
ON THE SPECTRAL PROPERTIES OF FEIGENBAUM GRAPHS

RYAN FLANAGAN, LUCAS LACASA AND VINCENZO NICOSIA

Abstract. A Horizontal Visibility Graph (HVG) is a simple graph extracted from an
ordered sequence of real values, and this mapping has been used to provide a combi-
natorial encryption of time series for the task of performing network based time series
analysis. While some properties of the spectrum of these graphs –such as the largest
eigenvalue of the adjacency matrix– have been routinely used as measures to charac-
terise time series complexity, a theoretic understanding of such properties is lacking. In
this work we explore some algebraic and spectral properties of these graphs associated to
periodic and chaotic time series. We focus on the family of Feigenbaum graphs, which are
HVGs constructed in correspondence with the trajectories of one-parameter unimodal
maps undergoing a period-doubling route to chaos (Feigenbaum scenario). For the set
of values of the map’s parameter µ for which the orbits are periodic with period 2n,
Feigenbaum graphs are fully characterised by two integers n, k and admit an algebraic
structure. We explore the spectral properties of these graphs for finite n and k, and
among other interesting patterns we find a scaling relation for the maximal eigenvalue
and we prove some bounds explaining it. We also provide numerical and rigorous results
on a few other properties including the determinant or the number of spanning trees. In
a second step, we explore the set of Feigenbaum graphs obtained for the range of values
of the map’s parameter for which the system displays chaos. We show that in this case,
Feigenbaum graphs form an ensemble for each value of µ and the system is typically
weakly self-averaging. Unexpectedly, we find that while the largest eigenvalue can dis-
tinguish chaos from an iid process, it is not a good measure to quantify the chaoticity of
the process, and that the eigenvalue density does a better job.

1. Introduction

In recent years, a great deal of attention has been devoted to the construction of graphs
associated to time series, with the aims to make network based time series analysis [1].
Here we consider a specific method –horizontal visibility graphs– by which an ordered
sequence of N real-valued data is transformed into a graph with N nodes, whose edges
are established among the N nodes according to a given ordering criterion in the sequence
[2, 3]. While a great deal of effort has been paid to study properties of these graphs related
to the degree sequence [6, 5], less attention has been paid to their spectral properties.
Nevertheless, the so-called Graph Index Complexity (GIC) [8], a rescaled quantity of the
maximal eigenvalue of the graph’s adjacency matrix, has been proposed as a measure
to characterise the complexity of the associated sequence, and has been used in several
applications including detection of Alzheimer’s disease [9] or epilepsy [10] among others
[12, 13] or the discrimination between randomness and chaos [11]. However, a basic
theoretical understanding of the spectral properties of HVGs is still lacking. This is the
main aim of this paper. To achieve this aim, we generate sequences (trajectories) from
the logistic map, as this is a well-known map which generates both periodic and chaotic

Key words and phrases. visibility graphs, eigenvalues, networks, time series, Feigenbaum graph.
1

ar
X

iv
:1

90
3.

00
75

4v
1 

 [
ph

ys
ic

s.
da

ta
-a

n]
  2

 M
ar

 2
01

9



2 RYAN FLANAGAN, LUCAS LACASA AND VINCENZO NICOSIA

sequences, allowing us to explore spectral properties of HVGs associated to different
classes of time series. In previous works, the HVG of a time series generated by the
logistic map for a specific value of the parameter µ was coined as a Feigenbaum graph
[4]. In a nutshell, Feigenbaum graphs are HVGs associated with the Feigenbaum scenario,
where one-dimensional unimodal maps exhibit a period-doubling route to chaos. In this
work we give a first look at some spectral properties of this family of graphs.

The rest of the paper goes as follows. In section §2 we define and provide a basic charac-
terisation of Feigenbaum graphs below and above the accumulation point. We show that
below the accumulation point, Feigenbaum graphs are easily enumerable in terms of a
two-parameter family of graphs which can be generated in terms of two graph operations
and admit an algebraic structure. Such enumeration is not possible above the accumula-
tion point, where we show that for particular values of the map’s parameter we no longer
have unique graphs but an ensemble of them. In sections §3 and §4 we explore the spec-
tral properties including the spectrum of the adjacency matrix –with special interest in
the largest eigenvalue– above and below the accumulation point. For the chaotic region,
we finally compare the results to those associated with an iid process. In section §5 we
conclude.

2. From Horizontal visibility graphs to Feigenbaum Graphs: Basic
Characterisation

We start with a few definitions.

Definition 1. (Horizontal visibility graph HVG). Let S = {xi}Ni=1 be an ordered sequence
of N real-valued data xi ∈ R ∀i = 1, . . . , N . Then, the horizontal visibility graph (HVG)
[2] associated to S is an undirected graph of N ordered vertices (where a vertex with ordinal
i is related to datum xi), such that two vertices i and j share an edge iff xi, xj > xm for
all m such that i < m < j.

It was proved that HVGs are always outerplanar [19], and it is easy to see that, since
the order in the sequence (time series) yields a natural label of the vertices, by con-
struction HVGs contain a ‘trivial’ Hamiltonian path given by the sequence (1, 2, . . . , N).
Furthermore, the mean degree d̄ of a HVG associated to a periodic series with period T
is [4]

(2.1) d̄ = 4

(
1− 1

2T

)
Here we consider the set of HVGs generated from trajectories of the well-known logistic
map xt+1 = µxt(1−xt) where µ ∈ [0, 4] is a parameter and xt ∈ [0, 1]. This is a unimodal
map that undergoes a period-double bifurcation route to chaos as the parameter µ is
increased. For µ < µ∞ ≈ 3.569... the attractive set consists of periodic orbits with period
2n, where n is an integer that increases without bounds as µ approaches the accumulation
point µ∞. For any given integer n ≥ 0, one can associate a range of values In = [µn, µn+1)
where µn is the value of the map’s parameter for which a stable periodic orbit of period
2n first appears (with limn→∞ µn ≡ µ∞). By construction, we have a bijection between
In and N.
HVGs generated from trajectories of the logistic map have been studied before, and have
been coined as Feigenbaum graphs [4]. We start by formally introducing these:
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Definition 2. (The Infinite Feigenbaum graph) Consider a periodic orbit of period T = 2n

from the logistic map, and build a time series of 2NT + 1 data (with N ∈ N), as
S = {x−NT , x−NT+1, . . . , x−1, x0, x1, . . . , xNT−1, xNT}.

The associated HVG is referred to as a Feigenbaum graph [4]. In the limit N → ∞, the
associated HVG is a locally finite infinite graph. It is denoted F∞n and is referred to as
the infinite Feigenbaum graph [4].

Remark. As the infinite Feigenbaum graph is a connected, locally finite, infinite graph, it
is countable [16].

A sketch of F∞n for a few values of n is depicted in figure 2.1.
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Figure 2.1. Sketch of the family of (infinite) Feigenbaum graphs F∞n for
µ < µ∞., displaying the sequence of graphs associated to the periodic at-
tractors of increasing period T = 2n of an unimodal map undergoing a
period doubling cascade.

2.1. Feigenbaum graphs with µ < µ∞: a simple parametrisation F k
n . Observe

that for any n <∞ (that is, for µ < µ∞), the trajectory generated by the logistic map is
–after an irrelevant transient– a periodic series. In these cases, the Feigenbaum graph is
built as a concatenation of identical subgraphs (see figure 2.1). We label the motifs which
build these graphs as Fn, and for illustration purposes we show in figure 2.2 the first four
of them.
For a fixed n, we can then ‘concatenate’ motifs (in a way which will be formally defined
later) and the graph resulting of concatenating k motifs is denoted by F k

n (so that F 1
n = Fn

and limk→∞ F
k
n = F∞n ). Whereas in [4] a Feigenbaum graph was defined for a bi-infinite

trajectory (k → ∞), one can however extend this definition to finite graphs by fixing a
finite k. Accordingly, the elements in the bi-parametric set {F k

n}n≥0,k≥0 (where F 1
n := Fn)

provides a useful enumeration of finite Feigenbaum graphs. For completeness, we define
F 0
n to be the empty graph of one node. With a little abuse of language, in what follows

we will indistinctively refer to F k
n and F∞n as Feigenbaum graphs.

Remark. Given an integer n, both F k
n and F∞n are unique ∀µ ∈ In: for the range of values

of µ for which the map is periodic and the associated time series has the same period,
the resulting Feigenbaum graph is unique, i.e. it is not dependent on the map’s initial
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Figure 2.2. Single motifs F 1
n ≡ Fn of the HVGs associated to the logistic

maps with period T = 2n.
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Figure 2.3. A visualisation of the motif inflation (⊗) and motif concate-
nation (⊕) rules.

condition. This observation, as we shall see, does not hold for the range of values of µ
that correspond to chaotic behaviour. Furthermore, the hierarchy of Feigenbaum graphs
is universal for all unimodal maps undergoing a Feigenbaum scenario. In particular, this
means that this hierarchy is not only associated to the logistic map but to any unimodal
map. The reason is because Feigenbaum graphs are based in the order of visits to the
stable branches and this order is unique for all unimodal maps.

Note that we can generate all the elements of the family {F k
n}n,k≥0 by combining them

using two graph-theoretical operations which we now define:

Definition 3. (Motif inflation ⊗) Consider two undirected graphs G1 = (V1, E1) and
G2 = (V2, E2), where Vi are the vertex sets (|Vi| = Ni) and Ei are the edge sets, where
Vi are totally ordered. We label the vertex set of G1 by V1 = (1, 2, . . . , N1) and similarly
for G2 we have V2 = (1′, 2′, . . . , N ′2). Then G1 ⊗ G2 is a graph which fulfils the following
conditions:

(1) G1 ⊗G2 is a graph with N1 +N2 − 1 vertices,

(2) whose vertex set V ′′ = (1, 2, . . . , N1 − 1, 1′′, 2′, 3′, . . . , N ′2),

(3) where vertex 1′′ is a block vertex that merges the vertices N1 and 1′ (from V1 and
V2 respectively), and inherits all the edges that were incident to both of them.

(4) The vertices 1 and N ′2 share an edge in G⊗G.

(5) The remaining edge set is formed by all edges between vertices {2, 3, . . . , N1 − 1}
inherited from G1 and between the vertices {2′, 3′, . . . , [N2 − 1]′} inherited from
G2.
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Figure 2.4. The adjacency matrices of Fn+1 = Fn⊗Fn and F 2
n = Fn⊕Fn

expressed in terms of An. These composition rules are labelled as a graph
inflation and concatenation respectively.

For illustration, a visualisation of the inflation operation is shown in the left panel of
figure 2.3.

By induction, one can then easily prove that Fn+1 = Fn ⊗ Fn. Let us define An as the
adjacency matrix of Fn (defining the adjacency matrix A = {aij} to be a binary matrix
which assigns aij = 1 if i and j are two nodes linked by an edge, and zero otherwise). The
adjacency matrix An+1 of Fn+1 can be expressed in terms of the adjacency matrix An of
Fn as illustrated in figure 2.4. Therefore, starting from k = 1, the operation ⊗ iteratively
generates all the elements of the set {F 1

n , n > 0}. This means that (Fn,⊗) is a unary
system if we interpret ⊗ as a unary operation ⊗ : {Fn} → {Fn}. Notice however that this
set is not closed under ⊗, as for n1 6= n2, @ n3 > 0 such that Fn1⊗Fn2 = Fn3 . The graphs
formed by combining together Fn1 and Fn2 with n1 6= n2 are indeed not Feigenbaum
graphs, but are still HVGs, hence the set of all HVGs is closed under this operation.

Definition 4. (Motif concatenation ⊕) Consider two undirected graphs G1 = (V1, E1)
and G2 = (V2, E2), where Vi are the vertex sets (|Vi| = Ni) and Ei are the edge sets, where
Vi are totally ordered. We label the vertex set of G1 by V1 = (1, 2, . . . , N1) and similarly
for G2 we have V2 = (1′, 2′, . . . , N ′2). Then G1 ⊕ G2 is a graph which fulfils the following
conditions:

(1) G1 ⊕G2 is a graph with N1 +N2 − 1 vertices,

(2) whose vertex set V ′′ = (1, 2, . . . , N1 − 1, 1′′, 2′, 3′, . . . , n′2),

(3) where vertex 1′′ is a block vertex that merges the N1 and 1′ (from V1 and V2
respectively), and inherits all the edges that were incident to both of them,

(4) The vertices 1 and N2 do not share an edge in G1 ⊕G2,

(5) The remaining edge set is formed by all edges between vertices {2, 3, . . . , N1 − 1}
inherited from G1 and between the vertices {2′, 3′, . . . , [N2 − 1]′} inherited from
G2.

A visualisation of this rule, both graphically and algebraically, is shown in the right panels
of Figure 2.3 and 2.4 respectively. We also define Ak

n to be the adjacency matrix of F k
n .

To avoid confusion, we also state that, using parentheses, (Ak
n)p is the pth power of the

corresponding adjacency matrix
One can easily see that, locally, the inflation rule on two graphs G1 ⊗ G2 is equivalent
to the concatenation one G1 ⊕ G2 if we add an extra edge between the first and last
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Figure 2.5. A visualisation of the standard layout of F3 (top left) with
its simplicial complex layout (top right), along with equivalent nodes in red
and blue. On the bottom we plot F4, and we can see the 8 2-simplices glued
to the edges attached to each node with degree 2.

vertex. Now, for any given n, one has F k
n ⊕ F 1

n = F k+1
n . It is also easy to prove that

∀n ≥ 0, k1, k2 ≥ 0, F k1
n ⊕ F k2

n = F k1+k2
n . Therefore, for a fixed n > 0, the operation ⊕

generates all the elements of the set {F k
n , k > 0}. It is also easy to prove that, for a fixed

n > 0, (F k
n ,⊕) is a commutative monoid with the identify element being the empty graph

of one node F 0
n , hence (F k

n ,⊕) is isomorphic to (N,+) .

Remark. Note that the set {F k
n}|n,k can also be created with the aid of simplicial com-

plexes. Given an arbitrary Fn, we can create Fn+1 by gluing a triangle (i.e., a 2-simplex)
to the edges attached to each node with degree 2. We show F3 in the standard way, with
the corresponding simplicial complex representation and equivalent nodes, in Fig. 2.5. In
the same figure we also depict F4, with the 8 2-simplices glued to the edges attached to
each node with degree 2 in F3.

The set {F k
n}|n (fixed n) is finitely generated by F 1

n under ⊕, while the generating set of
{Fn} under ⊗ is {F1}. Now, consider the larger set {F k

n , n, k ∈ N} where n and k are now
free parameters. This set contains the two-parameter (n, k) family of Feigenbaum graphs.
This set is again finitely generated by F1 using the operations ⊕ and ⊗. Exploration of the
algebraic properties of {F k

n , n, k ∈ N} is an interesting topic for future research. However,
here we are interested in the spectral properties of F k

n . Some very basic observations,
which will be helpful later in the task of bounding eigenvalues, are summarised in the
following proposition.

Proposition 1. Consider the set of graphs F k
n , for n, k ∈ N, and let V k

n and Ek
n be the

size of the vertex and edge set respectively, with Vn := V 1
n , En = E1

n. Then the following
holds:

(1) Fn is a graph with Vn = 2n + 1 vertices and En = 2n+1 − 1 edges.
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(2) F k
n is a graph with V k

n = 2nk + 1 vertices and Ek
n = k(2n+1 − 1) edges.

Proof. The proof trivially follows from the definitions of ⊗ and ⊕. �

The spectral properties of F k
n will be addressed in §3. For readability, we will split this

initial study in two natural directions: in §3.2 we set k = 1 and consider the spectral
properties of Fn (i.e., for k = 1, as n increases), whereas in §3.4 we set n fixed and
consider the spectral properties of F k

n as k increases, i.e. the finite size truncations of
infinite Feigenbaum graphs. Finally in §3.5 we will explore the spectrum of F k

n when n
and k are finite and both vary.

2.2. The large n and k limits. The variables n and k have clear, different meanings:
n is related to the period T of the logistic map’s trajectories via T = 2n (physically
speaking, n is related to µ ). In particular, the period-doubling bifurcation cascade that
the logistic map experiences relates to successive increases of n, where the onset of chaos
(µ = µ∞) is only reached in the limit n→∞. On the other hand, k is a parameter that
only describes the length of the trajectory (and therefore properties of a trajectory, for
example its periodicity, will only be revealed when k is large, or in the limit k → ∞),
in particular k is the number of concatenated motifs and is related to the size N of the
trajectory (the length of the time series) via N = V k

n = 2nk + 1. Note that a priori we
have two possible ways to take the limits of large n and k. On the one hand, we can fix
n and let k →∞. This mimics the situation where we have an infinitely long trajectory
of finite period T = 2n. In this limit, F k

n is by construction a locally finite infinite graph,
i.e. the number of vertices is infinite but each vertex has a finite number of edges.

On the other hand, we can also fix k (e.g. k = 1) and take n → ∞. This mimics
the situation where only a single ‘period’ is extracted from the series, however as this
period is T = 2n, in the limit the time series is infinitely long, obtaining an infinite graph.
However, in this limit the graph is not locally finite: as we will show later in Proposition 2
the degree of the central vertex of Fn increases linearly with n, so there are at least k
vertices in F k

n whose degree increases (without bound) with n. On the other hand, this
is still a countable infinite graph.

Therefore, taking the limits k → ∞ and n → ∞ yield different types of infinite graphs:
a locally finite infinite graph in one hand and a countable infinite graph on the other. In
particular, the fact that the limit n→∞ yields infinite graphs which are not locally finite
has important consequences for the spectral properties of these graphs. Recall that for
finite graphs, the spectrum of a graph is simply the set of all eigenvalues of the respective
adjacency matrix A. However if the graph is infinite, the spectrum of A depends on
the choice of the space on which A acts as a linear operator (typically one considers the
Hilbert space `2(V ), where V is the set of vertices). It is well known that if the infinite
graph is locally finite, then A acts on `2(V ) as a self-adjoint operator and its norm is
smaller or equal to dmax, the largest degree of the graph [14]. If the property of local
finiteness is relaxed, then this operator is not bounded anymore. Incidentally, one could
create a self-adjoint compact operator on `2(V ) from an adjacency matrix A = (Aij)i,j∈N,
even if the respective graph is not locally finite, by using the approach of Torgasev [15]:
let c ∈ (0, 1) and label the vertices of the graph V = {v1, v2, . . . } (note that one can
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always do this as this set is countable). Define define the matrix Bc = (bij)i,j∈N with

bij = Aij · ci+j−2.

The matrix Bc is a self-adjoint and compact operator on `2(V ), which is Hilbert-Schmidt
and therefore enables the use of the well-developed field of spectral theory. The drawback
is that the spectrum arbitrarily depends on both the labelling of the graph and on the
constant c.

In summary, the limit limn,k→∞ F
k
n (which is the one we should take to explore the onset of

chaos µ = µ∞) is non-trivial. For this reason, we leave these as interesting open problems,
and from now on we will assume that both n and k are arbitrary large but finite.

2.3. Feigenbaum graphs with µ > µ∞: Chaotic Feigenbaum graph ensembles.
In the range µ > µ∞, the trajectories of the logistic map are typically chaotic (except for
the so-called windows of periodicity, which are essentially subintervals where the period-
doubling cascade is self-similarly reproduced albeit with an initial period larger than one).
The first observation is that in the chaotic regime the graphs can no longer easily be
enumerated. In fact, for a given µ in the chaotic range the Feigenbaum graph is no longer
unique: each different condition will typically generate a different chaotic trajectory and
therefore a different Feigenbaum graph. Hence each value of µ spans a different ensemble
of Feigenbaum graphs, generated by sampling different initial conditions in the map. As
discussed in §2.1, this is at odds with the case µ < µ∞, where for any particular µ all
realisations in an ensemble associated to µ yielded the same Feigenbaum graph, therefore
the ensemble was fully degenerate in that case.

Of course as the length of the time series approaches infinity, the statistical properties
of two different chaotic trajectories extracted at the same value of µ are asymptotically
identical, so we expect some kind of statistical equivalence in the resulting Feigenbaum
graphs. For instance, for µ = 4 (fully developed chaos) one can compute the degree
distribution of the (ensemble of) Feigenbaum graphs. This is a statistical quantity which
can be solved analytically by using a diagrammatic technique [5], and has been shown
to be a valid limit for single realisations. However, in this work we are interested in
studying the spectral properties of Feigenbaum graphs, so we need to address whether
these properties are sufficiently ‘robust’, i.e. we should check whether these properties
do not change much between realisations. This naturally leads to the concept of self-
averaging quantities, which will be investigated in section §4.1. Then, in sections §4.2 we
will try to relate the properties of the time series to spectral properties of the graphs.

3. The case µ < µ∞: Spectral properties in the period-doubling cascade

Here we explore the spectral properties of {F k
n}. In particular, we will focus on the

maximal eigenvalue of the adjacency matrix of F k
n , although other properties will also

be considered, such as the full spectrum, the determinant, and the tree number. For
convenience, we split this section in three main blocks: the first explores the dependence
of n by focusing on the properties of {Fn}n≥0. The second focuses on the dependence on
k by exploring properties of {F k

n}k≥0 where n is fixed. Finally we explore {F k
n}n≥0,k≥0,

where both n and k can vary.
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3.1. A first view on the full spectrum of Fn. Here we fix k = 1 and consider the
set {Fn}n≥0, and we start by exploring the full spectrum the adjacency matrices {An}n≥0
(i.e. the set of 2n + 1 eigenvalues) associated to Fn. The first quantity worth exploring is
the number of distinct eigenvalues of An, labelled q(An). To bound this, it is useful to
resort to the diameter Dn of Fn, defined as Dn = maxi,j{δij}, where δij is the (shortest
path) distance between node i and node j. A well known result is q(An) ≥ Dn + 1. The
following theorem provides the diameter Dn:

Theorem 5. (Diameter of Fn) The diameter of Fn is Dn = n.

Proof. The proof requires a Lemma. Let us consider Fn, whose nodes are labelled
{0, 1, 2, . . . , 2n}, and denote by Rn = 2n the rightmost node of Fn. In the following,
we call extremal points of Fn the nodes 0, Rn−1, and Rn. Notice that Rn−1 is the middle-
point of the Hamiltonian path of F 1

n that starts at node 0 and proceeds by increasing
node labels. Notice as well that since Fn = Fn−1 ⊗ Fn−1, Fn−1 has again three extremal
points, which are labeled (with respect to Fn) either {0, Rn−2, Rn−1} or {Rn−1, R̃n−2, Rn}.
We denote by δij the distance between node i and node j, i.e., the length of the shortest
path from i to j. We can prove the following Lemma

Lemma 6. (Distance to the closest extremal point.) Consider the graph Fn and the
minimal distance between a generic node i and the closest extremal point E

δni,E = min{δi,0; δi,Rn−1 ; δi,Rn}.

Then for n ≥ 1 we have:

δi,E ≤
⌊n

2

⌋
,∀i ∈ [0, Rn].

Proof. We will prove this by strong induction on n. When n = 1, Fn is a triangle whose
diameter is D1 = 1 and thus all three nodes are extrema, i.e. δi,E = 0 = b1

2
c. Now let

us assume that the Lemma is valid up to n − 1 and let’s prove it for n. Without loss of
generality, we assume i ∈ [0, Rn−1]. In this case we have that δni,E = min{δi,0, δi,Rn−1}, since
Rn will be at least one hop farther away from i than either 0 or Rn−1. Let us consider first
the case where i ∈ [0, Rn−2]. In this case i is closer to 0 than to Rn−1 (or at most, at the
same distance from either of the two), hence δni,E = min{δi,0, δi,Rn−1} = δi,0 ≤ 1 + δn−2i,E ≤
1 +

⌊
n−2
2

⌋
. The first inequality is due to the fact that node 0 is an extremal point, and

the distance from i to 0 will be either equal to δn−2i,E or to 1 + δn−2i,E . The second inequality
is due to the induction assumption that Eq. (6) is valid up to n− 1. If n is even, we have:
δni,E ≤ 1 + n−2

2
= n

2
=
⌊
n
2

⌋
. If n is odd instead, we have: δni,E ≤ 1 + n−3

2
= n−1

2
=
⌊
n
2

⌋
.

The case where i ∈ [Rn−2, Rn−1] is similar, since we can relabel each node in [Rn−2, Rn−1]
according to the function φ(i) = i−Rn−2, and repeat the same reasoning. In conclusion,
δni,E ≤

⌊
n
2

⌋
for all i ∈ [0, Rn−1]. But since the graph is symmetric around Rn−1, we have

δni,E ≤
⌊
n
2

⌋
for all i in [0, Rn]. �

We can now finish the proof of Theorem 5. Let us consider two generic nodes i and j in Fn.
First consider the case where i ∈ [0, Rn−1] and j ∈ [Rn−1, Rn]. We have two possibilities
for δi,E (either δi,E = δi,0 or δi,E = δi,Rn−1) and two possibilities for δj,E (either δj,E = δj,Rn
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or δj,E = δj,Rn−1). So we have that

δij = min


δi,0 + 1 + δj,Rn ,
δi,0 + 1 + δj,Rn−1 ,
δi,Rn−1 + 1 + δj,Rn ,
δi,Rn−1 + δj,Rn−1 .

This yields
δij = min{δi,E + 1 + δj,E, δi,E + δj,E}

= δi,E + δj,E
≤ 2

⌊
n
2

⌋
≤ n

where we have used Lemma (6). Conversely, if we have that i, j ∈ [0, Rn−1] (or equiva-
lently, both i, j ∈ [Rn−1, Rn]) then:

δij = min


δi,Rn−1 + 1 + δj,0,
δi,0 + 1 + δj,Rn−1 ,
δi,0 + δj,0,
δi,Rn−1 + δj,Rn−1 .

With a similar argument as above, we get

δij = min{δi,E + dj,E, 1 + δi,E + δj,E}
= δi,E + δj,E
≤ 2

⌊
n
2

⌋
≤ n,

i.e., δij ≤ n. Now, for an arbitrary n, we can always find a pair of nodes l,m in Fn
which saturates the inequality, with δl,m = n. For example, in F2 we can set l equal to
node 1, and m equal to note 3, and for F3 we have (l,m) = (1, 5) and for F4 we have
(l,m) = (2, 12). To construct an algorithm that provides l and m in the general case, we
start with F3, pictured in the top left panel of Fig. 3.1, along with nodes l and m, with a
shortest path (which is not unique) between them coloured in red. We move to the top
right panel, where we have F4 overlaid with the additional edges highlighted with dotted
lines. We can move m to m′, and the length of the shortest path between l and m′ is
increased by 1. This is because the new 2-simplex which we moved m in to is not glued
to an edge which is a member of a shortest path between l and m. We can repeat this
process when moving from F4 (bottom left panel) to F5 (bottom right panel), however
instead of moving m′, we move l in a similar fashion. This is because the new simplices
that are glued to the edges of m′ are a member of a shortest path between l and m′, hence
if we were to again move m′ to the new 2-simplex joined to it, we would not increase the
length of the shortest path. But if we move l to l′ we again increase the length of the
shortest path between our nodes by 1. Repeating this process (by induction, using F3 as
our base case), alternating the movement of l and m, we can find a shortest path between
any two nodes of Fn, with length n.

Hence we can always find a l and m to give δij, and combining this with the bound δij ≤ n
we have that maxi,j{δi,j} = n, which concludes the proof. �

According to the theorem above, we conclude q(An) ≥ n+ 1. To evaluate how tight this
bound is, in Fig 3.2 we plot the entire (point) spectrum of Fn for n ≤ 10 in semi-log. We
can make several observations. First, the bound on q(An) provided above does not seem
to be tight, when comparing to the numerical evidence. On the contrary, the numerical
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mm

l

F3

l

m'

F4
l'

m'

F4 F5

Figure 3.1. A visualisation of the algorithm used to create a shortest path
Fn, with length n. In the top left panel we have F3 with a shortest path
between nodes l and m highlighted in red. In the top right panel we show
how a new path can be created, in F4, with length 4, by moving m. In the
bottom panels we show how we can move l to create shortest path in F5

with length 5. The algorithm is described in the text.

evidence suggests instead that q(An) = Vn = 2n + 1, i.e. all eigenvalues seem to be
distinct, something that we leave as a conjecture.

Moreoever, the spectrum appears to be converging to a particular shape as n increases.
We will explore this fact further in §3.5, but at this point we shall remark that the fact that
the point spectra of An and An−1 have resemblances is reminiscent of Cauchy’s interlacing
theorem [17]. Also, the spectrum is not symmetric and in particular the largest (λmax)
and smallest (λmin) eigenvalues are different in modulus (thanks to the Perron-Frobenius
theorem for primitive matrices, as discussed in §3.2.1).

3.2. Largest eigenvalue λmax for Fn. Here we continue to focus on the case k = 1, and
turn our attention to the largest eigenvalue of An. The eigenvalues of An may be ordered
as

λ1 ≥ λ2 ≥ λ3 . . . ≥ λ2n+1

and as An is irreducible (the graph Fn is undirected and connected), according to the
Perron-Frobenius for non-negative irreducible matrices, λ1 has multiplicity 1, we define
λmax(Fn) = λ1(An) (and similarly we define λmin(Fn) = λ2n+1(An)). Using the eigs
function in Matlab it is possible to efficiently calculate the largest eigenvalue of sparse
matrices, even if the matrices are large. In figure 3.3 we plot, in a log-log scale, λmax(Fn)
for 1 ≤ n ≤ 26. The data fit very well to the power law dependence λmax ∼ nα with
α ≈ 0.5.
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Figure 3.2. A semilog plot of the spectrum (sorted in to ascending order)
of Fn for 0 ≤ n ≤ 10. We notice the spectrum seems to be converging to a
particular curve and conjecture that all eigenvalues are distinct.
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Figure 3.3. Crosses denote numerical computation λmax(Fn), for n =
1, . . . , 26. The red solid line provides a power law fit λmax ∼ n1/2. The rest
of the lines are different analytical upper and lower bounds (see the text).
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In this section our aim is to explain this scaling by finding adequate bounds.

3.2.1. Gelfand’s formula. Gelfand’s formula provides a bound for the spectral radius of
an adjacency matrix A:

ρ(A) = lim
q→∞
||Aq||1/q,

where || · || is any matrix norm. In particular, for any finite q ∈ Z+ we have that
ρ(A) ≤ ||Aq||1/q.

It is easy to prove that ρ(An) = λmax(Fn). In fact, An is non-negative and irreducible,
since the graph Fn is non-empty, undirected and connected, and is also aperiodic, since
each node of the graph belongs to at least one triangle. Consequently, An is primitive.
The Perron-Frobenius theorem for non-negative primitive matrices guarantees that the
largest eigenvalue is real, simple, and equal to the spectral radius ρ(A). Therefore we can
write

ρ(An) = λmax ≤ ||Aq||1/q.
For simplicity, we choose || · ||∞, defined as ||A||∞ = max

1≤i≤m

∑n
j=1 |aij|. We have that

||(An)1|| = 2n, this is because the node with the largest amount of 1-walks is the node
with the largest degree; this is the central node and has degree 2n (see Prop. 2 below).
For q = 2 we have ‖(An)2‖ = 2n2 + 2, a result which we prove in Appendix. A. For q = 3
we calculate ‖(An)3‖ for several values of n and numerically find that they exactly fit a
cubic equation:

‖(An)3‖ =
4

3
n(n+ 1)(n+ 2)

We did not find a closed formula for 4 ≤ q ≤ 10 (although one may very well exist).
Taking respectively the 1st, 2nd and 3rd roots of these three formulas, we find that for
q < 4 the approximant to the spectral radius is essentially linear on n, providing our
first estimated upper bound for λmax. Because we did not find a closed expression for
4 ≤ q ≤ 10, we take q = 3 as our ‘Gelfand’s estimate’ and we have a conjecture:

(3.1) λmax ≤
[

4

3
n(n+ 1)(n+ 2)

]1/3
.

3.2.2. Bounds on largest eigenvalue based on degree. In order to improve the bound pro-
vided by Gelfand’s formula, we now turn to the specific bounds for the largest eigenvalue
that exist in the literature. Some elementary bounds for the largest eigenvalue of a graph
G with maximum degree dmax and average degree d̄ [18] are:

max{d̄,
√
dmax} ≤ λmax ≤ dmax(3.2)

λmax ≤ max {
√
didj : 1 ≤ i, j ≤ n, vivj ∈ E},(3.3)

where E is the edge set. We apply these bounds to Fn. We summarise the bounds in the
following proposition:

Proposition 2. Consider Fn. Then

(a) The largest degree of Fn is found in its central vertex and is dmax(Fn) = 2n.
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(b) The vertices with second largest degree are the boundary ones (first and last) and
each have degree n+ 1.

(c) The average degree is d̄(Fn) = 4− 6/(2n + 1)

(d) max {
√
didj : 1 ≤ i, j ≤ n, vivj ∈ E} =

√
2n(n+ 1)

Proof. First, observe that for n ≥ 1 we have Fn = Fn−1⊗Fn−1, and in the inflation process
the only vertices whose degree increases are the border ones (leftmost and rightmost).
Proofs of (a) and (b) are then by induction on n: For p = 1 we have that dmax(Fp) = 2,
found in the central vertex, and similarly for the first and last vertex d = 2 as well. Then,

- Assume dmax(Fp) = 2p. For n = p+ 1, by construction we have Fp+1 = Fp ⊗ Fp, so the
only vertices that acquire new edges are at the borders of Fp. In particular, the central
vertex in Fp+1 is the one acquiring more edges, and by construction this vertex is built
merging the rightmost and leftmost vertex of Fp, hence the central vertex of Fp+1 has
degree 2p+ 2p = 2(p+ 1). This finishes the proof for (a).

- Assume that the border vertices (leftmost and rightmost) in Fp have degree p + 1. In
Fp+1 = Fp⊗Fp, inflation adds an additional edge between the leftmost vertex in the first
copy of Fp and the rightmost vertex in the second copy of Fp, and therefore the degree
for these nodes in Fp+1 is just p+ 1 + 1, finishing the proof for (b).

Moreover, a proof for (c) directly follows from Proposition 1 by remarking that d̄(Fn) =
2En/Vn.

Finally, the vertices with largest degree in Fn are the central vertex, with degree 2n, and
the leftmost and rightmost vertices, each of them having degree n+1 as previously proved.
By construction the central vertex in Fn is always linked with the leftmost and rightmost
vertices, hence the identity (d) holds. �

In summary, we find the following bounds based on the degree for λmax:

λmax ≤
√

2n(n+ 1),(3.4)
λmax ≥ d̄(Fn) = 4− 6/(2n + 1), for n < 9,(3.5)

λmax ≥
√

2n, for n ≥ 9.(3.6)

Note that asymptotically the lower bound is already ∼ n1/2 and is therefore tight, whereas
the upper bound

√
2n(n+ 1) is still linear and worse than our estimate derived from

Gelfand’s formula.

3.2.3. Bounds on largest eigenvalue based on walks. There exists a general bound for λmax
based on number of walks on the graph up to order 3. Let a(n), b(n), c(n) and d(n) be
the total number of 3-walks, 2-walks, 1-walks and 0-walks respectively (observe that d(n)
is simply the number of vertices and c(n) is just twice the number of edges). Then a lower
bound is [20]:

(3.7) λmax ≥
d · a− b · c+

√
d2 · a2 − 6abcd− 3c2 · b2 + 4(ac3 + db3)

2(bd− c2)
.
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n κ(Fn)
1 3
2 21
3 945
4 1845585

Table 1. Tree numbers for Fn

In appendix A we provide a proof for b(n), c(n) and d(n) along with an estimation for
a(n). According to these, we state that for Fn:

a(n) = 160 · 2n − 4n3 − 30n2 − 104n− 158(3.8)
b(n) = 24 · 2n − 2n2 − 12n− 22

c(n) = 4 · 2n − 2

d(n) = 2n + 1

Based on the leading terms of a, b, c and d it is clear that the lower bound in Eq.3.7 is
asymptotically constant, and is therefore a very loose bound for large n. However the
expression is extremely good for small values of n, as shown in Fig. 3.3.

Summing up, we have exploited different properties such as spectral radius, degree and
walks, and we have obtained several possible bounds accordingly (see Eqs. 3.1–3.7). The
best upper bound is the Gelfand estimate (Eq.3.1) which is nonetheless still a loose bound.
On the other hand the best lower bound is given by the walks bound (Eq.3.7) for n < 24
and by the degree bound (Eqs.3.6) for n ≥ 24. The scaling of this latter bound seems to
be tight. These bounds have been displayed, along with the numerical estimate of λmax,
in Fig. 3.3.

3.3. Other spectral properties of Fn: The Tree Number. The tree number of a
graph G is the total number of spanning trees, and we will denote it by κ(G). To calculate
κ(Fn) we make use of Kirchhoff’s theorem, or the matrix tree theorem:

Theorem 7 (Kirchhoff’s theorem (The Matrix Tree Theorem); [21]). For a given con-
nected graph G with n labeled vertices, let µ1, µ2, . . . , µm−1 be the non-zero eigenvalues of
its Laplacian matrix L = D −A., where D is the degree matrix (a diagonal matrix with
vertex degrees on the diagonals). Then the number of spanning trees of G is given by

(3.9) κ(G) =

∏m
i=1 µi
m

We have numerically computed κ(Fn) for n = 1, . . . , 4, the results are shown in Table
1. Interestingly, oeis states that this sequence (A144621) corresponds to the number of
oriented spanning forests of the regular ternary tree with depth n that are rooted at the
boundary (i.e., all oriented paths end either at a leaf or at the root), which is given by
the recurrence

(3.10) αn+2 = αn+1(3αn+1 − 2α2
n) where α0 = 0, α1 = 1.

Hence we conjecture that κ(Fn) = αn+1.
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Figure 3.4. Plot of λmax(F k
n ) for fixed values of n as a function of k. In

each case the largest eigenvalue converges to a value independent of k, a
result proved in theorem 8.

3.4. Largest eigenvalues λmax for F k
n . In this section we start by focusing on the set of

graphs generated via the concatenation rule ⊕ as introduced in definition 4. We initially
are interested in exploring the role of k in the largest eigenvalue of the adjacency matrix.
To begin with, we fix n and explore (numerically) how λmax(F k

n ) changes as we increase
k. We have calculated λmax(F k

n ) for 1 ≤ n ≤ 4 and 1 ≤ k ≤ 10. Results are shown in
Fig. 3.4. After a transient growth, we notice that for each n the λmax appears to converge
to a finite value as k increases. This observation can be made rigorous:

Theorem 8. Let n > 0 be fixed and consider the graph F k
n as k increases. Then the

largest eigenvalue of its adjacency matrix converges as k →∞.

Proof. Recall that the largest eigenvalue is bounded by the largest degree of the graph
hence in our case, λmax(F k

n ) ≤ dmax. Now, the node with the largest degree in F 2
n is the

central node, which by construction inherits the edges from the left and right boundary
nodes in Fn. These boundary nodes have degree n+ 1, hence

dmax(F 2
n ≡ Fn ⊕ Fn) = 2(n+ 1).

Adding additional copies of Fn does not change the maximum degree, because only one of
the boundary nodes in F k

n will have their degree increased from n+1 to 2(n+1). In other
words, the node with largest degree is maintained constant as new motifs are concatenated.
Therefore λmax(Fn) is bounded from above. Furthermore, as a consequence of Cauchy’s
Interlacing Theorem we have that λmax(F k+1

n ) ≥ λmax(F k
n ). Therefore λmax(F k

n ) is an
increasing sequence in k, bounded above, hence converges. �

We have now understood the dependence of λmax(F k
n ) on k, and we are now in a position

to discuss a general expression for the largest eigenvalue in the general case of F k
n . This

is a two-parameter discrete function

λmax(F k
n ) : n, k ∈ N+ → R+

We summarise the bounds for λmax for general n and k in the following proposition:
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Proposition 3. Consider the graph F k
n , where n ≥ 0, k ≥ 2 (the case k = 1 reduces to

Fn). Then the following hold:

(a) dmax(F
k
n ) = 2(n+ 1) (independent of k).

(b) d̄(F k
n ) =

2Ek
n

V k
n

=
2k(2n+1 − 1)

k2n + 1
(asymptotically independent of k).

(c) max {
√
didj : 1 ≤ i, i ≤ n, vivj ∈ E} = 2n+ 2 (independent of k).

Proof. Proposition (a) comes from Theorem 8
Proposition (b) comes from Prop. 1 along with the fact that the average degree of a graph
is twice the number of edges divided by the number of nodes
Proposition (c) is trivially proved by observing that for k ≥ 2, F k

n has multiple nodes
with maximum degree; these nodes are always connected and have degree 2(n+ 1). �

These results provide the following bounds, which are equivalent to the bounds to Eqs.3.4–
3.6 but in the general case where k ≥ 2:

λmax(F k
n ) ≤ 2(n+ 1),(3.11)

λmax ≥ d̄(F k
n ) =

2k(2n+1 − 1)

k2n + 1
, if n < 7,(3.12)

λmax ≥
√

2(n+ 1), if n ≥ 7.(3.13)

Additionally, we were able to estimate the number of walks (as explained in Appendix A)
in the case of F k

n , yielding:

a(n, k) = (320 · 2n − 4n3 − 48n2 − 196n− 312) + (k − 2)(160 · 2n − 16n2 − 88n− 152)

b(n, k) = 24 · 2n − 2n2 − 12n− 22 + (k − 1)(24 · 2n − 8n− 20)

c(n, k) = 4k · 2n − 2k

d(n, k) = k · 2n + 1

3.5. The complete spectrum of F k
n : tridiagonal n-block Toeplitz matrices. We

now turn our attention to the adjacency matrices of F k
n and their particular form. As a

preamble, observe that the concatenation operation ⊕ that generates F k
n from Fn is in

some sense ‘close’ to a direct sum. We recall that the direct sum of a matrixA with itself is
the matrix formed by placing A as two non-overlapping diagonal blocks. The eigenvalues
of the direct sum of two copies of the same matrix A are just the eigenvalues of A (with
twice the multiplicity in each case). If we ‘approximate’ ⊕ as just being the direct sum
operation, then trivially the eigenvalues of F k

n would be the same as the eigenvalues of
Fn. In particular, λmax would be fully independent of k. Of course, ⊕ is not a direct sum,
however λmax(F k

n ) is independent of k in the limit k → ∞. With a bit of hand-waving,
we could say that the larger n, the ‘closer’ ⊕ is to a direct sum and therefore the more
independent the spectrum is from k.

We start now our analysis by fixing n and letting k increase. For n = 0, F k
0 is trivially a

2-regular chain whose adjacency matrix Ak
0 whose structure is tridiagonal Toeplitz:
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0 .

Ak
0 =



0 1 0 0 0

1 0 1
. . . 0

0 1
. . . . . . . . .

. . . . . . . . . 1 0

0
. . . 1 0 1

0 0 0 1 0


Accordingly, through direct calculation of the adjacency matrix, we can express the spec-
trum in closed form

spec(F k
0 ) = {2 cos

hπ

k + 2
, h = 1, . . . , k + 1}.

A plot of this spectrum for k = 210 is shown in 3.5. In particular, as cos(x) monotonically
decreases on [0, π], the largest value is found for h = 1 and thus

λmax(F k
0 ) = 2 cos

π

k + 2
,

hence we have that limk→∞ λmax(F k
0 ) = 2.

For n = 1, F k
1 , the adjacency matrix is no longer tridiagonal Toeplitz anymore, however

it can be expressed as a tridiagonal block Toeplitz matrix of the shape

 a b 0 . . .
bT a b 0 . . .
0 bT a b 0


where

a =

(
0 1
1 0

)
, b =

(
1 0
1 0

)
, bT =

(
1 1
0 0

)
.
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Figure 3.6. The spectrum of F 210

0 and F 210

1 .

This is a special type of tridiagonal block Toeplitz matrix. In general, if we look at the
adjacency matrix Ak

n associated to F k
n , there exists a self-similar process underlying the

construction ofAk
n in terms ofAk

n−1. For instance, Ak
0 is just a tridiagonal Toeplitz matrix

with null diagonal elements. Now, Ak
1 is not tridiagonal nor Toeplitz anymore as we have

seen, but we recover a tridiagonal Toeplitz shape if we consider blocks 2×2 as the elements
of this new matrix, or equivalently Ak

1 is a tridiagonal block Toeplitz matrix. Similarly,
Ak

2 is no longer a tridiagonal block Toeplitz matrix, but if we consider that the elements
of Ak

2 are blocks of blocks (2× 2 matrices whose elements are in turn blocks), then in the
structure of Ak

2 is again tridiagonal Toeplitz (we may call it tridiagonal superblock, or
2-block Toeplitz). For instance, the structure of Ak

2 can be expressed as A B 0 . . .
BT A B 0 . . .
0 BT A B 0


where

A =

(
a b
bT a

)
, B =

(
c 0
b 0

)
, BT =

(
c bT

0 0

)
, c =

(
1 0
0 0

)
This process can be applied iteratively and hence we can show that Ak

n has a tridiagonal
n-block Toeplitz structure. In this case, an n-block is equivalent to a 2n × 2n block. In
other words, a tridiagonal n-block Toeplitz matrix is equivalent to a tridiagonal block
Toeplitz matrix where each block is indeed a 2n×2n matrix. We weren’t able to find such
shape in the literature but we speculate that the set of symmetries present in the recursive
bulding of Ak

n could be exploited to extract properties about its spectrum. Additionally,
in Figure 3.6 we plot the spectrum of F 210

0 and F 210

1 . For the spectrum of F 210

1 , we notice
two distinct curves separated by a discontinuity, with a length of approximately 210 each.
Each of the two curves look appropriate rescalings of the spectrum of F 210

0 . The same
pattern can be observed in F 210

n for n = 2, 3, 4 with the spectrum of F 210

n having 2n distinct
curves, each separated by a jump. We conjecture that for a fixed k, the spectrum of F k

n

consists of 2n distinct curves.
Finally, in figure 3.7 we plot the complete point spectrum of F10, and compare it with F k

n
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Figure 3.7. Rescaled curves for F k
n , where we show that, when comparing

graphs with the same number of nodes, the spectrum collapses to a universal
shape.

with the same number of nodes: F 4
8 , F 16

6 , F 64
4 and F 256

2 . We can see how for small n the
distinct curves are very obviously separated by discontinuities, and these smear out as n
increases. The spectrum seems to converge to a somewhat universal shape. We conjecture
that this self-similar process is reminiscent of the recursive way of building the n-block
tridiagonal Toeplitz adacency matrices, and we leave this as an open problem.

3.6. Determinant of Feigenbaum Graphs. We close this section on the properties
of F k

n by exploring the determinant of F k
n , which is defined as the determinant of the

adjacency matrix Ak
n. We outline and prove the following theorem:

Theorem 9. The determinants of F k
n satisfy

det(Fn) =


1, n = 0

2, n = 1

−2, ∀n ≥ 2.

Moreover, for k ≥ 1 and n ≥ 2 we have

det(F k
n ) = −2k

Proof. For k = 1, we can directly calculate det(F0) and det(F1). To push beyond this
is a little bit more difficult. It is too tricky to directly calculate the determinant of
the adjacency matrices, despite them having a recursive form. We then follow a graph
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Largest cycle

Big cycles

Small cycles

F3

Figure 3.8. Diagram showing F3 with the relevant cycles. The largest
cycle is taken as the Hamiltonian path along with the edge connecting the
first and last vertices. The big and small cycles are taken by following the
Hamiltonian path but taking an edge back to the starting node.

theoretical proof, for which we will have to state a definition and a well-known theorem,
and then state and prove two lemmas.
We start by defining a spanning elementary subgraph [21]:

Definition 10 (Spanning Elementary Subgraph). An elementary subgraph is a simple
subgraph, each component of which is regular and has degree 1 or 2, i.e., each component
is either a single edge or a cycle. A spanning elementary subgraph (S.E.S) of a graph G
is an elementary subgraph which contains all vertices of G.

We now make use of the following Theorem:

Theorem 11 (Harary 1962; [21]). Let A be the adjacency matrix of a graph G, let v be
the number of vertices, e the number of edges and l the number of components. Then

(3.14) det(A) =
∑
H

(−1)r(H)2c(H)

where the summation is over all spanning elementary subgraphs H of G, r(H) = v − l is
the rank of H and c(H) = e− v + l is the co-rank.

We note that the co-rank of an elementary subgraph is just the number of cycles in
the graph. Our task is thus to find all the spanning elementary subgraphs with their
corresponding ranks and co-ranks.

Lemma 12. We have only two configurations for elementary subgraphs (for n ≥ 3). The
first is just the cycle containing all vertices (shown as the "largest cycle" in Fig. 3.8) and
the second is any other cycle from Fig. 3.8 with the remaining nodes connected by single
edges

Proof. Without loss of generality we consider the structure of F3 only. Because of the
recursive property of the Feigenbaum graphs, all the arguments used here can be applied
directly to any Fn with n ≥ 2.

The largest cycle (created by taking only the outside edges of the outerplanar graph) is
shown in Fig. 3.8. The co-rank of this subgraph is 1 (since the only component is a cycle,
and the co-rank is the number of cycles) and the rank is even as the number of vertices
in any Feigenbaum graph is always odd, and we only have one component). Thus this
subgraph contributes 2 in the sum (Eq. 3.14) of the determinant of F3. This is true for
any n, i.e., the largest cycle contributes 2 towards the determinant.
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1 2

3 4

5 6

Figure 3.9. Six other configurations for elementary spanning subgraphs
of F3 (other than the largest cycle).

We can construct other spanning elementary subgraphs by taking any other cycle (big
or small as in Fig. 3.8) and joining the remaining bottom edges. As such cycles always
contain an odd amount of vertices, we are always left with an even amount of vertices
on the bottom, which permits us to join the rest of the vertices with single edges. Such
spanning elementary subgraphs, for F3 are shown in Fig. 3.9.

We stipulate the following: we cannot have more than one cycle in any elementary sub-
graph. This is because if we take two cycles in our elementary subgraph, we will be left
with an odd amount of vertices. An odd amount of vertices cannot be joined only by
single edges, thus we would require another cycle to give us an even amount of vertices.
However, because of the construction of the Feigenbaum graphs, this will leave us with an
odd amount on either side of one of the cycles, and this process repeats until we are left
with a single node that cannot by introduced in to any spanning elementary subgraph.

By the same reasoning, any other cycles considered which are not listed in Fig. 3.8 (for
example in F3, taking the triangle formed by the 1st, 3rd and 5th nodes) will again leave
us with an odd amount of nodes, the first of which (by ordering the remaining nodes and
numbering them left to right starting with 1) can only be connected by a single edge to
the next node. This process repeats until we are left with a single node that cannot be
introduced in to any spanning elementary subgraph.

Thus each spanning elementary subgraph contains only one of our big or small cycles, and
each big or small loop corresponds to exactly one spanning elementary subgraph. The
co-rank of all elementary subgraphs of all Fn is therefore equal to 1. This concludes the
proof of Lemma 12. �

Lemma 13. Spanning elementary subgraphs consisting of a big cycle have an even number
of single edges components. S.E.S’s consisting of a small cycle have an odd number of
single edges components.

Proof. The number of vertices of Fn is 2n + 1. The number of vertices in one of the big
or small cycles is 2k + 1 where 1 ≤ k < n. The number of vertices remaining whe we add
a cycle component (a loop) to a S.E.S is 2n + 1 − (2k + 1) = 2n − 2k and the number of
single edge components is

2n − 2k

2
= 2n−1 − 2k−1
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Figure 3.10. Diagram showing each cycle’s contribution to det(Fn).

which is even if and only if k 6= 1, i.e., only for big cycles. This concludes the proof of
Lemma 13. �

Going back to our formula in Eq. 3.14, we have c(H) = 1, therefore

det(A) =
∑
H

2(−1)r(H)

In Lemma. 13 we proved that r(H) is even for E.S.Gs containing big cycles and odd for
small. Using simple combinatoric arguments shown in Fig. 3.10, we have for n ≥ 2,

det(Fn) = −2n +
n−1∑
k=1

2k = −2

For k > 1 the big and small cycles give slightly different contributions to the determinant,
similar to Fig. 3.10, however the number of big and small cycle is different. It can easily
be checked that

det(F k
n ) = −2k,

which concludes the proof of Theorem 9. �

Remark. It can also be checked that, using similar arguments to the proof of Thm. 9,
det(F k

1 ) = (−1)k+12k and that for n = 0:

det(F k
0 ) =

{
0 k even
(−1)

k+1
2 k odd

4. µ > µ∞: Spectral properties of chaotic Feigenbaum graph ensembles

In this section we explore Feigenbaum graphs in the region µ > µ∞. As discussed in §2.3,
for a given µ < µ∞, and for a given series size N , the resulting Feigenbaum graph was
unique because the order in which the trajectory visits the stable branches of the periodic
attractor is unique (indeed, it is universal for all unimodal maps, not just the logistic
map, so F k

n are indeed universal [4]). However, for µ > µ∞ this is no longer the case: for
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a specific µ, each initial condition will generate a priori a different chaotic trajectory, and
hence a different Feigenbaum graph. Since in this case n and k do not apply anymore, we
use the notation F (µ,N) to describe the ensemble of Feigenbaum graphs associated to a
trajectory of size N (so the corresponding HVG has N vertices) generated by the logistic
map with parameter µ.

4.1. Self-averaging properties of λmax. We start by exploring the self-averaging prop-
erties of the ensembles of Feigenbaum graphs. First, we fix µ = 4 (fully developed chaos)
and extract an ensemble of 100 time series of series with N = 2q for q = 10, . . . , 15, each
generated with a different initial condition. For each series, we then extract its Feigen-
baum graph and calculate λmax. For each time series size N , we compute the mean and
standard deviation of the ensemble of λmax. To assess whether this quantity self-averages
as N increases [22], in the left panel of Figure 4.1 we plot the relative variance Rλ as a
function of N , defined as

Rλ(N) =
〈λ2max〉 − 〈λmax〉2

〈λmax〉2
,

where the average 〈·〉 is performed over the ensemble of realisations.

We observe that this quantity decreases with N , certifying that, for µ = 4, the largest
eigenvalue is a self-averaging quantity. This means that with regards the largest eigen-
value, a typical realisation of F (µ = 4, N) provides a faithful representation of the ensem-
ble. Moreover, the relative variance scales as a power law Rλ(N) = cN z with z ≈ −0.221,
hence the system is weakly self-averaging (because we have −1 < z < 0).

A similar analysis is performed now for the whole range of values of µ > µ∞ for which
the Lyapunov exponent (le) is positive (i.e., we discard periodic windows). In each case,
a power law fit Rλ(N) = cN z is computed. In the right panel of Figure 4.1 we plot the
estimated exponent z(µ). In most of the cases we find that the system remains weakly
self-averaging. There is only one exception for this otherwise general behaviour: for a
specific value of µ only slightly above µ∞ (le ≈ 0+) we find that z > 0, i.e., the relative
variance increases with N . This anomalous behaviour can be explained as follows: in
the onset of chaos µ = µ∞, the Feigenbaum graph ensemble is still degenerate (i.e. only
one unique configuration). As we enter into the chaotic region but remain very close to
µ∞, a trajectory of the map will visit what is known as a ghost of the attractor found
in the accumulation point. In fact, the structure of a realisation of a Feigenbaum graph
just above the accumulation point is very similar to the one found at the accumulation
point with just a few additional ‘chaotic’ edges [4]. The existence of these edges is what
allows the ensemble in this case to no longer be degenerate. Now, the number of these
chaotic edges will proportionally increase when the series size N increases, simply because
as N increases the trajectory will show additional deviations from the ghost attractor.
Accordingly, the total number of possible configurations of the ensemble of Feigenbaum
graphs very close to the accumulation point increases from essentially one (degenerate
case) when N is small to many as N increases. As a byproduct, the relative variance will
necessarily increase as a function of N in this case, hence z > 0.

4.2. Searching spectral correlates of chaoticity. One of the main motivations that
leads us to explore the largest eigenvalue of HVGs is that some research claims that this is
an informative quantity for the ‘complexity’ of the associated time series (see for instance
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Figure 4.1. (Left) Log-log Plot showing the relative variance Rλ(N) as
a function of size N , computed over an ensemble of 500 realisations of
Feigenbaum graphs F (4, 2000). The curve is fitted by a power law Rλ(N) =
cN z, where the best fit provides z ≈ −0.22, suggesting the system is weakly
self-averaging (−1 < z < 0). (Right panel) Fitted exponent z for the range
of values of µ for which le(µ) > 0. In most of the cases we find −1 < z < 0,
confirming that the system is weakly self-averaging. For le(µ) ≈ 0+ (which
holds for µ only slightly above µ∞, z > 0. This can be explained in terms
of the ghost structure present in the graphs (see the text).

[11, 9, 10, 12, 13]). If this was the case, we wonder if such quantity is able to quantify the
‘degree of chaoticity’ of a given (chaotic) time series. Within the realm of nonlinear time
series analysis, a relevant property that quantifies how chaotic a system is the sensitivity
to initial conditions, better described by the largest Lyapunov exponent of the system
which accounts for the (exponential) separation rate of two initially nearby trajectories.
For univariate time series extracted from a map xi+1 = f(xi), there is only one Lyapunov
exponent le, which can be estimated from a single (long) time series as [23]

le = lim
N→∞

1

N

N−1∑
i=0

log |f ′(xi)|

Thus, for each µ ∈ [µ∞, 4] (sampled in steps of ∆µ = 0.001) we have generated a single
trajectory, and computed both the le and λmax. In figure 4.2 we show the scatter plot of
λmax vs le. Surprisingly, no obvious correlation emerges in this picture, which suggests
that λmax does not correlate to the sensitivity to initial conditions.

Does this mean that HVGs are not inheriting chaoticity properties, or that these are
simply not inherited in λmax? As a matter of fact, previous works have shown that the
HVGs do capture chaoticity, as le(µ) is very well approached (from above) by suitable
block-entropies of the Feigenbaum graph’s degree sequence [7]. So the question is whether
the spectral properties of these graphs are able to capture such properties. We do not have
a definite answer for this, but let us comment that we have checked scatter plots similar
to Figure 4.2 for other spectral properties, such as the graph’s Von Neumann entropy [24],
spectral gap or the (logarithmic) tree number, with similarly unsuccessful results (data not
shown). Hence our partial conclusion is that spectral properties do not quantify different
levels of chaoticity. The natural question is therefore: do these characterise chaos at
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Figure 4.2. Scatter graph of the maximum eigenvalue λmax of F (µ, 2000)
vs the Lyapunov exponent le(µ), for values of µ ∈ [µ∞,4] in steps of ∆µ =
0.001 (only positive values are selected to avoid periodic windows). No
correlation emerges.

all? To address this question, in the next and final section of the paper we will make a
systematic comparison between the spectral properties of Feigenbaum graphs associated
to chaotic series and those of generic HVGs associated to random uncorrelated series.

4.3. Comparison with iid. In §4.2 we came to the conclusion that spectral properties
don’t seem to characterise (in a quantitative way) the chaoticity of the series. Hence
the question: do they carry qualitative information, or on the contrary, spectral proper-
ties do not distinguish between chaotic series and random ones? If this was to be the
case, the spectral properties shouldn’t differ much from what we would find for random,
uncorrelated series (iid).

4.3.1. λmax. First let us note that in [11] the authors explored whether λmax could dis-
tinguish chaotic and random series, with interesting numerical evidence suggesting that
indeed chaos can be distinguished from an iid process under this lens. As a cautionary
note, observe however that their analysis was based on estimating dmax, as they claim that
λmax ≈

√
dmax when N → ∞. This is however not true in general (for a generic graph),

and in the context of HVGs it is actually unknown. Also, they assumed that this quantity
converged as the series size N increases, and numerically checked this in a small interval
of N . Note, however, that analytical results [5] suggest that dmax is unbounded for both
iid and chaotic processes as their degree distribution has an exponential tail (that is to
say, in order to find a certain value for dmax one just needs to increase (exponentially) the
series size N).

Does λmax converge as N → ∞? Since both iid and chaotic series are aperiodic, from
Eq.(2.1) we get d̄ = 4 in both cases. Furthermore, from [2, 5] it is known that degree
distribution for both infinite iid and a chaotic process such as the logistic map has an
exponential tail, with P (d) ∼ exp(−γd). In particular, for µ = 4 a good approximation
is γµ=4 ≈ log(4/3), whereas for an iid process the exponential distribution is exact and



ON THE SPECTRAL PROPERTIES OF FEIGENBAUM GRAPHS 27

Figure 4.3. Ensemble histogram P (λmax) for µ = 4 and iid (the histogram
has been smoothed).

γiid = log(3/2). Note, however that these expressions hold in the limit N → ∞, where
dmax is unbounded (although it grows rather slowly with N) in both cases, suggesting that
λmax is indeed unbounded in the limit N → ∞. This is not unexpected, as F (µ,∞) are
not locally finite. For that reason, in order to assess whether λmax can indeed distinguish
chaos from iid, we shall analyse finite trajectories (N <∞). dmax is therefore the largest
possible degree of F (µ,N). Statistically speaking, we can state that dmax is only reached
once in the whole graph, and therefore dmax should fulfil

P (d = dmax) ·N = 1

A quick calculation yields

(4.1) dmax ∼
logN

γ

and according to Eqs.(3.2) and (3.3), we have for both iid and chaos:

(4.2)
√
dmax ≤ λmax ≤

√
dmax(dmax − 1)

Interestingly, the difference between the chaotic case (µ > µ∞) and the random case (iid)
is evident in dmax:

(4.3) dµmax =
γµ
γiid

diid
max

which for µ = 4 becomes
dµ=4

max ≈ 1.4 · dmaxiid

We fix N = 2000 and compute λmax for iid and µ = 4 over 2000 realisations. We plot
the resulting histograms are in Figure 4.3, finding 〈λiid

max〉 = 7.01 ± 0.15, and 〈λµ=4
max〉 =

7.73± 0.16. The two quantities are clearly different.

We now assess whether λmax of an ensemble of logistic maps is systematically different
than the same quantity obtained from iid. To do this, we consider all values of µ for which
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le(µ) > 0 and for each of these values, we have performed a 2-sampled t-test between
〈λµmax〉 and 〈λiid

max〉, and obtained a p-value for each test. We systematically find very
small p-values, concluding that 〈λmax〉 can indeed distinguish time series extracted from
the whole chaotic region from a purely random process.

Figure 4.4. (Left Panel) Histogram showing the distribution of eigenval-
ues ρ(λ) for the Feigenbaum associated to the logistic map (µ = 4) in
orange (time series of N = 2000), versus the one associated to an iid time
series of the same size in purple. To help the eye distinguish both distribu-
tions, a smoothing has been applied. (Right Panel) Ensemble distribution
of the Hellinger distance H(µ = 4, iid) between ρ(λ) for µ = 4 and an
iid process, for a total of 100 realisations. The mean of the ensemble is
〈H(µ = 4, iid)〉 = 0.13± 0.03

4.3.2. Distribution of eigenvalues. To round off our analysis, we now compare the distri-
bution of eigenvalues in the chaotic case to the one obtained for random iid time series of
the same size. We start with µ = 4. We extract a time series of size N = 2000 for each
process, compute the list of eigenvalues and display their frequency ρ(λ) in a histogram.
These are shown in the left panel of Fig. 4.4. We observe that the distribution is some-
what different for specific ranges. To quantify ‘how different’ they are, we compute the
Hellinger distance, defined as

H(p, q) =

√
1−

∑
x

√
p(x) · q(x),

where p(x) and q(x) are two sample distributions. After an ensemble average over 100 real-
isations, the average Hellinger distance between µ = 4 and iid isH(µ = 4, iid) = 0.13±0.03
(see the right panel of Fig. 4.4 for the ensemble distribution of Hellinger distances).

Finally, we explore the distance for µ ∈ [µ∞, 4]. A scatter plot of H(µ, iid) vs le(µ),
for those values for which the Lyapunov exponent is positive is shown in figure 4.5. Un-
expectedly, a clear negative correlation emerges between H(µ, iid) and le(µ). The best
linear fit is H(µ, iid) ≈ 0.21627−0.23208le(µ). While a sound theoretical justification for
this negative correlation is left for future work, heuristically one can say that the larger
the Lyapunov exponent, the more chaotic the time series is and thus the less easy is to
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distinguish the spectrum of the associated Feigenbaum graph from the one generated from
a random series.
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Figure 4.5. Scatter plot of the Hellinger distance H(µ, iid) between the
eigenvalue distribution of the Feigenbaum graph F (µ, 2000) and the one as-
sociated to a random iid time series of the same size as a function of the Lya-
punov exponent le(µ), for those values µ ∈ [µ∞, 4] for which the Lyapunov
exponent is positive (sampling ∆µ = 5 · 10−4). For comparison, H(iid, iid)
is also shown (the gray area denotes 〈H(iid, iid)〉± std = 0.05± 0.02). This
area denotes the range for which distributions cannot be distinguished. A
clear negative correlation between the Hellinger distance to iid and the Lya-
punov exponent emerges.

5. Discussion

Horizontal Visibility Graphs (HVGs) have been widely used as a method to map a time
series into a graph representation, with the aim of performing graph-based time series
analysis and time series classification. Among other properties, the Graph Index Com-
plexity –(GIC), a rescaled version of the maximal eigenvalue of the HVG’s adjacency
matrix– has been used as a network quantifier in several applications. However, there
is a shortage of theoretical analysis of the spectral properties of HVGs, as most works
essentially deal with applications of GIC for real-world time series classification.
Here we make the first step to partially fill this gap by addressing the spectral properties
of HVGs associated to certain classes of periodic and chaotic time series. For convenience,
we focus on the archetypal logistic map as it is a canonical system producing periodic
time series of different periods and chaotic time series with different degrees of chaoticity
(i.e, different Lyapunov exponent) as it undergoes the Feigenbaum scenario.
We were able to enumerate the visibility graphs below the map’s accumulation point in
terms of a bi-parametric family of finite Feigenbaum graphs F k

n , and have explored their
spectral properties (in particular, the behaviour of the maximal eigenvalue of the adja-
cency matrix) as a function of n and k. We found noteworthy patterns, and numerical
results were complemented with analytical developments as well as exact results. Other
aspects that were investigated include the full spectrum, the determinant, the number of
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distinct eigenvalues, and the number of spanning trees of the whole family of F k
n .

A similar analysis was then conducted in the region of the map’s parameter where trajec-
tories are chaotic, finding that the maximal eigenvalue, while being a good discriminator
between chaos and noise, is not able to quantify chaoticity. The eigenvalue distribution,
on the other hand, was found to carry information about time series chaoticity, in partic-
ular its Lyapunov exponent.
In this work we have also outlined a number of conjectures and open problems which we
hope will trigger some attention in the algebraic and spectral graph theory community.

Appendix A. Walks of Fn

A.1. Maximum 2-walks. In Section. 3.2.1 we use the result ‖(An)2‖∞ = 2n2 + 2, and
we prove it here. Note that ‖(An)2‖ is the maximum of the number of 2-walks originating
at a node, over all the nodes. It is clear that this node is the central node, which we will
call vc, which has degree 2n (as we prove in Prop. 2). Also note that to count the number
of 2-walks originating from vc, we can count the total degree of the neighbours of vc. We
can observe that apart from the boundary (left and right) nodes, which have degree n+1,
the degrees of the neighbours of the vc are 2, 4, 6, . . . , n− 1 (and these are counted twice).
Summing up all these degrees we have

‖(An)2‖ = 2(n+ 1) +
n−1∑
k=1

2k

= 2(n+ 1) + 2 · 2 · n(n− 1)

2
= 2(n+ 1) + 2n(n− 1)

= 2n2 + 2

A.2. Coefficients. In section. 3.2.3 we defined a(n), b(n), c(n) and d(n) to be the total
number of 3-walks, 2-walks, 1-walks and 0-walks respectively. We state that

b(n) = 24 · 2n − 2n2 − 12n− 22

c(n) = 4 · 2n − 2

d(n) = 2n + 1.

Observe that the number of 0-walks, d(n), is the number of nodes, which is equal to
2n + 1. The number of 1-walks, c(n), is twice the number of edges, and is equal to
2(2n+1 − 1) = 4 · 2n − 2.

Reaching the formula for b(n) is a little trickier. First define I1n to be the n × n matrix
with zeros everywhere, except a 1 in the top right entry. Similarly define 1In to to be the
n× n matrix with zeros everywhere, except a 1 in the bottom left entry. Notice that

(A.1) An = A2
n−1 + I1n + 1In

where A2
n−1 is the adjacency matrix of F 2

n−1 = Fn−1 ⊕ Fn−1 as in Definition 4. The
quantity we wish to find is

∑
i,j(A

2
n−1)

2. We plot a visualisation of the matrix (A2
n−1)

2 in
Figure. A.1. The source of the top left and bottom right blocks (An−1)

2 should be clear
by studying the form of the matrix A2

n−1. A matrix C appears in the top right (with its
transpose in the bottom left), and has size 2n−1 × 2n−1. The origin of this matrix is not
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immediately clear, however it is the matrix obtained when the central row vector of A2
n−1

hits itself under squaring. The vector has sum 2n (recall the degree of the central vertex),
but only half of the vector hits itself when creating C, so we will only consider the first
2n−1 values of this central vector, and we will call it vc. Thus C is the matrix where the
nth row vector is vc if the nth value of vc is 1, and is zero otherwise (or rather, a vector
of zeros of length 2n−1), or equivalently

C = (vᵀc |vᵀc | · · · |vᵀc )︸ ︷︷ ︸
2n−1

.

The sum of vc is n, so we have that
∑

i,j C =
∑

i,j C
ᵀ = n2. Going back to Equation. A.1

we have

(An)2 = (A2
n−1 + I1n + 1In)2

= (A2
n−1)

2 + A2
n−1 · I1n + A2

n−1 · 1In + I1n ·A2
n−1

+ (I1n)2 + I1n · 1In + 1In ·A2
n−1 + 1In · I1n + (1In)2

Summing this quantity over i and j, the first term gives a contribution of twice that of
A2
n−1 (see Figure. A.1) and twice the sum of C. The terms involving A2

n−1 and either I1n
or 1In give us a contribution of n, as these vectors extract the top, bottom, left and right
row/column vectors of A2

n−1 and these have sum n (recall the degree of the left or right
boundary nodes is (n− 1) + 1 = n). The terms (I1n)2 and (1In)2 have sum 0 but the terms
I1n · 1In and 1In · I1n have sum 1 each. Putting this together we have∑

i,j

(An)2 = 2 ·
∑
i,j

(An−1)
2 + 2n2 + 4n+ 2

and writing
∑

i,j(An)2 = b(n) we have a recurrence relation

b(n) = 2 · b(n− 1) + 2n2 + 4n+ 2

We have that b(0) = 2, hence this can be solved and we get

b(n) = 24 · 2n − 2n2 − 12n− 22

completing the proof. Constructing a similar proof for the 3-walks a(n) could be possible
but we were not able to. However, we can guess that a(n) is of the form m · 2n + g(n)
where g(n) is a polynomial in n and m is an integer. Calculating a(n) directly for enough
values of n we can estimate the coefficients, and indeed we do find integer coefficients
with

a(n) = 160 · 2n − 4n3 − 30n2 − 104n− 158

We can extend this analysis by trying to create formulas for the 0, 1, 2, and 3-walks of
F k
n which we define as d(n, k), c(n, k), b(n, k) and a(n, k) respectively. We immediately

get d(n, k) and c(n, k) from the definitions. We can estimate the other two by proceeding
with the same method as for a(n) by guessing the general form of b(n, k) and a(n, k) to
be m · 2n + g(n) + k · h(n) where m is an integer and g(n) and h(n) are polynomials. The
new contribution of h(n) comes from adding k copies of a certain number of walks. This
yields

a(n, k) = (320 · 2n − 4n3 − 48n2 − 196n− 312) + (k − 2)(160 · 2n − 16n2 − 88n− 152)

b(n, k) = 24 · 2n − 2n2 − 12n− 22 + (k − 1)(24 · 2n − 8n− 20)

c(n, k) = 4k · 2n − 2k

d(n, k) = k · 2n + 1.
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Figure A.1. Diagram of the matrix representation of (F 2
n−1)

2 in terms of
the matrices An−1. The middle entry is the sum of the bottom right entry
and top left entry of (An−1)

2 (or equivalently twice the either entry as the
matrix is symmetric). An extra matrix C appears in the top right and
bottom left blocks, whose entries sum to n2, as explained in the text.
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