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CONSTRUCTION METHODS FOR GAUSSOIDS

TOBIAS BOEGE AND THOMAS KAHLE

Abstract. The number of n-gaussoids is shown to be a double exponential func-
tion in n. The necessary bounds are achieved by studying construction methods for
gaussoids that rely on prescribing 3-minors and encoding the resulting combinatorial
constraints in a suitable transitive graph. Various special classes of gaussoids arise
from restricting the allowed 3-minors.

1. Introduction

Gaussoids are combinatorial structures that encode independence among Gauss-
ian random variables, similar to how matroids encode independence in linear algebra.
They fall into the larger class of CI structures which are arbitrary sets of conditional
independence statements. The work of Fero Matúš is in particular concerned with
special CI structures such as graphoids, pseudographoids, semigraphoids, separation
graphoids, etc. In his works Fero Matúš followed the idea that conditional indepen-
dence can be abstracted away from concrete random variables to yield a combinatorial
theory. This should happen in the same manner as matroid theory abstracts away the
coefficients from linear algebra. His work [Mat97] on minors of CI structures displays
the inspiration from matroid theory very clearly.
In 2007, Lněnička and Matúš defined gaussoids [LM07] of dimension n as sets of sym-

bols (ij|K), denoting conditional independence statements, which satisfy the following
Boolean formulas, called the gaussoid axioms :

(ij|L) ∧ (ik|jL) ⇒ (ik|L) ∧ (ij|kL),(G1)

(ij|kL) ∧ (ik|jL) ⇒ (ij|L) ∧ (ik|L),(G2)

(ij|L) ∧ (ik|L) ⇒ (ij|kL) ∧ (ik|jL),(G3)

(ij|L) ∧ (ij|kL) ⇒ (ik|L) ∨ (jk|L),(G4)

for all distinct i, j, k ∈ [n] and L ⊆ [n] \ ijk. Here and in the following, we use the
efficient “Matúš set notation” where union is written as concatenation and singletons
are written without curly braces. For example, ijk is shorthand for {i} ∪ {j} ∪ {k}.
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A gaussoid is realizable if its elements are exactly the conditional independence
statements that are valid for some n-variate normal distribution. Realizability was
characterized for n = 4 in [LM07] and a characterization for n = 5 is open. There
is no general forbidden minor characterization for realizability of gaussoids [Šim06,
Sul09]. We therefore think about gaussoids as synthetic conditional independence in
the sense of Felix Klein [Kle16, Chapter V]. This view is inspired by the parallels
to matroid theory. The algebra and geometry of gaussoids was developed with this in
mind in [BDKS17]. Gaussoids are also the singleton-transitive compositional graphoids
according to [Sad17, Section 2.3].
In the present paper we view gaussoids as structured subsets of 2-faces of an n-

cube. This readily simplifies the definition of a gaussoid, but it has several additional
advantages. For example, it makes the formation of minors more effective, as this
now corresponds to restricting to faces of the cube. To start, consider the usual 3-
dimensional cube. A knee in the cube consists of two squares that share an edge. A
belt consists of all but two opposing squares of the cube. The following combinatorial
definition of a gaussoid can be confirmed (for example by examining Figure 2) to agree
with the gaussoid axioms.

Definition 1.1. An n-gaussoid is a set G of 2-faces of the n-cube such that for any
3-face c of the n-cube it holds:

(1) If G contains a knee of c, then it also contains a belt that contains that knee.
(2) If G contains two opposing faces of c, then it also contains a belt that contains

these two faces.

The dimension n of the ambient cube is also the dimension of G. Gn is the set of
n-dimensional gaussoids and G :=

⋃

n≥3Gn the set of all gaussoids.

This definition is illustrated in Figure 1. As with the gaussoid axioms, this definition
applies certain closure rules in every 3-face of the n-cube, but whereas S3 acts on the
axes of the cube in the gaussoid axioms, the group acting on the two pictures in
Figure 1 is the full symmetry group of the 3-cube, B3. This bigger group conflates the
first three axioms into the first picture.
The gaussoid axioms and also Definition 1.1 only work with 3-cubes. This locality

can be expressed as in Lemma 3.3: For any k ≥ 3, being an n-gaussoid is equivalent to
all restrictions to k-faces being k-gaussoids. The aim of this work is to explore gaussoid
puzzling, the reversal of this idea, that is, constructing n-gaussoids by prescribing their
k-gaussoids. The implementation hinges on an understanding of how exactly the k-
faces of the n-cube intersect, because these intersections are obstructions to the free
specification of k-gaussoids. In Section 3 we encode these obstructions in a graph and
then Brooks’ theorem gives access to large independent sets, where gaussoids can be
freely placed. This yields a good estimate of the number of gaussoids in Theorem 3.12.
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(G1)—(G3): Any knee in the cube is
completed to the unique belt which
contains it.

(G1)—(G3) ◦ (G4): Two opposite
squares are completed to (at least) one
of the two belts which contain them.

Figure 1. The gaussoid axioms in the 3-cube. Premises of the axioms
are colored in purple, possible conclusions in different shades of green.
The pictures encode the gaussoid axioms mod B3, the symmetry group
of the 3-cube.

In Section 4 we explore classes of special gaussoids that arise by restricting the
puzzling of 3-gaussoids to subsets of the 11 possibilites. Several of these classes have
nice interpretations and can be matched to combinatorial objects.

Acknowledgement. The authors are supported by the Deutsche Forschungsgemein-
schaft (314838170, GRK 2297, “MathCoRe”).

2. The cube

Consider the face lattice Fn of the n-cube. This lattice contains ∅, the unique face
of dimension −∞. To specify a face of non-negative dimension k, one needs to specify
the k dimensions in which the face extends, and then the location of the face in the
remaining n − k dimensions. We employ two natural ways to work with faces. The
first is string notation. In this notation a face f is an element of {0, 1, ∗}n where
the ∗s indicate dimensions in which the face extends and the remaining binary string
determines the location; a 1 at position p means that the face is translated along the
p-th axis inside the cube. This string notation naturally extends the binary string
notation for the vertices of the n-cube: if f ∈ {0, 1, ∗}n, then its vertices are

{a ∈ {0, 1}n : ai = fi whenever fi 6= ∗} .

The second choice is set notation. In this notation, a face f = (If |Kf) of dimension
k = |If | is specified by two sets If ⊆ [n] and Kf ⊆ [n]\If , where If = {i ∈ [n] : fi = ∗}
and Kf = {i ∈ [n] : fi = 1}.
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The set of k-faces of the n-cube is Fn
k . As in [BDKS17], the squares of the n-cube are

denoted by An := Fn
2 . Of special interest in this article are also the 3-cubes Cn := Fn

3 .
The constructions in Section 3 based on Lemma 3.3 frequently exploit the following

Fact. For 3 ≤ k ≤ m, a k-face shares at most
(

k−1
2

)

2k−3 squares with an m-face or
is already included in it. In particular for k = 3, if a cube shares more than a single
square with an m-face, then it is already contained in it.

Minors are important in matroid theory and gaussoid theory. When a simple matroid
is represented as the geometric lattice of its flats, a minor corresponds to an interval
of the lattice [Wel10, Theorem 4.4.3], which is again a geometric lattice. For gaussoid
minors the lattice is replaced by the set of squares in the hypercube and the lattice
intervals are replaced by hypercube faces.
Minors for arbitrary CI structures have been studied for example in [Mat97]. There,

a minor of a CI structure is obtained by choosing two disjoint sets L,M ⊆ [n] and
performing restriction to LM followed by contraction by [n]\L, which are in symbols:

contrLA = {(ij|K) ∈ AL : (ij|K([n] \ L)) ∈ A} ⊆ AL,

restrLA = A ∩AL ⊆ AL.

In [BDKS17], minors were also defined specifically for gaussoids using statistical ter-
minology with an emphasis on the parallels to matroid theory. A minor is every set of
squares arising from a gaussoid via any sequence of marginalization and conditioning :

margLA = {(ij|K) ∈ A : L ⊆ [n] \ ijK} ⊆ A[n]\L,

condLA = {(ij|K) ∈ A[n]\L : (ij|KL) ∈ A} ⊆ A[n]\L.

These operations are dual to the ones defined by Matúš: condL = contr[n]\L and
margL = restr[n]\L. Furthermore, either operation can be the identity, restr[n] = id and
contr[n] = id, and finally, the two sets L and M in Matúš’ definition of minor can be
decoupled: contrLrestrLM = restrLcontr[n]\M . Thus both notions of minor coincide.
Our aim is to provide a geometric intuition for the act of taking a gaussoid minor. A

face (L|M) of the n-cube is canonically isomorphic to the L-cube by deleting from the
[n]-cube {0, 1}[n] all coordinates outside of L. This deletion is a lattice isomorphism
π(L|M) : F

n ∩ (L|M) ↔ FL, with the face lattice FL of an |L|-dimensional cube. We
can interpret taking the minor restrLcondM as an operation in the hypercube.

Proposition 2.1. Let A ⊆ An, then restrLcondMA = π(L|M)(A ∩ (L|M)).

Proof. Take (ij|K ′) ∈ restrLcondMA. Then ij and K ′ can be seen as subsets of [n]
and they satisfy ijK ′ ⊆ L and (ij|K ′M) ∈ A. From this it is immediate that ij ⊆ L
and K ′M ⊆ LM . Furthermore, [n] \ ijK ′M = ([n] \ ijK ′) ∩ ([n] \M) ⊆ LM̃ , hence
(ij|K ′M) ⊆ (L|M) and (ij|K ′) ∈ π(L|M)(A ∩ (L|M)).
In the other direction, suppose that (ij|K ′) ∈ π(L|M)(A ∩ (L|M)) and let (ij|K) be

its preimage under π(L|M). Then (ij|K) ∈ A ∩ (L|M) and it follows ij ⊆ L, K ⊆ LM
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and also M ⊆ K because K̃ ⊆ LM̃ . Thus K decomposes into K = K ′M where
naturally K ′ ∩M = ∅. This proves that (ij|K ′) ∈ restrLcondMA. �

Proposition 2.1 compactly encodes the definitions of minor. The following definition
introduces notation reflecting this as well as an opposite embedding, which mounts a
set of squares from the I-cube into an |I|-dimensional face of a higher hypercube.

Definition 2.2. (1) For a set A ⊆ An and (I|K) ∈ Fn
k , the (I|K)-minor of A is the

set A↓(I|K) := π(I|K)(A ∩ (I|K)) ⊆ AI . A k-minor is an (I|K)-minor with |I| = k.
(2) For a set A ⊆ AI and (I|K) ∈ Fn

k , the embedding of A into (I|K) is the preimage
A↑(I|K) := π−1

(I|K)A ⊆ An.

3. Gaussoid puzzles

Several theorems in matroid theory concern the (impossibility of a) characterization
of classes of matroids in terms of forbidden and compulsory minors. For CI structures
such as gaussoids the definitions read as follows.

Definition 3.1. (1) A class A ⊆
⋃

n 2
An of sets of squares is minor-closed if with

A ∈ A all minors of A belong to A.
(2) A set of squares X is a forbidden minor for a minor-closed class A if it is minimal

with the property that it does not belong to A, in the sense that all its proper
minors do belong to A.

(3) If there is a forbidden k-minor for some k, then all non-forbidden k-minors are
called compulsory k-minors for the class A.

It is easy to see that gaussoids are minor-closed, i.e. any k-minor of an n-gaussoid
is always a k-gaussoid. But even more is true: given any set of squares in the n-cube,
if all of its k-minors, for any k ≥ 3, are k-gaussoids, then the whole is an n-gaussoid.
This claim is proved in Lemma 3.3. The present section uses this property to construct
gaussoids by prescribing their k-minors. Section 4 investigates subclasses of gaussoids
which have the same anatomy. We formalize this property in

Definition 3.2. A class A =
⋃

n≥n0
An of sets of squares stratified by dimension, i.e.

An ⊆ 2An , has a puzzle property if it is minor-closed and its n-th stratum is generated
via embeddings from the strata below n, i.e. if for some A ⊆ An all its k-minors, k < n,
are in Ak, then already A ∈ An. The lowest stratum An0 is the basis of A and the
puzzle property is based in dimension n0.

Lemma 3.3. The set of gaussoids has a puzzle property based in dimension 3, whose
basis are the eleven 3-gaussoids.

Proof. Let G ⊆ An and 3 ≤ k ≤ n. We show that G is an n-gaussoid if and only if
G ↓ d is a k-gaussoid for every d ∈ Fn

k . First consider the case k = 3. The gaussoid
axioms are quantified over arbitrary cubes (ijk|L) together with an order on the set
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ijk, and each axiom refers to squares inside the cube (ijk|L) only. Confined to this
cube, the axioms state precisely that this 3-minor is a 3-gaussoid. The case of k > 3 is
reduced to the statement for k = 3. Indeed, all 3-minors of G are gaussoids if and only
if all 3-minors of k-minors of G are gaussoids, because those two collections of minors
both arise from the same set Cn of cubes of the n-cube. �

Turning Definition 3.2 upside down, the construction of an n-gaussoid can be seen as
a high-dimensional jigsaw puzzle. The puzzle pieces are lower-dimensional gaussoids
which are to be embedded into faces of the n-cube. The difficulty comes from the
fact that every square is shared by

(

n−2
k−2

)

k-faces. The minors must be chosen so that
all of them agree on whether a shared square is an element of the n-gaussoid under
construction or not. The incidence structure of k-faces in the n-cube is important. We
study it via the following graph.

Definition 3.4. Let Q(n, k, p, q), for n ≥ k ≥ p ≥ q, be the undirected simple graph
with vertex set Fn

k and an edge between d, f ∈ Fn
k if and only if there is a p-face s

such that dim(d ∩ s) ≥ q and dim(f ∩ s) ≥ q.

The idea behind this definition is that for suitable choices of p and q, the faces
indexed by an independent set in these graphs will be just far enough away from each
other in the n-cube to allow free puzzling of k-gaussoids without one minor choice
creating constraints for other minors.

Theorem 3.5. The graph Q(n, k, p, q) is transitive, hence regular. It is complete if
and only if n+ q ≤ p+ k. The degree of any vertex can be calculated as follows:

degQ(n, k, p, q) = −1 +
∑

m,j (†)

(

k

j

)

2k−j

(

n− k

k − j

)(

n− 2k + j

m

)

,

where the sum extends over pairs (m, j) ∈ [n−k]× [k] which satisfy the feasibility and
connectivity conditions

(†) n− 2k + j ≥ m ∧ p ≥ m+ 2q −min{q, j}.

Proof. The symmetry group Bn acts on the n-cube as automorphisms of the face
lattice. The group action is transitive on k-faces for any k and respects meet and join.
Therefore Bn acts transitively on the graph Q(n, k, p, q).
The characterization of completeness rests on Lemma 3.6. Using the gap function

ρq defined there, it is shown that ρq(d, f) ≤ p is equivalent to the adjacency of d and f
in Q(n, k, p, q) and that if f ′ is a face with smaller gap, then f ′ is adjacent to d. Since
Q(n, k, p, q) is regular, it is complete if and only if some vertex is adjacent to all others.
For that to happen, the vertex must be adjacent to one which has the largest gap to
it. As shown in the lemma, the maximum of ρq is n − k + q and hence completeness
is equivalent to n− k + q ≤ p.
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The exact degree also follows from Lemma 3.6. Fix any vertex d of Q(n, k, p, q).
By regularity it suffices to count the adjacent vertices f of d. We subdivide vertices
f according to two parameters: m = |(Kd ⊕Kf) \ IdIf | is a disagreement between d
and f and j = |Id ∩ If | is the number of common dimensions of d and f . A priori, m
ranges in [n − k] and j ranges in [k], but not all combinations allow f to be a k-face
adjacent to d. First, we determine the pairs (m, j) for which an adjacent k-face exists
and then count how many of them exist for fixed parameters. Let (m, j) ∈ [n−k]× [k].
For j = |Id ∩ If | it must hold that n ≥ 2k − j, since d and f are k-faces. Assuming
this, f can be constructed if and only if the k − j dimensions in If \ Id leave enough
space to create the prescribed disagreement of size m. As an inequality this is n− k ≥
m+ (k − j), or n− 2k + j ≥ m. Together with m ≥ 0, this inequality already entails
the condition n ≥ 2k − j imposed by the choice of j. Thus it is sufficient to require
n−2k+ j ≥ m, which is the first condition in (†). Given a k-face f with parameters m
and j, the existence of an edge between d and f in Q(n, k, p, q) imposes the condition
Lemma 3.6 (1), which is the right half of (†).
As for the counting, let d be a fixed k-face and let (m, j) ∈ [n− k]× [k] satisfy (†).

We count the k-faces f with parameters m and j. There are
(

k

j

)

ways to place the ∗

for If ∩ Id. On Id \ If , there are 2k−j independent choices from {0, 1}. The choices

so far fix f in Id. There are now
(

n−k

k−j

)

choices for the remaining ∗s in If \ Id. Then

If is fixed. Now to finish f , we may only place 0 and 1 in [n] \ IdIf where d has only
0s and 1s as well. Among the remaining n − 2k − j positions, a set of size m must
be chosen, where f is already determined by the condition that it differs from d. On
the remaining n− 2k − j −m positions, f is determined by not differing from d. The
feasibility of all the choices enumerated so far is guaranteed by (†). The tally is

∑

m,j (†)

(

k

j

)

2k−j

(

n− k

k − j

)(

n− 2k + j

m

)

.

Since d is not adjacent to itself, which is uniquely described by the feasible parameters
j = k and m = 0, subtracting 1 concludes the proof. �

Lemma 3.6. Let d, f be k-faces and ρq(d, f) := m+2q−min{q, j}, with j = |Id∩ If |
and m = |(Kd ⊕Kf) \ IdIf |. The following hold:

(1) ρq(d, f) ≤ p if and only if d and f are adjacent in Q(n, k, p, q),
(2) the range of ρq is [q, n− k + q],
(3) ρq is strictly isotone with respect to q, i.e. ρq < ρq+1,
(4) for d, d′, f ∈ Fn

k with ρq(d, d
′) ≤ ρq(d, f), if d and f are adjacent in Q(n, k, p, q),

then so are d and d′.

Proof. Given two k-faces d and f , the ground set [n] splits into three sets: (i) (Kd ⊕
Kf)\IdIf of cardinality m where both have 0 and 1 symbols only but differ, (ii) Id∩If
of cardinality j of shared ∗ symbols, and (iii) everything else, i.e. positions where 0
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and 1 patterns agree or where 0 and 1 are in one face and ∗ in the other. In order to
connect two k-faces in Q(n, k, p, q), there needs to be a p-face which intersects either
of them in at least dimension q. Such a face has to cover the set of size m with ∗,
as it otherwise it will not intersect both faces. Conversely, once m is covered, a 0-
dimensional intersection with both faces is ensured by placing 0s and 1s appropriately.
To achieve a q-dimensional intersection, q ∗ have to be placed on Id and If each.
By using the j shared ∗s, one needs at least 2q − min{q, j} further ∗ to construct a
connecting p-face. Thus ρq(d, f) is the minimum dimension p necessary to connect d
and f in Q(n, k, p, q). This proves claim (1).
It is clear that ρq is minimal when m is minimal and j is maximal. This can be

achieved simultaneously by choosing f = d and there ρq(d, d) = q. Now consider the
opposing face d◦ = (Id, [n]\KdId) of d. The gap is ρ(d, d◦) = n−|Id|+2q−min{q, |Id|} =
n − k + q assuming d is a vertex of Q(n, k, p, q) where in particular |Id| = k ≥ q.
Increasing this value would require reducing j since m is already maximal. Un-sharing
∗s with d consumes positions inside the block of 0s and 1s in d of size n − k which
reduces m by an equal amount. Hence n− k+ q is maximal. Furthermore, by varying
m but keeping j = k, all values in the range [q, n − k + q] can be attained, proving
claim (2).
Claim (3) follows from a straightforward calculation:

ρq+1(d, f)− ρq(d, f) = 2− (min{q + 1, j} −min{q, j})

=

{

2, j ≤ q,

1, j ≥ q + 1.

In the situation of claim (4), since d and f are adjacent in Q(n, k, p, q), we have
ρq(d, d

′) ≤ ρq(d, f) ≤ p by (1). Applying this property in reverse proves the claim. �

Corollary 3.7. (1) Q(n, 3, 2, 2) is complete for n ≤ 3. Otherwise its degree is 6(n−3)
≤ 6(n− 2).

(2) Q(n, 3, 3, 2) is complete for n ≤ 4. Otherwise its degree is 12(n − 3)(n − 4) +
7(n− 3) ≤ 12(n− 1)(n− 2). �

Remark 3.8. For the theory of gaussoids, the cases k = 3, q = 2, 3, p = 2 are relevant.
We consider it an interesting problem to study growth of the degree formula for other
parameters. Certainly the graph can be complete, where the degree is as large as
(

n

k

)

2n−k. To construct large independent sets, one wants smaller degrees. It is proved
below that a maximal independent set in Q(n, 3, 3, 2) has cardinality in Θ(n2n) of
which one inequality follows from the degree formula.

Proposition 3.9. Let F be an independent set in Q(n, k, 3, 2), then the following
inequality holds: |Gn| ≥ |Gk|

|F|.

Proof. Let d, f ∈ F . Since F is independent, there is no 3-cube sharing a square with
d and with f . Since k ≥ 3, also d and f share no square. Thus an assignment of
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k-gaussoids α : F → Gk lifts to a well-defined set of squares G :=
⊔

d∈F αd ↑ d ⊆ An.
The map α 7→ G is injective.
To see that G is a gaussoid, we examine its 3-minors. Let c ∈ Cn be arbitrary. In

case c is fully contained in some d ∈ F , then clearly G↓ c = (αd↑d)↓ c = αd↓ c ∈ G3

since αd ∈ Gk. Otherwise c can share at most one square with any face in F . If it
shares no square with any element of F , then G ↓ c is empty, hence a gaussoid. If it
shares a square with some face in F , it cannot share a square with any other element
of F because F is an independent set in Q(n, k, 3, 2). In this case, G↓c is a singleton
and hence a gaussoid. �

Proposition 3.10. Let F be an independent set in Q(n, k, 2, 2) and c the maximum

size of a set of mutually range-disjoint injections of Gk into 2Ak \Gk. Then
2|An|

|Gn|
≥ c|F|.

Proof. The proof is analogous to Proposition 3.9 but uses the independent set to per-
turb any gaussoid injectively into c|F| non-gaussoids. Again, since q = 2 and F is inde-
pendent, an assignment α : F → 2Ak lifts uniquely via↑ to a subset of An. Let {fi}i∈[c]
be a set of range-disjoint injections as in the claim. Consider the maps α′ : F → [c].
To each G ∈ Gn associate Hα′ :=

⊔

d∈F fα′d(G↓d)↑d ⊆ An.
Because the ranges of the fi are disjoint, the map (G,α′) 7→ Hα′ is injective. None

of the sets Hα′ is a gaussoid since any d ∈ F certifies Hα′ ↓d = fα′d(G↓d) 6∈ Gk. �

Remark 3.11. The proofs of Propositions 3.9 and 3.10 exploit two properties of the
class of gaussoids: (1) it has a puzzle property, and (2) the empty set and all singletons
are in its basis. The same technique does not work for realizable gaussoids because
they lack property (1) and not for graphical gaussoids (see Section 4) because they
lack property (2). Indeed their numbers can be shown to be single exponential. For
realizable gaussoids, this follows from Nelson’s recent breakthrough: If a gaussoid is
realizable with a positive-definite n × n covariance matrix Σ, then the n × 2n matrix
(InΣ) both defines a vector matroid identifies the gaussoid. By [Nel18, Theorem 1.1]
there are only exponentially many realizable matroids and thus realizable gaussoids.
Nelson’s bound features a cubic polynomial in the exponent, while there are certainly
2n

2
realizable gaussoids coming from graphical models.

To get explicit bounds we apply the propositions for k = 3. To find suitable inde-
pendent sets in Q(n, 3, 3, 2) and Q(n, 3, 2, 2) we use Brooks’ Theorem [Lov75] and the
degree bounds from Corollary 3.7. Since the graphs are connected, have degree at least
3 but are not complete, there exists a proper degQ(n, 3, 3, 2)-coloring of Q(n, 3, 3, 2),
and we can pick a color class as an independent set F . Its size is at least that of an
average color class:

|Fn
3 |

degQ(n, 3, 3, 2)
≥

n(n− 1)(n− 2)

6 · 12(n− 1)(n− 2)
2n−3 =

n

62
2n−4 =

n

9
2n−6.
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For Q(n, 3, 2, 2), we find analogously

|Fn
3 |

degQ(n, 3, 2, 2)
≥

n(n− 1)(n− 2)

6 · 6(n− 2)
2n−3 =

n(n− 1)

62
2n−3 =

n(n− 1)

9
2n−5.

Proposition 3.9 now shows, using |G3| = 11 and log2 11 ≥ 3, that there are at least

11
n
9
2n−6

≥ 2
n
3
2n−6

n-gaussoids. Similarly, Proposition 3.10 with c =
⌊

64−11
11

⌋

= 4 gives

an upper bound on the ratio of n-gaussoids of 4
n(n−1)

9
2n−5

= 2
n(n−1)

9
2n−4

. We have proved

Theorem 3.12. For n ≥ 5, the number of n-gaussoids is bounded by

2
1
3
n2n−6

≤ |Gn| ≤
2|An|

2
4
9
n(n−1)2n−6

.

Remark 3.13. A simple way to obtain a weaker double exponential lower bound for
the number of gaussoids was suggested to us by Peter Nelson, following a matroid
construction of Ingleton and Piff. Let R =

(

[n]
r

)

be the set of all r-subsets of [n] for
some r < n. Every S ∈ R defines a 2-face (ij|K) of the n-cube, where i, j are the
minimal elements of S. Any subset of R is a gaussoid. The axioms (G1) and (G4) are
satisfied because their premises contain sets of different sizes. The axioms (G2) and
(G3) are satisfied because their premises correspond to the same S ∈ R and thus only

one of them can be in. With r = ⌊n/2⌋ there are least 2(
n
r) ∈ Θ(2n

−1/22n) gaussoids.

Substituting |An| =
(

n

2

)

2n−2 in Theorem 3.12 gives an interval for the absolute
number of n-gaussoids for n ≥ 5. It shows log |Gn| ∈ Ω(n2n) ∩O(n22n).
We conclude this section by showing that the linear order lower bound is the best

that the independent set construction in Q(n, 3, 3, 2) can do. The independence number

α(G) of a graph G is the maximal size of an independent set in G. Similarly, the clique
number ω(G) is the maximal size of a clique in G. Since Q(n, 3, 3, 2) is transitive, the
following inequality holds [GR01, Lemma 7.2.2]:

α(Q(n, 3, 3, 2)) ≤
|Fn

3 |

ω(Q(n, 3, 3, 2))
.

Since |Fn
3 | ∈ Θ(n32n), it suffices to find a clique of size Ω(n2) in every Q(n, 3, 3, 2). Take

the set of cubes J := {(1ij|) : ij ∈
(

[n]\1
2

)

}. This set has cardinality
(

n−1
2

)

∈ Θ(n2) and
any two elements d = (1ij|), f = (1kl|) in it are connected by an edge in Q(n, 3, 3, 2),
since ρ2(d, f) = m+ 2 · 2−min{2, j} = 4−min{2, j} ≤ 3 with m = 0 and j ≥ 1.

4. Special gaussoids

Because of their puzzle property, gaussoids are the largest class of CI structures
whose k-minors are k-gaussoids. The base case of this definition are the eleven 3-
gaussoids arising from 3 × 3 covariance matrices of Gaussian distributions. The 3-
gaussoids split into five symmetry classes modulo S3 which we denote by letters E, L,
U, B, and F. They are depicted in Figure 2.
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E L U B F

Figure 2. The eleven 3-gaussoids in five symmetry classes mod S3 or-
ganized in columns. From left to right: the empty gaussoid E, the lower
singletons L, the upper singletons U, the belts B and the full gaussoid F.

The special Sn-invariant types of gaussoids in this section arise from choosing subsets
of these five symmetry classes to base a puzzle property on. Each of the 32 sets
of bases can be converted into axioms in the 3-cube similar to the gaussoid axioms
(G1)—(G4). SAT solvers [Thu06, TS16] were used on the resulting Boolean formulas
to enumerate or count these classes. The listings can be found on our supplementary
website gaussoids.de. For nine classes an entry in the OEIS [OEI19] could be found.
Table 1 is the main result of this section. It summarizes the different types of gaussoids
that arise from the different bases.
The classes E, B and F are themselves closed under duality, while L and U are in-

terchanged by it. It follows that one of the 32 classes is invariant under duality if it
contains either none of L and U or both of them. On the remaining classes, duality
acts by swapping L with U. The combinatorial properties of the classes, e.g. the size,
are unaffected by this action, hence LB and UB are conflated to {L,U}B in Table 1.

4.1. Fast-growing gaussoids. By Remark 3.11, the construction of doubly expo-
nentially many members of a class of gaussoids requires that the class has a puzzle
property and that its basis includes ELU. This explains the rapid growth of all four
classes of this type.

4.2. Incompatible minors. As a consequence of Definition 3.2, if there is no gaussoid
of dimension k in a class, there are no gaussoids of any dimension ≥ k in the class.
Similarly, if the class contains only the empty or full gaussoid in dimension k, the

https://gaussoids.de
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Name Count in dim. 3, 4, 5, . . . OEIS Interpretation
Fast-growing
ELUBF 11, 679, 60 212 776 — Gaussoids
ELUB 10, 640, 59 348 930 — —
ELUF 8, 522, 48 633 672 — —
ELU 7, 513, 47 867 881 — Required for Prop. 3.9

Incompatible
LUB 9, 111, 0, 0 — Vanishes for n ≥ 5
LUF 7, 61, 1, 1 — Only F for n ≥ 5
LU 6, 60, 0, 0 — Vanishes for n ≥ 5
{L,U}B 6, 15, 0, 0 — Vanishes for n ≥ 5
{L,U}F 4, 1, 1, 1 — Only F for n ≥ 4
EF 2, 2, 2, 2 A007395 Only E or F for all n

Graphical
E{L,U}BF 8, 64, 1 024, 32 768, 2 097 152 A006125 Undirected simple graphs
E{L,U}B 7, 41, 388, 5 789, 133 501 A213434 Graphs without 3-cycles
{L,U}BF 7, 34, 206, 1 486, 12 412 A011800 Forests of paths on [n]
E{L,U}F, EBF 5, 15, 52, 203, 877, 4 140 A000110 Partitions of [n]
E{L,U}, BF 4, 10, 26, 76, 232, 764, 2 620 A000085 Involutions on [n]
EB 4, 8, 16, 32, 64, 128, 256 A000079 Subsets of [n− 1]

Exceptional
LUBF 10, 142, 1 166, 12 796,

183 772, 3 221 660
— —

Table 1. 26 classes of special gaussoids categorized into four types. The
remaining six classes are described by one or zero letters of {E, L, U, B, F}
and belong to the Incompatible type, as each of them is a subclass of a
class found to be Incompatible.

members of dimension ≥ k are the empty or full gaussoid as well. Hence computations
in small dimension suffice to explain these classes. Despite their simplicity, each of
them provides higher compatibility axioms. For example the annihilation of LUB in
dimension 5 implies that every 5-minor of a gaussoid contains an empty or a full 3-
minor. Or: a graphical 4-gaussoid with no belts is full or contains an empty 3-minor.

4.3. Graphical gaussoids. Each undirected simple graph G = ([n], E) defines a CI
structure 〈〈G〉〉 := {(ij|K) ∈ An : K separates i and j}, where two vertices i and
j are separated by a set K if every path between i and j intersects K. These are
the separation graphoids of [Mat97]. They fulfill a localized version of the global
Markov property. According to [LM07, Remark 2], separation graphoids are exactly

https://oeis.org/A007395
https://oeis.org/A006125
https://oeis.org/A213434
https://oeis.org/A011800
https://oeis.org/A000110
https://oeis.org/A000085
https://oeis.org/A000079
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the gaussoids satisfying the ascension axiom:

(A) (ij|L) ⇒ (ij|kL), ∀ i, j, k ∈ [n], L ⊆ [n] \ ijk.

Therefore we refer to them as ascending gaussoids. The operation G 7→ 〈〈G〉〉 is a
bijection whose inverse recovers the graph via its edges E = {ij : (ij|∗) 6∈ 〈〈G〉〉},
where (ij|∗) abbreviates (ij|[n] \ ij). Any gaussoid in this section is of the form 〈〈G〉〉
for some undirected simple graph G.
Since (A) uses only 2-faces of a single 3-face of the n-cube, being an ascending

gaussoid is a puzzle property based in dimension 3. Its basis are the ascending 3-
gaussoids. This was shown by Matúš [Mat97, Proposition 2] and in our terminology it
can be restated as follows

Lemma 4.1. A gaussoid is ascending if and only if L is a forbidden minor. �

This shows that EUBF are the ascending gaussoids. Their duals are ELBF and it is
easy to see that their axiomatization replaces (A) by the descension axiom

(D) (ij|kL) ⇒ (ij|L), ∀ i, j, k ∈ [n], L ⊆ [n] \ ijk.

EUBF-gaussoids arise from undirected graphs via vertex separation, i.e. (ij|K) ∈ 〈〈G〉〉 if
and only if i and j are in different connected components of G\K. Their duals contain
(ij|K) if and only if i and j are in different connected components in the induced
subgraph on ijK. Therefore we call elements of EUBF ∪ ELBF graphical gaussoids. For
our classification purposes it is sufficient to study the “Upper” half of dual pairs.
Our technique to understand EUBF and its subclasses has already been used in [Mat97]:

since the presence of an edge ij in G is encoded by the non-containment (ij|∗) 6∈ 〈〈G〉〉,
the compulsory minors of 〈〈G〉〉 of the form 〈〈G〉〉↓ (ijk|∗) prescribe induced subgraphs
on vertex triples ijk. In the opposite direction, however, the induced 3-subgraphs of a
graph do not in general reveal the types all minors 〈〈G〉〉↓ (ijk|L) in its corresponding
gaussoid.

Example 4.2. Consider the cycle corresponding to the gaussoid {(13|24), (24|13)}.
Its 3-minors are exclusively E and U. The U minors arise precisely in the 3-cubes

{1∗∗∗}, {∗1∗∗}, {∗∗1∗}, {∗∗∗1}.

All other 3-minors are E. This means that the 4-cycle is contained in EUBF, EUB, and
EU. To match with Table 1, check that the 4-cycle has no induced 3-cycle, corresponds
to the partition 13|24 of [4], and the involution (1 3)(2 4) ∈ S4.
This graph shows that the class of a gaussoid cannot be determined by looking only

at the induced subgraphs of G. All 3-minors observable from induced subgraphs are U,
but the smallest class to which this gaussoid belongs is EU.

Example 4.3. Consider the star with interior node 1 and leaves 2, 3, 4. It corre-

sponds to the gaussoid

{(23|1), (23|14), (24|1), (24|13), (34|1), (34|12)}.



14 TOBIAS BOEGE AND THOMAS KAHLE

E U B F

Figure 3. The complementary graphs Gc of 3-gaussoids 〈〈G〉〉 organized
in symmetry classes mod S3 according to Figure 2. E, U, B, F index a
partition of the S3 orbits of all graphs on 3 vertices. To obtain the
diagram of graphs G, flip the pictures over the vertical axis.

Because the right-hand side of every element of the gaussoid contains 1, this gaussoid
has the minor F in 1∗∗∗, E in the opposite face 0∗∗∗ and U everywhere else.

We now establish relationships of subclasses of EUBF with known combinatorial ob-
jects. For some the graph G is more convenient, for others it is the complement graph
Gc which is more natural. Figure 3 shows the complement graphs corresponding to E,
U, B and F and is useful to keep in mind for the proof of Theorem 4.4.

Theorem 4.4. The gaussoids in the class EUBF are in bijection with the simple undi-
rected graphs on n vertices. The subclasses distribute as follows
(1) EUB contains exactly the gaussoids 〈〈G〉〉 such that Gc is K3-free.
(2) UBF contains exactly the gaussoids 〈〈G〉〉 such that each connected component of G

is a path.
(3) EUF contains exactly the gaussoids 〈〈G〉〉 such that in Gc each connected component

is a clique, and hence corresponds to partitions of the vertex set [n].
(4) EU is EUF where additionally every connected component of Gc has at most two

vertices.

Proof. The first statement summarizes the discussion in the beginning of this section.
(1) The graphs Gc for 〈〈G〉〉 ∈ EUB are free of triangles, as seen in Figure 3. If conversely
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Gc triangle-free, then 〈〈G〉〉 does not have F among its minors (ijk|∗). By ascension,
the cardinality of 〈〈G〉〉↓(ijk|L) is monotone in L and thus no minor of 〈〈G〉〉 is F.
(2) For 〈〈G〉〉 ∈ UBF we first show that every vertex of G has degree at most two.

Suppose a vertex i was adjacent to three distinct vertices j, k, l. The subgraph induced
on ijkl is the star discussed in Example 4.3 since i has degree three in this subgraph but
none of its induced 3-subgraphs can be complete. The corresponding gaussoid has E as
a minor and therefore this situation cannot arise in G. Therefore G is a disjoint union
of cycles and paths. If G contains a cycle, let i, j, k be vertices of that cycle. Since
cycles are 2-connected, neither (ij|k), nor (ik|j), nor (jk|i) is in 〈〈G〉〉. Consequently,
the minor 〈〈G〉〉↓(ijk|) = E and thus G contains no cycles.
Let now G be a forest of paths. Consider any three vertices i, j, k. If they are not

all in the same connected component, say i, j are in different connected components,
then (ij|), (ij|k) ∈ 〈〈G〉〉 ↓ (ijk|) and thus this minor is not E. If i, j, k are in the same
connected component, then this path becomes disconnected after removing one of the
vertices, say k. Then (ij|k) ∈ 〈〈G〉〉↓(ijk|) and this minor is not E. In both cases, with
ascension, it follows that for every L ⊆ [n] \ ijk the minor 〈〈G〉〉↓(ijk|L) is not E.
(3) Let 〈〈G〉〉 ∈ EUF. The induced subgraphs of Gc on three vertices are precisely

those which are closed under the reachability relation within that subgraph. It is then
clear that every two vertices in the neighborhood of a fixed vertex are connected by
an edge, hence every connected component is a clique.
Let Gc be a disjoint union of cliques and i, j, k ∈ [n]. If they lie in pairwise different

connected components, then the (ijk|∗)-minor of 〈〈G〉〉 is E; if exactly two of them are
in one component, then that minor is U. By ascension, none of the minors (ijk|L) can
be B in these cases. Finally suppose that i, j, k are in the same connected component
and that 〈〈G〉〉 ↓ (ijk|L) is a belt containing, say, (ij|L) and (ik|L) but not (jk|L).
Then G contains a path from j to k avoiding L. Because jk is an edge in Gc, this path
contains another vertex l ∈ [n] \ Lijk which is adjacent to j. Since jl is a non-edge in
Gc and i and j are in the same clique, i and l are adjacent in G. This provides a path
from i over l to k in G which avoids L, contradicting the assumption.
(4) Since EU = EUF∩EUB, every component of Gc, for 〈〈G〉〉 ∈ EU, is a clique but since

there are also no induced 3-cliques, the claim follows. �

Remark 4.5. Motivated by the theory of databases, Matúš [Mat97, Consequence 4]
also considered ascending gaussoids of chordal graphs. These have one forbidden 4-
minor in addition to the compulsory 3-minors EUBF. In general, classes of graphs with
prescribed induced subgraphs on vertex sets I can be studied from the gaussoid per-
spective by choosing appropriate compulsory (I|∗)-minors.

The only graphical classes left are the subclasses of EBF = EUBF ∩ ELBF. These
bi-monotone gaussoids are simultaneously ascending and descending because L and U

are forbidden. A bi-monotone gaussoid 〈〈G〉〉 is fixed by the symbols (ij|) it contains.
Such gaussoids can be seen as irreflexive, symmetric, binary relations on [n].
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Lemma 4.6. EBF-gaussoids are in bijection with the partitions of [n].

Proof. Consider the gaussoid axioms under bi-monotonicity. Axioms (G1)–(G3) are
trivial in the presence of ascension and descension axioms, and (G4) becomes (ij|) ⇒
(ik|)∨(jk|). In terms of binary relations, this is transitivity of the complement of 〈〈G〉〉.
Hence EBF-gaussoids are complements of equivalence relations on [n]. �

A subclass of bi-monotone gaussoids is obtained by forbidding the empty minor in
addition to the forbidden singletons. The resulting BF-gaussoids only have 3-minors of
cardinality at least four and are called dense gaussoids.

Lemma 4.7. The dense gaussoids BF correspond to involutions on [n].

Proof. Let ι be an involution and 〈〈G〉〉 the EBF-gaussoid associated, by Lemma 4.6,
to the disjoint cycle decomposition. Since ι is an involution, every cycle is either a
fixed point or a transposition. Take any two disjoint cycles (i j) and (k l) in ι. Since
ij ∩ kl = ∅, no two symbols of the form (ij|K) and (kl|M) appear in the same 3-face,
for any choice of K and M . This implies that every minor of 〈〈G〉〉 can miss at most a
single pair of opposite squares, which shows density.
Conversely, let 〈〈G〉〉 be a dense gaussoid. Consider the partition corresponding to

〈〈G〉〉 as an EBF-gaussoid. Assume there is a block containing at least three distinct ele-
ments i, j, k, then 〈〈G〉〉 would not contain (ij|), (ik|) and (jk|), which is a contradiction
to 〈〈G〉〉 being dense at the (ijk|)-minor. �

Lemma 4.8. An EB-gaussoid is defined by its characteristic vector with respect to
(12|), (13|), (14|), . . . , (1n|) and every such vector defines an EB gaussoid.

Proof. Let 〈〈G〉〉 be an EB-gaussoid and i, j 6= 1 be distinct. Consider the (1ij|)-minor
of 〈〈G〉〉. Looking up (1i|) and (1j|) in the characteristic vector, we can decide whether
〈〈G〉〉 ↓ (1ij|) is empty or a belt. In either case the containment of (ij|) in 〈〈G〉〉 is
determined by the status of (1i|) and (1j|). Vice versa, this reconstruction method
freely defines a gaussoid all whose minors are necessarily E or B. �

Remark 4.9. We consider it an interesting challenge to determine properties beyond
combinatorics of the tamer graphical classes. For example, the EUBF-gaussoids are
precisely the positively orientable gaussoids (see [BDKS17, Section 5] for the precise
definition), their duals ELBF are the negatively orientable ones. It can also be shown
that a BF-gaussoid 〈〈G〉〉 has exactly 2t orientations where t is the number of transpo-
sitions in the involution associated with 〈〈G〉〉. All graphical gaussoids are realizable.

4.4. The exceptional class. The class LUBF remains mysterious. We have tried var-
ious arithmetic operations to transform the counts before searching OEIS, but nothing
emerged. For n = 4, 100 of the 142 gaussoids are orientable. For n = 5, 956 of 1166
are orientable. Consequently, there are non-realizable LUBF gaussoids.
The number of LUBF gaussoids appears to grow slower than the number of ascending

gaussoids. We conjecture that there is a single exponential bound for the size of LUBF.



CONSTRUCTION METHODS FOR GAUSSOIDS 17

Support for this conjecture comes from the fact that forbidding E as a minor leads to
a high density, that is many squares, in the resulting gaussoids. Take an independent
set in Q(n, 3, 2, 2). Each of the minors indexed by that set contains at least one 2-face
and the independence ensures that no 2-faces is counted twice. Thus an LUBF-gaussoid
has at least α(Q(n, 3, 2, 2)) ≥ δn22n elements, with a positive constant δ. We suspect
that containing a positive fraction of all squares is sufficient for LUBF to have single
exponential size.
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