}$. The map $\alpha \mapsto G$ is injective.

To see that G is a gaussoid, we examine its 3-minors. Let $c \in \mathcal{C}_{n}$ be arbitrary. In case c is fully contained in some $d \in \mathcal{F}$, then clearly $G \downarrow c=(\alpha d \uparrow d) \downarrow c=\alpha d \downarrow c \in \mathfrak{G}_{3}$ since $\alpha d \in \mathfrak{G}_{k}$. Otherwise c can share at most one square with any face in \mathcal{F}. If it shares no square with any element of \mathcal{F}, then $G \downarrow c$ is empty, hence a gaussoid. If it shares a square with some face in \mathcal{F}, it cannot share a square with any other element of \mathcal{F} because \mathcal{F} is an independent set in $Q(n, k, 3,2)$. In this case, $G \downarrow c$ is a singleton and hence a gaussoid.

Proposition 3.10. Let \mathcal{F} be an independent set in $Q(n, k, 2,2)$ and c the maximum size of a set of mutually range-disjoint injections of \mathfrak{G}_{k} into $2^{\mathcal{A}_{k}} \backslash \mathfrak{G}_{k}$. Then $\frac{2^{\left|\mathcal{A}_{n}\right|}}{\left|\mathfrak{G}_{n}\right|} \geq c^{|\mathcal{F}|}$.

Proof. The proof is analogous to Proposition 3.9 but uses the independent set to perturb any gaussoid injectively into $c^{|\mathcal{F}|}$ non-gaussoids. Again, since $q=2$ and \mathcal{F} is independent, an assignment $\alpha: \mathcal{F} \rightarrow 2^{\mathcal{A}_{k}}$ lifts uniquely via \uparrow to a subset of \mathcal{A}_{n}. Let $\left\{f_{i}\right\}_{i \in[c]}$ be a set of range-disjoint injections as in the claim. Consider the maps $\alpha^{\prime}: \mathcal{F} \rightarrow[c]$. To each $G \in \mathfrak{G}_{n}$ associate $H_{\alpha^{\prime}}:=\bigsqcup_{d \in F} f_{\alpha^{\prime} d}(G \downarrow d) \uparrow d \subseteq \mathcal{A}_{n}$.

Because the ranges of the f_{i} are disjoint, the map $\left(G, \alpha^{\prime}\right) \mapsto H_{\alpha^{\prime}}$ is injective. None of the sets $H_{\alpha^{\prime}}$ is a gaussoid since any $d \in \mathcal{F}$ certifies $H_{\alpha^{\prime}} \downarrow d=f_{\alpha^{\prime} d}(G \downarrow d) \notin \mathfrak{G}_{k}$.

Remark 3.11. The proofs of Propositions 3.9 and 3.10 exploit two properties of the class of gaussoids: (1) it has a puzzle property, and (2) the empty set and all singletons are in its basis. The same technique does not work for realizable gaussoids because they lack property (1) and not for graphical gaussoids (see Section 4) because they lack property (2). Indeed their numbers can be shown to be single exponential. For realizable gaussoids, this follows from Nelson's recent breakthrough: If a gaussoid is realizable with a positive-definite $n \times n$ covariance matrix Σ, then the $n \times 2 n$ matrix $\left(I_{n} \Sigma\right)$ both defines a vector matroid identifies the gaussoid. By [Nel18, Theorem 1.1] there are only exponentially many realizable matroids and thus realizable gaussoids. Nelson's bound features a cubic polynomial in the exponent, while there are certainly $2^{n^{2}}$ realizable gaussoids coming from graphical models.

To get explicit bounds we apply the propositions for $k=3$. To find suitable independent sets in $Q(n, 3,3,2)$ and $Q(n, 3,2,2)$ we use Brooks' Theorem [Lov75] and the degree bounds from Corollary 3.7. Since the graphs are connected, have degree at least 3 but are not complete, there exists a proper $\operatorname{deg} Q(n, 3,3,2)$-coloring of $Q(n, 3,3,2)$, and we can pick a color class as an independent set \mathcal{F}. Its size is at least that of an average color class:

$$
\frac{\left|\mathcal{F}_{3}^{n}\right|}{\operatorname{deg} Q(n, 3,3,2)} \geq \frac{n(n-1)(n-2)}{6 \cdot 12(n-1)(n-2)} 2^{n-3}=\frac{n}{6^{2}} 2^{n-4}=\frac{n}{9} 2^{n-6}
$$

For $Q(n, 3,2,2)$, we find analogously

$$
\frac{\left|\mathcal{F}_{3}^{n}\right|}{\operatorname{deg} Q(n, 3,2,2)} \geq \frac{n(n-1)(n-2)}{6 \cdot 6(n-2)} 2^{n-3}=\frac{n(n-1)}{6^{2}} 2^{n-3}=\frac{n(n-1)}{9} 2^{n-5} .
$$

Proposition 3.9 now shows, using $\left|\mathfrak{G}_{3}\right|=11$ and $\log _{2} 11 \geq 3$, that there are at least $11^{\frac{n}{9} 2^{n-6}} \geq 2^{\frac{n}{3} 2^{n-6}} n$-gaussoids. Similarly, Proposition 3.10 with $c=\left\lfloor\frac{64-11}{11}\right\rfloor=4$ gives an upper bound on the ratio of n-gaussoids of $4^{\frac{n(n-1)}{9} 2^{n-5}}=2^{\frac{n(n-1)}{9} 2^{n-4}}$. We have proved

Theorem 3.12. For $n \geq 5$, the number of n-gaussoids is bounded by

$$
2^{\frac{1}{3} n 2^{n-6}} \leq\left|\mathfrak{G}_{n}\right| \leq \frac{2^{\left|\mathcal{A}_{n}\right|}}{2^{\frac{4}{9} n(n-1) 2^{n-6}}}
$$

Remark 3.13. A simple way to obtain a weaker double exponential lower bound for the number of gaussoids was suggested to us by Peter Nelson, following a matroid construction of Ingleton and Piff. Let $R=\binom{[n]}{r}$ be the set of all r-subsets of $[n]$ for some $r<n$. Every $S \in R$ defines a 2 -face $(i j \mid K)$ of the n-cube, where i, j are the minimal elements of S. Any subset of R is a gaussoid. The axioms (G1) and (G4) are satisfied because their premises contain sets of different sizes. The axioms (G2) and (G3) are satisfied because their premises correspond to the same $S \in R$ and thus only one of them can be in. With $r=\lfloor n / 2\rfloor$ there are least $2\binom{n}{r} \in \Theta\left(2^{n^{-1 / 2} 2^{n}}\right)$ gaussoids.

Substituting $\left|\mathcal{A}_{n}\right|=\binom{n}{2} 2^{n-2}$ in Theorem 3.12 gives an interval for the absolute number of n-gaussoids for $n \geq 5$. It shows $\log \left|\mathfrak{G}_{n}\right| \in \Omega\left(n 2^{n}\right) \cap \mathcal{O}\left(n^{2} 2^{n}\right)$.

We conclude this section by showing that the linear order lower bound is the best that the independent set construction in $Q(n, 3,3,2)$ can do. The independence number $\alpha(G)$ of a graph G is the maximal size of an independent set in G. Similarly, the clique number $\omega(G)$ is the maximal size of a clique in G. Since $Q(n, 3,3,2)$ is transitive, the following inequality holds [GR01, Lemma 7.2.2]:

$$
\alpha(Q(n, 3,3,2)) \leq \frac{\left|\mathcal{F}_{3}^{n}\right|}{\omega(Q(n, 3,3,2))} .
$$

Since $\left|\mathcal{F}_{3}^{n}\right| \in \Theta\left(n^{3} 2^{n}\right)$, it suffices to find a clique of size $\Omega\left(n^{2}\right)$ in every $Q(n, 3,3,2)$. Take the set of cubes $\mathcal{J}:=\left\{(1 i j \mid): i j \in\binom{[n] \backslash 1}{2}\right\}$. This set has cardinality $\binom{n-1}{2} \in \Theta\left(n^{2}\right)$ and any two elements $d=(1 i j \mid), f=(1 k l \mid)$ in it are connected by an edge in $Q(n, 3,3,2)$, since $\rho_{2}(d, f)=m+2 \cdot 2-\min \{2, j\}=4-\min \{2, j\} \leq 3$ with $m=0$ and $j \geq 1$.

4. Special gaussoids

Because of their puzzle property, gaussoids are the largest class of CI structures whose k-minors are k-gaussoids. The base case of this definition are the eleven 3gaussoids arising from 3×3 covariance matrices of Gaussian distributions. The 3gaussoids split into five symmetry classes modulo \mathcal{S}_{3} which we denote by letters E, L, U, B, and F. They are depicted in Figure 2.

Figure 2. The eleven 3 -gaussoids in five symmetry classes mod \mathcal{S}_{3} organized in columns. From left to right: the empty gaussoid E, the lower singletons L, the upper singletons U, the belts B and the full gaussoid F.

The special \mathcal{S}_{n}-invariant types of gaussoids in this section arise from choosing subsets of these five symmetry classes to base a puzzle property on. Each of the 32 sets of bases can be converted into axioms in the 3-cube similar to the gaussoid axioms (G1)—(G4). SAT solvers [Thu06, TS16] were used on the resulting Boolean formulas to enumerate or count these classes. The listings can be found on our supplementary website gaussoids.de. For nine classes an entry in the OEIS [OEI19] could be found. Table 1 is the main result of this section. It summarizes the different types of gaussoids that arise from the different bases.

The classes E, B and F are themselves closed under duality, while L and U are interchanged by it. It follows that one of the 32 classes is invariant under duality if it contains either none of L and U or both of them. On the remaining classes, duality acts by swapping L with U. The combinatorial properties of the classes, e.g. the size, are unaffected by this action, hence $L B$ and $U B$ are conflated to $\{L, U\} B$ in Table 1.
4.1. Fast-growing gaussoids. By Remark 3.11, the construction of doubly exponentially many members of a class of gaussoids requires that the class has a puzzle property and that its basis includes ELU. This explains the rapid growth of all four classes of this type.
4.2. Incompatible minors. As a consequence of Definition 3.2, if there is no gaussoid of dimension k in a class, there are no gaussoids of any dimension $\geq k$ in the class. Similarly, if the class contains only the empty or full gaussoid in dimension k, the

Name	Count in dim. $3,4,5, \ldots$	OEIS	Interpretation
Fast-growing			
ELUBF	11, 679, 60212776	-	Gaussoids
ELUB	10, 640, 59348930	-	-
ELUF	8, 522, 48633672	-	
ELU	7, 513, 47867881	-	Required for Prop. 3.9
Incompatible			
LUB	9, 111, 0, 0	-	Vanishes for $n \geq 5$
LUF	7, 61, 1, 1	-	Only F for $n \geq 5$
LU	6, 60, 0, 0	-	Vanishes for $n \geq 5$
\{L, U\}B	$6,15,0,0$	-	Vanishes for $n \geq 5$
\{L, U\}F	4, 1, 1, 1	-	Only F for $n \geq 4$
EF	2, 2, 2, 2	A007395	Only E or F for all n
Graphical			
E\{L, U\}BF	8, 64, 1024, 32 768, 2097152	A006125	Undirected simple graphs
E\{L, U\}B	7, 41, 388, 5789, 133501	A213434	Graphs without 3-cycles
\{L, U\} BF	7, 34, 206, 1486, 12412	A011800	Forests of paths on [n]
E\{L, U\}F, EBF	5, 15, 52, 203, 877, 4140	A000110	Partitions of [n]
$\mathrm{E}\{\mathrm{L}, \mathrm{U}\}, \mathrm{BF}$	$4,10,26,76,232,764,2620$	A000085	Involutions on [n]
EB	4, 8, 16, 32, 64, 128, 256	A000079	Subsets of [$n-1$]
Exceptional			
LUBF	$\begin{aligned} & 10,142,1166,12796, \\ & 183772,3221660 \end{aligned}$	-	-

TABLE 1. 26 classes of special gaussoids categorized into four types. The remaining six classes are described by one or zero letters of $\{E, L, U, B, F\}$ and belong to the Incompatible type, as each of them is a subclass of a class found to be Incompatible.
members of dimension $\geq k$ are the empty or full gaussoid as well. Hence computations in small dimension suffice to explain these classes. Despite their simplicity, each of them provides higher compatibility axioms. For example the annihilation of LUB in dimension 5 implies that every 5 -minor of a gaussoid contains an empty or a full 3minor. Or: a graphical 4-gaussoid with no belts is full or contains an empty 3-minor.
4.3. Graphical gaussoids. Each undirected simple graph $G=([n], E)$ defines a CI structure $\left\langle\langle G\rangle:=\left\{(i j \mid K) \in \mathcal{A}_{n}: K\right.\right.$ separates i and $\left.j\right\}$, where two vertices i and j are separated by a set K if every path between i and j intersects K. These are the separation graphoids of [Mat97]. They fulfill a localized version of the global Markov property. According to [LM07, Remark 2], separation graphoids are exactly
the gaussoids satisfying the ascension axiom:

$$
\begin{equation*}
(i j \mid L) \Rightarrow(i j \mid k L), \quad \forall i, j, k \in[n], L \subseteq[n] \backslash i j k . \tag{A}
\end{equation*}
$$

Therefore we refer to them as ascending gaussoids. The operation $G \mapsto\langle\langle G\rangle\rangle$ is a bijection whose inverse recovers the graph via its edges $E=\{i j:(i j \mid *) \notin\langle\langle G\rangle\rangle$, where $(i j \mid *)$ abbreviates $(i j \mid[n] \backslash i j)$. Any gaussoid in this section is of the form $\langle\langle G\rangle\rangle$ for some undirected simple graph G.

Since (A) uses only 2 -faces of a single 3 -face of the n-cube, being an ascending gaussoid is a puzzle property based in dimension 3. Its basis are the ascending 3gaussoids. This was shown by Matúš [Mat97, Proposition 2] and in our terminology it can be restated as follows
Lemma 4.1. A gaussoid is ascending if and only if L is a forbidden minor.
This shows that EUBF are the ascending gaussoids. Their duals are ELBF and it is easy to see that their axiomatization replaces (A) by the descension axiom

$$
\begin{equation*}
(i j \mid k L) \Rightarrow(i j \mid L), \quad \forall i, j, k \in[n], L \subseteq[n] \backslash i j k \tag{D}
\end{equation*}
$$

EUBF-gaussoids arise from undirected graphs via vertex separation, i.e. $(i j \mid K) \in\langle\langle G\rangle$ if and only if i and j are in different connected components of $G \backslash K$. Their duals contain $(i j \mid K)$ if and only if i and j are in different connected components in the induced subgraph on $i j K$. Therefore we call elements of EUBF \cup ELBF graphical gaussoids. For our classification purposes it is sufficient to study the "Upper" half of dual pairs.

Our technique to understand EUBF and its subclasses has already been used in [Mat97]: since the presence of an edge $i j$ in G is encoded by the non-containment $(i j \mid *) \notin\langle\langle G\rangle\rangle$, the compulsory minors of $\langle\langle G\rangle$ of the form $\langle\langle G\rangle\rangle \downarrow(i j k \mid *)$ prescribe induced subgraphs on vertex triples $i j k$. In the opposite direction, however, the induced 3 -subgraphs of a graph do not in general reveal the types all minors $\langle\langle G\rangle\rangle \downarrow(i j k \mid L)$ in its corresponding gaussoid.
Example 4.2. Consider the cycle Its 3 -minors are exclusively E and U. The U minors arise precisely in the 3 -cubes

$$
\{1 * * *\},\{* 1 * *\},\{* * 1 *\},\{* * * 1\} .
$$

All other 3 -minors are E. This means that the 4-cycle is contained in EUBF, EUB, and EU. To match with Table 1, check that the 4 -cycle has no induced 3 -cycle, corresponds to the partition $13 \mid 24$ of [4], and the involution $(13)(24) \in S_{4}$.

This graph shows that the class of a gaussoid cannot be determined by looking only at the induced subgraphs of G. All 3-minors observable from induced subgraphs are U , but the smallest class to which this gaussoid belongs is EU.
Example 4.3. Consider the star 0 - with interior node 1 and leaves 2, 3, 4. It corresponds to the gaussoid

$$
\{(23 \mid 1),(23 \mid 14),(24 \mid 1),(24 \mid 13),(34 \mid 1),(34 \mid 12)\}
$$

Figure 3. The complementary graphs G^{c} of 3-gaussoids $\langle\langle G\rangle\rangle$ organized in symmetry classes mod \mathcal{S}_{3} according to Figure 2. E, U, B, F index a partition of the \mathcal{S}_{3} orbits of all graphs on 3 vertices. To obtain the diagram of graphs G, flip the pictures over the vertical axis.

Because the right-hand side of every element of the gaussoid contains 1, this gaussoid has the minor F in $1 * * *$, E in the opposite face $0 * * *$ and U everywhere else.

We now establish relationships of subclasses of EUBF with known combinatorial objects. For some the graph G is more convenient, for others it is the complement graph G^{c} which is more natural. Figure 3 shows the complement graphs corresponding to E, U, B and F and is useful to keep in mind for the proof of Theorem 4.4.

Theorem 4.4. The gaussoids in the class EUBF are in bijection with the simple undirected graphs on n vertices. The subclasses distribute as follows
(1) EUB contains exactly the gaussoids $\langle\langle G\rangle\rangle$ such that G^{c} is K_{3}-free.
(2) UBF contains exactly the gaussoids $\langle\langle G\rangle\rangle$ such that each connected component of G is a path.
(3) EUF contains exactly the gaussoids $\langle\langle G\rangle\rangle$ such that in G^{c} each connected component is a clique, and hence corresponds to partitions of the vertex set $[n]$.
(4) EU is EUF where additionally every connected component of G^{c} has at most two vertices.

Proof. The first statement summarizes the discussion in the beginning of this section. (1) The graphs G^{c} for $\langle\langle G\rangle\rangle \in$ EUB are free of triangles, as seen in Figure 3. If conversely
G^{c} triangle-free, then $\langle\langle G\rangle\rangle$ does not have F among its minors ($i j k \mid *$). By ascension, the cardinality of $\langle\langle G\rangle\rangle \downarrow(i j k \mid L)$ is monotone in L and thus no minor of $\langle\langle G\rangle\rangle$ is F .
(2) For $\langle\langle G\rangle\rangle \in \mathrm{UBF}$ we first show that every vertex of G has degree at most two. Suppose a vertex i was adjacent to three distinct vertices j, k, l. The subgraph induced on $i j k l$ is the star discussed in Example 4.3 since i has degree three in this subgraph but none of its induced 3 -subgraphs can be complete. The corresponding gaussoid has E as a minor and therefore this situation cannot arise in G. Therefore G is a disjoint union of cycles and paths. If G contains a cycle, let i, j, k be vertices of that cycle. Since cycles are 2-connected, neither $(i j \mid k)$, nor $(i k \mid j)$, nor $(j k \mid i)$ is in $\langle\langle G\rangle\rangle$. Consequently, the minor $\langle\langle G\rangle\rangle \downarrow(i j k \mid)=\mathrm{E}$ and thus G contains no cycles.

Let now G be a forest of paths. Consider any three vertices i, j, k. If they are not all in the same connected component, say i, j are in different connected components, then $(i j \mid),(i j \mid k) \in\langle\langle G\rangle\rangle \downarrow(i j k \mid)$ and thus this minor is not E. If i, j, k are in the same connected component, then this path becomes disconnected after removing one of the vertices, say k. Then $(i j \mid k) \in\langle\langle G\rangle\rangle \downarrow(i j k \mid)$ and this minor is not E. In both cases, with ascension, it follows that for every $L \subseteq[n] \backslash i j k$ the minor $\langle\langle G\rangle \downarrow(i j k \mid L)$ is not E .
(3) Let $\langle\langle G\rangle\rangle \in$ EUF. The induced subgraphs of G^{c} on three vertices are precisely those which are closed under the reachability relation within that subgraph. It is then clear that every two vertices in the neighborhood of a fixed vertex are connected by an edge, hence every connected component is a clique.

Let G^{c} be a disjoint union of cliques and $i, j, k \in[n]$. If they lie in pairwise different connected components, then the $(i j k \mid *)$-minor of $\langle\langle G\rangle\rangle$ is E; if exactly two of them are in one component, then that minor is U . By ascension, none of the minors $(i j k \mid L)$ can be B in these cases. Finally suppose that i, j, k are in the same connected component and that $\langle\langle G\rangle\rangle(i j k \mid L)$ is a belt containing, say, $(i j \mid L)$ and $(i k \mid L)$ but not $(j k \mid L)$. Then G contains a path from j to k avoiding L. Because $j k$ is an edge in G^{c}, this path contains another vertex $l \in[n] \backslash L i j k$ which is adjacent to j. Since $j l$ is a non-edge in G^{c} and i and j are in the same clique, i and l are adjacent in G. This provides a path from i over l to k in G which avoids L, contradicting the assumption.
(4) Since EU $=$ EUF \cap EUB, every component of G^{c}, for $\langle\langle G\rangle\rangle \in \mathrm{EU}$, is a clique but since there are also no induced 3 -cliques, the claim follows.

Remark 4.5. Motivated by the theory of databases, Matúš [Mat97, Consequence 4] also considered ascending gaussoids of chordal graphs. These have one forbidden 4minor in addition to the compulsory 3-minors EUBF. In general, classes of graphs with prescribed induced subgraphs on vertex sets I can be studied from the gaussoid perspective by choosing appropriate compulsory $(I \mid *)$-minors.

The only graphical classes left are the subclasses of EBF $=\mathrm{EUBF} \cap$ ELBF. These bi-monotone gaussoids are simultaneously ascending and descending because L and U are forbidden. A bi-monotone gaussoid $\langle\langle G\rangle\rangle$ is fixed by the symbols $(i j \mid)$ it contains. Such gaussoids can be seen as irreflexive, symmetric, binary relations on $[n]$.

Lemma 4.6. EBF-gaussoids are in bijection with the partitions of $[n]$.
Proof. Consider the gaussoid axioms under bi-monotonicity. Axioms (G1)-(G3) are trivial in the presence of ascension and descension axioms, and (G4) becomes $(i j \mid) \Rightarrow$ $(i k \mid) \vee(j k \mid)$. In terms of binary relations, this is transitivity of the complement of $\langle\langle G\rangle\rangle$. Hence EBF-gaussoids are complements of equivalence relations on $[n]$.

A subclass of bi-monotone gaussoids is obtained by forbidding the empty minor in addition to the forbidden singletons. The resulting BF-gaussoids only have 3-minors of cardinality at least four and are called dense gaussoids.

Lemma 4.7. The dense gaussoids BF correspond to involutions on $[n]$.
Proof. Let ι be an involution and $\langle\langle G\rangle$ the EBF-gaussoid associated, by Lemma 4.6, to the disjoint cycle decomposition. Since ι is an involution, every cycle is either a fixed point or a transposition. Take any two disjoint cycles $(i j)$ and $(k l)$ in ι. Since $i j \cap k l=\emptyset$, no two symbols of the form $(i j \mid K)$ and $(k l \mid M)$ appear in the same 3-face, for any choice of K and M. This implies that every minor of $\langle\langle G\rangle\rangle$ can miss at most a single pair of opposite squares, which shows density.

Conversely, let $\langle\langle G\rangle\rangle$ be a dense gaussoid. Consider the partition corresponding to $\langle\langle G\rangle\rangle$ as an EBF-gaussoid. Assume there is a block containing at least three distinct elements i, j, k, then $\langle\langle G\rangle$ would not contain $(i j \mid),(i k \mid)$ and $(j k \mid)$, which is a contradiction to $\langle\langle G\rangle$ being dense at the $(i j k \mid)$-minor.

Lemma 4.8. An EB-gaussoid is defined by its characteristic vector with respect to $(12 \mid),(13 \mid),(14 \mid), \ldots,(1 n \mid)$ and every such vector defines an EB gaussoid.

Proof. Let $\langle\langle G\rangle\rangle$ be an EB-gaussoid and $i, j \neq 1$ be distinct. Consider the $(1 i j \mid)$-minor of $\langle\langle G\rangle\rangle$. Looking up $(1 i \mid)$ and $(1 j \mid)$ in the characteristic vector, we can decide whether $\langle\langle G\rangle \downarrow(1 i j \mid)$ is empty or a belt. In either case the containment of $(i j \mid)$ in $\langle\langle G\rangle$ is determined by the status of $(1 i \mid)$ and $(1 j \mid)$. Vice versa, this reconstruction method freely defines a gaussoid all whose minors are necessarily E or B.

Remark 4.9. We consider it an interesting challenge to determine properties beyond combinatorics of the tamer graphical classes. For example, the EUBF-gaussoids are precisely the positively orientable gaussoids (see [BDKS17, Section 5] for the precise definition), their duals ELBF are the negatively orientable ones. It can also be shown that a BF-gaussoid $\left\langle\langle G\rangle\right.$ has exactly 2^{t} orientations where t is the number of transpositions in the involution associated with $\langle\langle G\rangle\rangle$. All graphical gaussoids are realizable.
4.4. The exceptional class. The class LUBF remains mysterious. We have tried various arithmetic operations to transform the counts before searching OEIS, but nothing emerged. For $n=4,100$ of the 142 gaussoids are orientable. For $n=5,956$ of 1166 are orientable. Consequently, there are non-realizable LUBF gaussoids.

The number of LUBF gaussoids appears to grow slower than the number of ascending gaussoids. We conjecture that there is a single exponential bound for the size of LUBF.

Support for this conjecture comes from the fact that forbidding E as a minor leads to a high density, that is many squares, in the resulting gaussoids. Take an independent set in $Q(n, 3,2,2)$. Each of the minors indexed by that set contains at least one 2 -face and the independence ensures that no 2-faces is counted twice. Thus an LUBF-gaussoid has at least $\alpha(Q(n, 3,2,2)) \geq \delta n^{2} 2^{n}$ elements, with a positive constant δ. We suspect that containing a positive fraction of all squares is sufficient for LUBF to have single exponential size.

References

[BDKS17] Tobias Boege, Alessio D'Alì, Thomas Kahle, and Bernd Sturmfels. The Geometry of Gaussoids. Found. Comp. Math., 2017. to appear.
[GR01] Chris Godsil and Gordon Royle. Algebraic Graph Theory, volume 207 of Graduate Texts in Mathematics. Springer, 2001.
[Kle16] Felix Klein. Elementary mathematics from a higher standpoint, II: Geometry, volume 2. Springer, 2016.
[LM07] Radim Lněnička and František Matúš. On Gaussian conditional independence structures. Kybernetika, 43(3):327-342, 2007.
[Lov75] László Lovász. Three short proofs in graph theory. Journal of Combinatorial Theory, Series B, 19(3):269-271, 1975.
[Mat97] František Matúš. Conditional independence structures examined via minors. Annals of Mathematics and Artificial Intelligence, 21(1):99-30, Aug 1997.
[Nel18] Peter Nelson. Almost all matroids are non-representable. Bull. London Math. Soc., 50:245248, 2018.
[OEI19] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. http://oeis.org, 2019.
[Sad17] Kayvan Sadeghi. Faithfulness of probability distributions and graphs. Journal of Machine Learning Research, 18(1):5429-5457, 2017.
[Šim06] Petr Šimecek. Classes of gaussian, discrete and binary representable independence models have no finite characterization. In Proceedings of Prague Stochastics, volume 400, pages 622631, 2006.
[Sul09] Seth Sullivant. Gaussian conditional independence relations have no finite complete characterization. Journal of Pure and Applied Algebra, 213(8):1502-1506, 2009.
[Thu06] Marc Thurley. sharpSAT - Counting Models with Advanced Component Caching and Implicit BCP. In Armin Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing - SAT 2006, pages 424-429. Springer Berlin, 2006.
[TS16] Takahisa Toda and Takehide Soh. Implementing efficient all solutions SAT solvers. J. Exp. Algorithmics, 21:1.12:1-1.12:44, November 2016.
[Wel10] Dominic J. A. Welsh. Matroid theory. Courier Corporation, 2010.

Authors' addresses:

Tobias Boege, OvGU Magdeburg, Germany, tobias.boege@ovgu.de
Thomas Kahle, OvGU Magdeburg, Germany, thomas.kahle@ovgu.de

[^0]: Date: February 28, 2019.
 2010 Mathematics Subject Classification. 05B99, 05B35, 60E05.
 Key words and phrases. gaussoid, conditional independence, normal distribution, cube, minor.

