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Abstract. We give a q-enumeration of circular Dyck paths, which is a superset
of the classical Dyck paths enumerated by the Catalan numbers. These objects
have recently been studied by Alexandersson and Panova [AP18]. Furthermore,
we show that this q-analogue exhibits the cyclic sieving phenomenon under
a natural action of the cyclic group. The enumeration and cyclic sieving is
generalized to Möbius paths. We also discuss properties of a generalization of
cyclic sieving, which we call subset cyclic sieving. Finally, we also introduce the
notion of Lyndon-like cyclic sieving that concerns special recursive properties
of combinatorial objects exhibiting the cyclic sieving phenomenon.

Contents

1. Introduction 1

2. Enumeration of circular Dyck paths 6

3. A formula for the q-analogue for circular Dyck paths 10

4. The cyclic sieving phenomenon under shifting 15

5. The subset cyclic sieving phenomenon 19

6. Möbius action on binary words 21

7. Lyndon-like cyclic sieving 24

8. Homomesy under area shift 26

9. Further research directions 27

References 27

1. Introduction

Unit interval graphs are in bijection with Dyck paths, and enumerated by the
Catalan numbers, see e.g. [Sta15]. Recently, a natural generalization of these
graphs was considered in [AP18, Ell16] in the study of Stanley chromatic symmetric
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functions. This generalization leads to an extension of Dyck paths to circular Dyck
paths, see below for a precise definition.

The number of circular Dyck paths of size n is given by the formula

(n+ 2)
(

2n− 1
n− 1

)
− 22n−1, (1)

and they are in bijection with pairs of Dyck paths of size n with certain constraints,
see A194460 in [Slo16]. Such pairs of Dyck paths have been studied in a different
context, see [BM12], where it is mentioned that Christian Krattenthaler previously
has given a proof of Equation (1) “via a lengthy combinatorial computation” starting
from a recursion. Circular Dyck paths are described naturally by their area sequences,
which naturally extend the classical area sequences of Dyck paths, see e.g. [Hag07].

The main results of this paper are listed below.

• We prove a q-analogue of Equation (1) in Proposition 14. This also gives the first
combinatorial proof of the fact that the number of circular Dyck paths is given
by (1). In Section 3, we then generalize the q-analogue to circular Dyck paths
with width w, obtaining∑

s∈Z

w∑
j=1

qs
2(w+2)+s(j+1)

([
2n− 1

n− 1− (w + 2)s

]
q

−
[

2n− 1
n+ j + (w + 2)s

]
q

)
(2)

in Corollary 20. The q-analogue of Equation (1) is the case w = n.
• In Theorem 22, we prove that circular Dyck paths of width w together with (2)
exhibit the cyclic sieving phenomenon (CSP) under a cyclic shift of the area
sequence.

• In Section 5, we introduce and give a few examples of a phenomenon called subset
cyclic sieving, where the values of a polynomial f(q) at n:th roots of unity give
the number of elements in Y ⊆ X fixed under a cyclic group action on X, and
f(q) is equal to the cardinality of Y .

• In Section 6, we prove a similar q-formula and instance of the CSP for paths
embedded in a Möbius strip. In the process, we prove a new CSP instance for
binary words of length n under a twisted cyclic shift, with associated polynomial

n∑
k=0

q(
k
2)
[
n

k

]
q

.

• In Section 7, we focus on families of CSP instances of a special type, parametrized
by the size n of the cyclic group. We ask the associated polynomials to fulfill the
relation

fn/m(1) = fn(exp(2πi/m)) whenever m|n.
For example, this holds for the family of polynomials in (2) for each fixed w ≥ 1.
For natural reasons, we call such a sequence of CSP instances Lyndon-like, and
we provide several more examples of this type.

Finally, we acknowledge that the On-line Encyclopedia of Integer Sequences,
[Slo16], has been of great help in this project. This paper also benefited from
experimentation with Sage [Dev19] and its combinatorics features developed by the
Sage-Combinat community [com08].



THE CYCLIC SIEVING PHENOMENON ON CIRCULAR DYCK PATHS 3

1.1. Brief background on the cyclic sieving phenomenon. The cyclic sieving
phenomenon (CSP) was introduced in 2004 by Reiner, Stanton and White [RSW04].
It generalizes Stembridge’s q = 1 phenomenon [Ste94b, Ste94a, Ste96]. The definition
consists of three ingredients: a finite set X, a cyclic group Cn = 〈g〉 of order n
acting on X, and a polynomial f(q) with non-negative integer coefficients satisfying
f(1) = |X|, for example a generating function for X. Let ωn be a primitive n:th
root of unity, for example e 2πi

n , and, as usual, let [n] := {1, . . . , n}.

Definition 1. The triple (X,Cn, f(q)) exhibits the CSP if for every k ∈ [n],
[f(q)]q=ωkn = |{x ∈ X : gk · x = x}|,

that is, f(q) evaluated at the k:th power of a primitive n:th root of unity is the
number of fixed points of X under gk.

Reiner, Stanton and White also gave an alternative, equivalent definition of the
cyclic sieving phenomenon. The stabilizer-order of a C-orbit is the size of the
stabilizer group of the elements of the orbit.

Proposition 2 ([RSW04]). The triple (X,C, f(q)) exhibits the CSP if a` defined
by

f(q) ≡
n−1∑
`=0

a`q
` mod (qn − 1)

is the number of C-orbits on X for which the stabilizer-order divides `.

By now, there is a multitude of CSP results. Below are some examples. For
more, see for example the survey by Sagan [Sag11]. For the first one, we say that
g ∈ C with |g| = n acts freely on [N ] if all of its cycles are of length n. A slight
relaxation, we say that g acts nearly freely on [N ] if it either acts freely or if all of
its cycles have length n except for one singleton. The cyclic group C is said to act
(nearly) freely on [N ] if it has a generator acting (nearly) freely on [N ]. Finally,
recall that

([N ]
k

)
and

((
[N ]
k

))
denote the sets of k-subsets and k-multisubsets of [N ],

respectively.

Theorem 3 (Theorem 1.1, [RSW04]). Suppose C is a cyclic group acting nearly
freely on [N ]. Then(((

[N ]
k

))
, C,

[
N + k − 1

k

]
q

)
and

((
[N ]
k

)
, C,

[
N

k

]
q

)
exhibit the CSP.

Rhoades proved a CSP result for rectangular standard Young tableaux [Rho10].
For a more geometric version, for example in terms non-crossing matchings in the
two-row case, see the work by Petersen, Pylyavskyy and Rhoades [PPR08].

Theorem 4 (Theorem 1.3, [Rho10]). If λ = (nm), then
(SYT(λ), 〈∂〉, fλ(q))

exhibits the CSP, where SYT(λ) is the set of standard Young tableaux of the shape
λ, 〈∂〉 is the cyclic group generated by the jeu-de-taquin promotion operator, and
fλ(q) is the natural q-analogue of the hook-length formula.
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In the two-row case λ = (n, n), note that there is a bijection between SYT(λ)
and Dyck paths of size n. Small Schröder paths also exhibit the CSP, see [Pec14].

Another result specializing to lattice paths is the following. The major index of
a word w of length n is the sum of the indices i ∈ [n− 1] such that wi > wi+1. A
pair (i, j) is an inversion of w if i < j but wi > wj , and inv(w) is the number of
inversions in w.

Theorem 5 (A reformulation of Proposition 4.4, [RSW04]). Let Xn(µ) be the set
of words of length n and content µ, that is, each word has µi entries equal to i. Let
the cyclic group Cn act on X by cyclic shift, and let

fn(µ; q) :=
[
n

µ

]
q

=
∑

w∈Xn(µ)

qmaj(w) =
∑

w∈Xn(µ)

qinv(w).

Then (Xn, Cn, fn(µ; q)) exhibits the CSP.

In the case µ = (µ1, µ2) with µ1 + µ2 = n, Xn(µ) is in an obvious bijection with,
for example, lattice paths starting at (0, 0) and with steps from {(0, 1), (1, 0)}. See
[AS18] for a refinement of Theorem 5.

1.2. Background on q-analogues. In the previous examples we saw how q-
analogues appear in the context of the cyclic sieving phenomenon. We will also
encounter them in this paper and hence introduce them here. The starting point
is the definition [n]q := 1−qn

1−q = 1 + q + · · · + qn−1, which is motivated by the
observation

lim
q→1

1− qn

1− q = n.

Then it is natural to define the q-factorial

[n]q! := [1]q · [2]q · · · [n− 1]q · [n]q = 1− q
1− q ·

1− q2

1− q · · ·
1− qn−1

1− q · 1− qn

1− q
= 1 · (1 + q) · · · (1 + q + · · ·+ qn−2) · (1 + q + · · ·+ qn−1).

While n! counts the number of permutations on [n], it is well-known (see, for example,
[Sta11]) that [n]q! =

∑
σ∈Sn q

inv(σ)

Having defined q-factorials, the next natural step is to define q-binomial coeffi-
cients (also called Gaussian binomial coefficients, Gaussian coefficients and Gaussian
polynomials) by [

n

k

]
q

:= [n]q!
[n− k]q![k]q!

for 0 ≤ k ≤ n,

and letting
[
n
k

]
q

:= 0 otherwise. One combinatorial interpretation of the q-binomial
coefficient is that it counts the number of k-dimensional subspaces of the n-
dimensional vector space over the q-element field, see [Sta11] for the details.

Many identities for binomial coefficients have their counterparts for q-binomial
coefficients. For example, we have the symmetry[

n

k

]
q

=
[

n

n− k

]
q
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and the q-Pascal identities

[
n

k

]
q

= qk
[
n− 1
k

]
q

+
[
n− 1
k − 1

]
q

and
[
n

k

]
q

=
[
n− 1
k

]
q

+ qn−k
[
n− 1
k − 1

]
q

.

A useful tool for proving CSP results is the q-Lucas theorem below. We shall
make use of the following notation. Given a ∈ Z and d ∈ N, let {a}d denote the
remainder of a mod d, so that a = dba/dc+ {a}d.

Lemma 6 (See, for example, [Sag92]). We have that

[
n

k

]
q

≡
(
bn/dc
bk/dc

)[
{n}d
{k}d

]
q

mod Φd,

where Φd is the d:th cyclotomic polynomial.

In particular, Lemma 6 implies that with q a primitive d:th root of unity,

[
n

k

]
q

=
(
bn/dc
bk/dc

)[
{n}d
{k}d

]
q

,

a fact we use extensively in later sections.

The following two well-known results due to MacMahon are also related to our
work.

Lemma 7 (See Theorem 3.7 in [And76]). Let BW(k,m) denote the set of binary
words of length k +m with k 1s. Then

∑
b∈BW(k,m)

qmaj(b) =
[
k +m

k

]
q

.

Proposition 8 (See e.g. the lemma on p. 255 in [FH85]). The major index of
binary words corresponding to Dyck paths generates the classical Carlitz q-analogue
of the Catalan numbers:

∑
D∈DP(n)

qmaj(D) = 1
[n+ 1]q

[
2n
n

]
q

.

When evaluating the right hand side at e2πik/n, we obtain non-negative integers
which count fixed points under promotion. That action can be described either by
bijecting to 2× n SYT, or by considering 2π/n rotations of perfect matchings in
a 2n-gon. The special case of Theorem 4 mentioned in the previous section is a
refinement of this, using rotations of π/n instead.
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2. Enumeration of circular Dyck paths

A Dyck path may be described via its area sequence. For example, the path
(0, 1, 2, 3, 2, 2) corresponds to

6
5

4
3

2
1

(3)

where the area sequence specifies the number of white squares in each row, from
bottom to top. The number of Dyck paths of size n is given by the n:th Catalan
number, 1

n+1
(2n
n

)
.

A circular Dyck path of size n is specified via an area sequence such that a1, . . . , an
satisfy

• 0 ≤ ai ≤ n− 1 for 1 ≤ i ≤ n,
• ai+1 ≤ ai + 1 for 1 ≤ i ≤ n,

where the index is taken mod n in the second condition. This set is denoted CDP(n).
The subset of paths with a1 = 0 correspond to classical Dyck paths, DP(n). Circular
Dyck paths can also be illustrated as diagrams.

Example 9. For example, a = (3, 4, 2, 3, 2, 3) is illustrated as

1
3 6
2 5
3 4
2 3
4 2
3 1

where the top row is a repetition of the first row to illustrate the cyclic nature of
the graph.

It is often convenient to describe circular Dyck paths as paths along the border
of the white squares, see Figure 1. For this to be uniquely defined, one has to fix
a starting point x = (x0, 0), 1 ≤ x0 ≤ n. We denote such a path by (x,b), where
b = (b1, . . . , b2n) ∈ {0, 1}2n is a binary sequence with n 0s and 1s, respectively. Here
0 corresponds to a right step and 1 to an upstep, with b2n = 1, that is, the last step
is up.

The condition b2n = 1 is needed to make the starting point well defined. Note
that one may not have x0 = n+ 1, since the last step is up, it would mean passing
the illegal point (2n+ 1, n− 1).
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Figure 1. Example of the bijection with lattice paths, with n =
8. The path in the middle, starting at (6, 0) and with binary
word 0111010100100101, corresponds to the area sequence a =
(2, 3, 4, 4, 4, 3, 2, 2). The area sequence is determined by the number
of (whole) squares to the right of the path in each row. The two
dashed diagonals are never touched by a lattice path corresponding
to an area sequence.

We also study circular Dyck paths with a width different from the height, which
are defined in an analogous manner. A circular Dyck path of height n and width w
is specified via an area sequence such that a1, . . . , an satisfy

• 0 ≤ ai ≤ w − 1 for 1 ≤ i ≤ n,
• ai+1 ≤ ai + 1 for 1 ≤ i ≤ n,

where the index is taken mod n in the second condition. This set is denoted
CDP(n,w). Equivalently we can think of the elements in CDP(n,w) as (x, b), where
x = (x0, 0), 1 ≤ x0 ≤ w, is the starting point and b = (b1, . . . , bn+w) ∈ {0, 1}n+w

is a binary sequence with n 1s and w 0s such that the corresponding path stays
between the diagonals y = x and y = x− (w + 2), and bn+w = 1.

There is a natural Cn-action on CDP(n,w), where the generator shifts the area
sequence is cyclically by one step to the right. We let α denote such a cyclic shift.

2.1. Bijection with tuples of Dyck paths. There is a bijection between circular
Dyck paths and pairs of Dyck paths with certain peak conditions. Peaks in the path
P below are occurrences of east-steps followed by a north-step. The height of the
first peak of P is the number of east-steps before the first north-step. The height of
the last peak of P is the number of north-steps at the end of P . Exchanging north
and east-steps in these definitions gives the corresponding definitions for Q.

For a Dyck path Q, let hf (Q) and hlQ) be the heights of the first peak and the
last peak of Q.

Lemma 10 ([AP18, Lemma 5]). Circular Dyck paths of size n are in bijection with
pairs (P,Q) of ordinary Dyck paths of size n, such that

hf (P ) + hl(Q) ≥ n and hl(P ) + hf (Q) ≥ n.

The bijection in the previous lemma is illustrated in Figure 2.

Lemma 11. The set CDP(kn, n) is in bijection with (2k)-tuples of Dyck paths,
(P1, . . . , P2k), such that

hl(Pj) + hf (Pj+1) ≥ n, for 1 ≤ j < 2k and hl(P2k) + hf (P1) ≥ n.
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P

↘

↖ Q

Figure 2. The bijection with pairs of Dyck paths. The cir-
cular area sequence of the circular Dyck path in the figure is
(2, 3, 4, 4, 4, 3, 2, 2). The first and last peaks have been marked, and
arrows point the first peak in each path.

Proof. This follows from simply extending the idea in Lemma 10, as shown in
Figure 3. �

Figure 3. Here we have a path (dashed) from CDP(8, 4), which is
mapped to a 4-tuple of Dyck paths of size 4 (solid). The first peak
has been marked in each Dyck path.

2.2. Circular Möbius paths. It is natural to ask what happens if we have a single
Dyck path P of size n, such that (P, P ) satisfies the peak condition in Lemma 10.
It is straightforward to show that such Dyck paths are in bijection with (x,b) in
CDP(n) such that b = (b1, . . . , b2n) fulfills the relation

bi = 1− bn+i for all i ∈ [n]. (4)
Note that, in particular, bn = 0 as we always have b2n = 1. The starting point
x = (x0, 0) is uniquely determined by b since bn = 0 must correspond to an east
step that ends on the vertical line x = n + 1. From this it is easy to see that all
possible b correspond to exactly one path. We let CMP(n) ⊆ CDP(n) denote this
set, and refer to such paths as circular Möbius paths, see Figure 4 for an example.

Lemma 12. We have that |CMP(n)| = 2n−1.

Proof. As noted above the path in CMP(n) is determined uniquely by the first n−1
steps in b. �
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Figure 4. Two Möbius paths in CMP(8). Note that each path is
the concatenation of two smaller paths, the second part being a
reflection of the first. Hence the “Möbius” name.

2.3. A q-analogue. As mentioned, circular Dyck paths and NE-lattice paths in
general correspond to pairs (x,b) of a starting point x and a binary word b where
bi = 1 if the i:th step is a north step, and bi = 0 otherwise. For example, the path
in Figure 2 gives the word 0100100101011101.

The major index of a circular Dyck path a (corresponding to (x,b)) is defined
as the major index of the binary word b. Recall that the major index of a binary
word w of length n is the sum of all i ∈ [n− 1] such that wi > wi+1.

Define the following q-analogue of circular Dyck paths:

|CDP(n,w)|q :=
∑

(x,b)∈CDP(n,w)

qmaj(b). (5)

We end this section by proving a q-analogue of Equation (1) in the introduction,
that enumerates CDP(n). The proof mimics the ideas of [FH85, p. 255], In the
next section, we extend the method and do the same for CDP(n,w).

We begin the proof with a lemma generalizing q-ballot numbers.

Lemma 13. For any n ≥ 1, summing over all NE-paths b starting in (x, 0), ending
in (i, j), and never touching the x = y diagonal, and with i ≥ j, x ≥ 0, we get∑

b

qmaj(b) =
[
i+ j − x

j

]
q

− qx
[
i+ j − x
j − x

]
q

. (6)

Proof. We proceed by induction over x. For x = 0 it is clearly true since then there
are no paths. The maj-count of all NE-paths from (x, 0) to (i, j) is

[
i+j−x
j

]
q
, and

we will now count and subtract the paths that touch the diagonal x = y. The
idea for this proof comes from [FH85, p. 255], where they construct a major-index
preserving bijection between sets of lattice paths.

In this proof we define the depth of a path to measure how far beyond the
diagonal x = y the path goes, or, more formally, to be the largest value of s − r
for any point (r, s) on the path. We now define a bijection ϕ that maps a path b
ending in (i, j) with depth d ≥ 0 to a path ending in (i+ 1, j − 1) with depth d− 1.

Let (r, s) be the first point of maximal depth on the path. Since x > 0, (r, s) is
not the starting point. If it is the point directly after the starting point, we must
have r = s = 1. Otherwise, the last two steps reaching (r, s) are north steps. The
map ϕ is defined by switching the north step just before (r, s) to an east step, that
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is, relabeling br+s−x from 1 to 0. In ϕ(b) the position (r, s− 1) will then be the last
point of maximal depth and it is thus easy to find it and define ϕ−1. The corner in
position (r, s) has been replaced with a corner in (r, s− 1), unless r = s = 1. In any
case, maj(b) = maj(ϕ(b)) + 1. Thus ϕ is a bijection between the paths from (x, 0)
to (i, j) that touch the diagonal x = y and paths from (x, 0) to (i+ 1, j − 1) that
touch the diagonal x = y + 1, with a shift of q1. By induction, the maj-count of
paths from (x, 0) to (i+ 1, j − 1) that do not touch the diagonal x = y + 1 is[

i+ j − 1− (x− 1)
j − 1

]
q

− qx−1
[
i+ j − 1− (x− 1)
j − 1− (x− 1)

]
q

,

and thus the maj-count of those touching the diagonal x = y + 1 is

qx−1
[
i+ j − 1− (x− 1)
j − 1− (x− 1)

]
q

= qx−1
[
i+ j − x
j − x

]
q

.

Using ϕ we thus get that the maj-count of the paths from (x, 0) to (i, j) that touch
the diagonal x = y is qx

[
i+j−x
j−x

]
q
, which gives the formula claimed in the lemma. �

Proposition 14. For any n ≥ 1,

|CDP(n)|q = n

[
2n− 1
n− 1

]
q

−
n∑
j=1

qj
[
2n− 1
n+ j

]
q

−
n∑
j=1

[
2n− 1
j − 2

]
q

. (7)

Proof. For each possible starting point (x, 0), 1 ≤ x ≤ n the maj-count of all paths
to (x+ n, n− 1) (remember that the last step of b is a north step) is

[2n−1
n−1

]
q
. This

gives the first term. We will now subtract the paths that touches the surrounding
diagonals. Note that no path can touch both diagonals. By Lemma 13 the maj-count
of paths touching the diagonal x = y is

∑n−1
x=1 q

j
[ 2n−1
n−1−x

]
q
, which gives the first sum.

For paths touching the diagonal x = y + n+ 2 we can use the bijection defined
dually to ϕ in the proof of Lemma 13. That is, we change an east step to a north
step for the first corner being diagonally furthest to the right. This time there
clearly is no shift in the maj of the path and we get the second sum. �

3. A formula for the q-analogue for circular Dyck paths

The goal of this section is to express |CDP(n,w)|q as a sum of q-binomial
coefficients. To achieve this, we need to consider the major index generating
function for arbitrary north-east lattice paths starting at the origin with some
constraints which will be used in an inclusion-exclusion argument.

A diagonal is a set of lattice points of the form {x + k(1, 1) : k ∈ Z} for some
x ∈ Z2. It is clear that a diagonal is uniquely specified by any point on the diagonal.
For a lattice point y in the non-negative quadrant, let

H(y; d1, d2, . . . , d`), di ∈ Z (8)
denote the q-enumeration (using major index) of north-east lattice paths L from
(0, 0) to y, such that L includes points from each of the ` diagonals specified by the
points

di(1, 0) i = 1, 2, . . . , `,
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in this order. In other words, there must be points p1, . . . , p` on L visited in this
order, such that pi is on the diagonal specified by di. Note that by definition

H(y; 0, d1, d2, . . . , d`) = H(y; d1, d2, . . . , d`)
since the starting point (0, 0) is on the diagonal specified by 0. Abusing notation,
we henceforth let the diagonal di be the unique diagonal specified by di.

We say that the configuration (y; d1, . . . , d`) is alternating if any of the four
conditions below is fulfilled:

(1) 0 ≥ d1 < d2 > d3 < d4 > · · · > d` and y is to the right of diagonal d`,
(2) 0 ≥ d1 < d2 > d3 < d4 > · · · < d` and y is to the left of diagonal d`,
(3) 0 ≤ d1 > d2 < d3 > d4 < · · · < d` and y is to the left of diagonal d` or
(4) 0 ≤ d1 > d2 < d3 > d4 < · · · > d` and y is to the right of diagonal d`.

By convention, if ` = 0, the configuration is considered to be alternating as well.
Note that H(y; d1) = H(y) if (0, 0) and y are on different sides of d1. Note also
more generally that given a non-alternating subsequence dk > dk+1 > dk+2 or
dk < dk+1 < dk+2 of diagonals, H(y; d) = H(y; d′) where d′ denotes d with dk+1
removed.

Let nw denote the vector (−1, 1) and recall that we identify east steps with 0
and north steps with 1.
Lemma 15. Suppose that (y; d1, . . . , d`) is alternating and ` ≥ 1. Then the gener-
ating function H(y; d1, . . . , d`) is equal to{

H(y− nw; d1 + 1, d2 + 2, d3 + 2, . . . , d` + 2)× q if d1 < 0
H(y + nw; d1 − 1, d2 − 2, d3 − 2, . . . , d` − 2) otherwise.

(9)

Furthermore, both new configurations above are alternating as well.

Proof. The proof uses a similar map as the proof of Lemma 13. We have two
different cases to consider: d1 < 0 and d1 > 0. Let us start with the former. In all
cases, we let (r, s) be the first point maximizing the depth sgn(d1)(x − y) among
points (x, y) ∈ L before L meets the diagonal d2. In other words, (r, s) is the first
point furthest away from d1 on the side opposite of (0, 0), or on d1 if L does not
cross d1.

Case d1 < 0: Suppose L is a path counted by H(y; d1, . . . , d`). A north step 1
has to precede (r, s), while an east step 0 has to follow it.

Let φ be the map replacing the north-step 1 preceding (r, s) with an east-step.
Note that φ is similar to ϕ in the proof of Lemma 13 but now only the points of L
before it meets d2 are considered.

Now, maj(φ(L)) = maj(L)− 1, the new endpoint is given by y− nw and φ(L)
hits the shifted diagonals d1 + 1, d2 + 2, d3 + 2, . . . , d` + 2, see Figure 5.

It is evident that φ is invertible. The inverse is given by replacing the east step
0 following the last deepest point (that is, maximizing y − x) after touching the
diagonal d1 + 1 and before the diagonal d2 + 2 with a north step 1.

Case d1 > 0: In this case, construct a bijection ψ by replacing the east-step 0
preceding (r, s) with a north-step 1.



12 PER ALEXANDERSSON, SVANTE LINUSSON, AND SAMU POTKA

y

y′

1
0

d2d1 d′
2

Figure 5. The φ map. In the figure, d1 = −2 and d2 = 1. The
path L is shown as a solid line and φ(L) is dashed. We have the
new endpoint y′ = y − nw and the shifted diagonal d′2 = 3. Note
that L touches d2 in the same manner as φ(L) touches d′2.

Note that this does not affect the major index and that ψ(L) ends at y + nw.
Furthermore, ψ(L) intersects all diagonals d1 − 1 as well as d2 − 2, d3 − 2, and so
on. As before, it is straightforward to show that ψ has an inverse. This proves the
second case of (9). �

Corollary 16. If (y; d1, . . . , d`) is alternating, then H(y; d1, . . . , d`) is equal to

H(y + d1nw; d2 − 2d1, d3 − 2d1, . . . , d` − 2d1)×
{
q−d1 if d1 < 0
1 otherwise.

(10)

Proof. Apply Lemma 15 repeatedly. �

We shall now focus on generating functions of lattice paths that touch two
diagonals at least ` times in an alternating fashion. Let 〈a, b〉` denote the alternating
list (a, b, a, b, . . . ) of length `.

Corollary 17. Suppose δ > γ > 0. Then for all j = 0, . . . , b`/2c, we have the
identities

H(y; 〈γ, γ − δ〉`) = qj
2δ+jγH(y− jδnw; 〈γ + 2jδ, γ − δ + 2jδ〉`−2j)

and
H(y; 〈γ − δ, γ〉`) = qj

2δ−jγH(y + jδnw; 〈γ − δ − 2jδ, γ − 2jδ〉`−2j)

Proof. The first identity is proved by applying the recursion in (10) two times, and
using induction over j. The first application on the expression

H(y− jδnw; 〈γ + 2jδ, γ − δ + 2jδ〉`−2j)
gives

H(y− (jδ + γ + 2jδ)nw; 〈−γ − δ − 2jδ,−γ − 2jδ〉`−2j−1).
The second application of the recursion gives

= qγ+δ+2jδH(y− (jδ + δ)nw; 〈γ + 2δ + 2jδ, γ + δ + 2jδ〉`−2j−2).
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Finally, we observe that
(j2δ + jγ) + (γ + δ + 2jδ) = (j + 1)2δ + (j + 1)γ,

so the result now follows via induction over j. The second identity is proved in a
similar fashion. �

Lemma 18. Suppose δ > γ > 0 and y = (n, n− 1). We then have the identities

H(y; 〈γ, γ − δ〉2`) = q`
2δ+`γ

[
2n− 1

n− 1 + δ`

]
q

, ` ≥ 0 (11)

H(y; 〈γ, γ − δ〉2`+1) = q`
2δ+`γ

[
2n− 1

n− 1 + γ + δ`

]
q

, ` ≥ 0, (12)

H(y; 〈γ − δ, γ〉2`) = q`
2δ−`γ

[
2n− 1

n− 1− δ`

]
q

, ` ≥ 0, (13)

H(y; 〈γ − δ, γ〉2`−1) = q`
2δ−`γ

[
2n− 1

n− 1 + γ − δ`

]
q

, ` ≥ 1. (14)

Proof. Note that in all cases, we deal with north-east lattice paths of length 2n− 1
with exactly n east-steps, which we interpret as binary words of length 2n− 1 with
exactly n zeros. From this observation, it is straightforward to see that Corollary 17
together with Lemma 7 implies the first and third identity.

To prove (12), note that Corollary 17 and (9) gives

H(y; 〈γ, γ − δ〉2`+1) = q`
2δ+`γH(y− (`δ)nw; 〈γ + 2`δ〉1)

= q`
2δ+`γH(y + (γ + `δ)nw; 〈·〉0)

= q`
2δ+`γ

[
2n− 1

(n− 1)− (γ + `δ)

]
q

.

Finally, the last identity follows from the fact that
H(y; 〈γ − δ, γ〉2`−1)

= q(`−1)2δ−γ(`−1)H(y + (−δ + `δ)nw; 〈γ − δ − 2(`− 1)δ〉1)

= q(`−1)2δ−γ(`−1)−γ+δ+2(`−1)δH(y + (−δ + `δ + γ − δ − 2`δ + 2δ)nw; 〈·〉0)

= q`
2δ−γ`H(y + (γ − `δ)nw; 〈·〉0)

= q`
2δ−γ`

[
2n− 1

n− 1 + γ − `δ

]
q

.

This finishes the proof of the identities. �

Definition 19. Fix an integer w ≥ 0 and j ∈ {1, . . . , w} and let the diagonals
through (0, 0) and (w + 2, 0) be referred to as the left and the right diagonal,
respectively.

Let Lj(n,w, `) be the q-enumeration of north-east paths L from
(w + 1− j, 0) to (n+ w + 1− j, n− 1) (15)

with the property that there are ` points on the path L, p1, p2, . . . , p`, appearing in
this order from the start, such that the odd-indexed pi lie on the left diagonal, and
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the even-indexed pi are points on the right diagonal. Similarly, define Rj(n,w, `) be
the be the q-enumeration of north-east paths in (15), such that there are ` points
p1, p2, . . . , p` on the path with the even-indexed pi being on the left diagonal, and
the odd-indexed pi being points on the right diagonal.

Let δ := w + 2 and y = (n, n− 1). From Definition 19, it is straightforward to
see that the generating functions Lj(n,w, `) and Rj(n,w, `) are equal to generating
functions in Lemma 18. Unraveling the definitions, we have that

Lj(n,w, 2`) = H(y; 〈j + 1− δ, j + 1〉2`) = q`
2δ−`(j+1)

[
2n− 1

n− 1− δ`

]
q

Lj(n,w, 2`+ 1) = H(y; 〈j + 1− δ, j + 1〉2`+1) = q`
2δ−`(j+1)

[
2n− 1

n+ j − δ`

]
q

Rj(n,w, 2`) = H(y; 〈j + 1, j + 1− δ〉2`) = q`
2δ+`(j+1)

[
2n− 1

n− 1 + δ`

]
q

Rj(n,w, 2`− 1) = H(y; 〈j + 1, j + 1− δ〉2`−1) = q`
2δ+`(j+1)

[
2n− 1

n+ j + δ`

]
q

.

Corollary 20. We have the q-enumeration

|CDP(n,w)|q =
∑
s∈Z

w∑
j=1

qs
2δ+s(j+1)

([
2n− 1

n− 1− δs

]
q

−
[

2n− 1
n+ j + δs

]
q

)
, (16)

where δ = w + 2. In particular, when w ≥ n, we have

|CDP(n,w)|q = w

[
2n− 1
n− 1

]
q

−
w∑
j=1

qj
[
2n− 1
n+ j

]
q

−
w∑
j=1

[
2n− 1

n+ j − (w + 2)

]
q

. (17)

Proof. We have that CDP(n,w) are certain north-east lattice paths avoiding the
two diagonals through (0, 0) and (δ, 0). To find the maj-count of these paths, we
use an inclusion-exclusion argument. Not taking the restrictions imposed by the
diagonals into account, the maj-count is given by

w∑
j=1

[
2n− 1
n− 1

]
q

= w

[
2n− 1
n− 1

]
q

.

The paths counted by Lj(n,w, 1) and Rj(n,w, 1) for j ∈ [w] enumerate all forbidden
paths. However, we cannot simply subtract both these as there are paths counted by
both these expressions, namely Lj(n,w, 2) and Rj(n,w, 2), and so on. Combining
Definition 19 and the enumeration in Lemma 18 then gives the expression in
Equation (16).

Note that in particular, Lj(n,w, 2) = Rj(n,w, 2) = 0 whenever w ≥ 0 (since a
path cannot hit both forbidden diagonals in this case) so we get the less complicated
expression in (17). Letting w = n in (17) gives (7). �
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Lemma 21. We have the identity

|CDP(n,w)| = (w + 2)
∑
t∈Z

(
2n− 1

n+ (w + 2)t

)
−
∑
t∈Z

(
2n− 1
n+ t

)
(18)

= (w + 2)
∑
t∈Z

(
2n− 1

n+ (w + 2)t

)
− 22n−1. (19)

Proof. This is straightforward consequence of (16), by letting q = 1 and then adding
and subtracting the case j = 0 and j = w + 1 to the inner sum. �

We note that the q = 1 case of (16) follows easily from [Moh79, Thm. 2], where
the proof is also done via a reflection argument together with inclusion-exclusion.
However, his approach is not compatible with our use of major index.

4. The cyclic sieving phenomenon under shifting

This section contains the proof of our main result, Theorem 22 stated below.

Theorem 22. Let α act on CDP(n,w) by cyclically shifting the area sequence one
step. Then the triple

(CDP(n,w), 〈α〉, |CDP(n,w)|q)
is a CSP-triple.

The proof consists of first counting the number of fixed points under cyclic shift
by k steps, which is done in Lemma 23. Then, in Proposition 25, we show that the
q-analogue |CDP(n,w)|q evaluates to it at q = e2πik/n.

Let CDPk(n,w) be the subset of area sequences in CDP(n,w) that is fixed by a
cyclic shift of k steps.

Lemma 23. For n ≥ k ≥ 1, let d := gcd(n, k), then

|CDPk(n,w)| = |CDP(d,w)|. (20)

Proof. This is easy to prove. �

Let δ := w + 2. We have that |CDP(n,w)|q is equal to∑
s∈Z

w∑
j=1

qs
2δ+s(j+1)

([
2n− 1
n+ δs

]
q

−
[

2n− 1
n+ j + δs

]
q

)
.

We need to evaluate this at powers of exp(2πi/n). All such powers are of the form
exp(2πi`/m), where m|n and gcd(`,m) = 1. The goal is to show that if n = md,
then

|CDP(n,w)|q=exp(2πi`/m) = |CDP(d,w)|.
This identity is trivial whenever m = 1, so we assume that m ≥ 2. Let {d}m
denote the (non-negative) remainder of d when divided by m. The q-Lucas theorem
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implies that whenever q = exp(2πi`/m) for n = md, gcd(`,m) = 1, we have that
|CDP(n,w)|q is equal to

∑
s∈Z

w∑
j=1

qs
2δ+s(j+1)

((
2d− 1
d+ b δsm c

)[
m− 1
{δs}m

]
q

−
(

2d− 1
d+ b δs+j

d c

)[
m− 1
{j + δs}m

]
q

)
. (21)

Introduce

A(s, j) = qs
2δ+s(j+1)

(
2d− 1
d+ b δsm c

)[
m− 1
{δs}m

]
q

(22)

B(s, j) = −qs
2δ+s(j+1)

(
2d− 1

d+ b δs+j
m c

)[
m− 1
{j + δs}m

]
q

(23)

which also implicitly depend on δ and m.

The following lemma is needed for the proof of Proposition 25.

Lemma 24. We have the following identities:

(I) A(s, j) = −A(−s, w − j), for j 6= w, δs 6≡m 0.
(II) B(s, j) = −B(−s− 1, w − j), for j 6= w, j + 1 + δs 6≡m 0.
(III) A(s, w) = −B(s− 1, w) for δs 6≡m 0, 1.
(IV) B(s− 1, w) +

∑w
j=1 A(−s, j) = −

( 2d−1
d+ δs

m−1
)
whenever δs ≡m 0 and s 6≡m 0.

(V) A(s, j) =
(2d−1
d+ δs

m

)
whenever s ≡m 0.

(VI) A(s, w) = −
( 2d−1
d+ δs−1

m

)
whenever δs ≡m 1.

(VII) B(s, j) = −
( 2d−1
d+ δs+j+1

m −1
)
whenever j + 1 + δs ≡m 0 and j < w.

(VIII) B(s− 1, w) =
( 2d−1
d+ δs

m−1
)
whenever s ≡m 0.

(IX) B(s− 1, w) = −
( 2d−1
d+ δs−1

m −1
)
whenever δs ≡m 1.

Furthermore, over all combinations of s ∈ Z and j = 1, 2, . . . , w, the above cases
covers each term in Equation (21) exactly once.

Proof. Case I: For q = exp(2πi`/m), we want to show A(s, j) = −A(−s, w − j),
whenever 1 ≤ j < w and δs 6≡m 0. We must prove that

qs
2δ+s(j+1)

(
2d− 1

d+ bδs/mc

)[
m− 1
{δs}m

]
q

= −qs
2δ−s(w−j+1)

(
2d− 1

d+ b−δs/mc

)[
m− 1
{−δs}m

]
q

.

Let us first assume that s > 0 and let r := (δs mod m), so that 0 < r < m. We
must show that

qsδ
(

2d− 1
d+ bδs/mc

)[
m− 1
r

]
q

= −
(

2d− 1
d− 1− bδs/mc

)[
m− 1
m− r

]
q

qr
(

2d− 1
d+ bδs/mc

)
1− qm−r

1− qm

[
m

r

]
q

= −
(

2d− 1
d+ bδs/mc

)
1− qm−(m−r)

1− qm

[
m

m− r

]
q

qr(1− qm−r) = qr − 1

which is true. The case s < 0 is treated in a similar manner.
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Case II: For q = exp(2πi`/m), we want to show B(s, j) = −B(−s− 1, w − j),
whenever 1 ≤ j < w and j + δs+ 1 6≡m 0. We must prove that

qs
2δ+s(j+1)

(
2d− 1

d+ b j+δsm c

)[
m− 1
{δs}m

]
q

=− q(−s−1)2δ+(−s−1)(w−j+1)
(

2d− 1
d+ bw−j+δ(−s−1)

m c

)[
m− 1

{w − j + δ(−s− 1)}m

]
q

=− qs(j+δs+1)+j+δs+1
(

2d− 1
d+ b−2−j−δs

m c

)[
m− 1

{−2− j − δs}m

]
q

=− qs(j+δs+1)+j+δs+1
(

2d− 1
d− 1− b j+δsm c

)[
m− 1

{−2− j − δs}m

]
q

.

Now, let j + δs ≡m r, 0 < r < m. Then, we need to show

qs(r+1)
(

2d− 1
d+ b j+δsm c

)[
m− 1
r

]
q

=− qs(r+1)+r+1
(

2d− 1
d− 1− b j+δsm c

)[
m− 1
r + 1

]
q

.

This follows from that

qr+1
[
m− 1
r + 1

]
q

= qr+1
[
m− 1
r

]
q

1− qm−r−1

1− qr+1 = qr+1
[
m− 1
r

]
q

1
qr+1

qr+1 − 1
1− qr+1 = −

[
m− 1
r

]
q

.

Case III: Let r ≡m δ(s+1) with 0 ≤ r < m. We want to prove that A(s+1, w) =
−B(s, w) under the condition that r /∈ {0, 1}, which implies that s 6= −1.

This amounts to proving

q(s+1)2δ+(s+1)(δ−1)
(

2d− 1
d+ bδ(s+ 1)/mc

)[
m− 1

{δ(s+ 1)}m

]
q

=

qs
2δ+s(δ−1)

(
2d− 1

d+ b(δ(s+ 1)− 2)/mc

)[
m− 1

{δ(s+ 1)− 2}m

]
q

Since the binomials are equal under our conditions, it is enough to show that

q2r
[
m− 1
r

]
q

= q

[
m− 1
r − 2

]
q

q2r [m− r]q
[r]q

[
m− 1
r − 1

]
q

= q
[r − 1]q

[m− r + 1]q

[
m− 1
r − 1

]
q

q2r 1− q−r

1− qr = q
1− qr−1

1− q1−r

and it is easy to verify that these are equal.

Case IV: We need to prove that

B(s− 1, w) +
∑

1≤j≤w
A(−s, j) = −

(
2d− 1

d+ δs
m − 1

)
,
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whenever δs ≡m 0, s 6≡m 0 and q = exp(2πi`/m). Note that m ≥ 2 in this case.
Inserting the definitions, we need to evaluate

− q(s−1)2δ+(s−1)(w+1)
(

2d− 1
d+ b(w + δ(s− 1))/mc

)[
m− 1

{w + δ(s− 1)}m

]
q

+ w∑
j=1

qs
2δ−s(j+1)

( 2d− 1
d+ b−δs/mc

)[
m− 1
{−δs}m

]
q

Some simplification gives that this is equal to

−q1−s
(

2d− 1
d+ b(δs− 2)/mc

)[
m− 1
{δs− 2}m

]
q

+ q−s

 w∑
j=1

q−sj

( 2d− 1
d+ δs

m − 1

)
which becomes

−q1−s
(

2d− 1
d+ δs

m − 1

)[
m− 1
m− 2

]
q

+ q−s

 w∑
j=1

q−sj

( 2d− 1
d+ δs

m − 1

)
.

Thus, it suffices to verify thatδ−2∑
j=1

q−sj

− q[m− 1
m− 2

]
q

= −qs,

which is straightforward.

Case V–IX: These are straightforward to prove.

�

Proposition 25. Whenever md = n, m ≥ 2 and gcd(`,m) = 1, we have that
|CDP(n,w)|q evaluated at q = exp(2πi`/m) is equal to |CDP(d,w)|.

Proof. In Lemma 24, the first three cases cancel, so we know that |CDP(n,w)|q
evaluated at the root of unity is equal to the sum of the six remaining cases. After
reordering, the sum of the cases is given by the expression

w
∑
s∈Z
s≡m0

(
2d− 1
d+ δs

m

)
−
∑
s∈Z

δs≡m0
s6≡m0

(
2d− 1

d+ δs
m − 1

)
+
∑
s∈Z
s≡m0

(
2d− 1

d+ δs
m − 1

)
(24)

−
∑
s∈Z

δs≡m1

(
2d− 1

d+ δs−1
m − 1

)
−
w−1∑
j=1

∑
s∈Z

j+1+δs≡m0

(
2d− 1

d+ δs+j+1
m − 1

)
−
∑
s∈Z

δs≡m1

(
2d− 1
d+ δs−1

m

)
.

We note that∑
s∈Z

δs≡m1

(
2d− 1
d+ δs−1

m

)
=
∑
s∈Z

δs≡m1

(
2d− 1

d+ δ(−s)+1
m − 1

)
=

∑
s∈Z

δs+1≡m0

(
2d− 1

d+ δs+1
m − 1

)
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so we can merge the fifth and sixth sum in (24), and shift the index in the fourth
sum. Furthermore, the second and third sum can be rewritten, by adding and
subtracting the third sum. We get

w
∑
s∈Z
s≡m0

(
2d− 1
d+ δs

m

)
+ 2

∑
s∈Z
s≡m0

(
2d− 1

d+ δs
m − 1

)
−
∑
s∈Z

δs≡m0

(
2d− 1

d+ δs
m − 1

)
(25)

−
∑
s∈Z

δ−1+δs≡m0

(
2d− 1

d+ δ(s+1)−1
m

)
−
w−1∑
j=0

∑
s∈Z

j+1+δs≡m0

(
2d− 1

d+ δs+j+1
m − 1

)
.

The last three terms can be merged, and we do some further simplifications:

w
∑
t∈Z

(
2d− 1
d+ δt

)
+ 2

∑
t∈Z

(
2d− 1
d+ δt

)
−
w+1∑
j=0

∑
s∈Z

j+1+δs≡m0

(
2d− 1

d+ δs+j+1
m − 1

)
. (26)

Finally, we note that
w+1∑
j=0

∑
s∈Z

j+1+δs≡m0

(
2d− 1

d+ δs+j+1
m − 1

)
=
∑
r∈Z

(
2d− 1
d+ r

)

and thus we have equality with (18) in Lemma 21. �

5. The subset cyclic sieving phenomenon

Recall that CDP(n,w) is a family of lattice paths L of length 2n, ending with
a north step. Note that such a lattice path L is in CDPk(n,w) if and only if the
binary word of L is invariant under cyclic shift by 2k steps. However, the action of
shifting the area sequence k steps and shifting the underlying binary word 2k steps
are not equivalent — the family CDP(n,w) is not closed under such a shifting of
the binary word. This curious observation leads us to make the following definition.

Definition 26. Let Y ⊆ X be a set of combinatorial objects and Cn = 〈g〉 be a
cyclic group acting on X. Let f(q) ∈ Z[q] with non-negative coefficients, such that
f(1) = |Y |. Then (Y ⊂ X,Cn, f(q)) is a subset cyclic sieving phenomenon if for
every k ∈ [n] we have

f(ωkn) = |{y ∈ Y : gk · y = y}|.

We shall need the following theorem from [AA18, Thm. 2.7].

Theorem 27. Let f(q) ∈ Z[q] take non-negative integer values at all nth roots of
unity, and let X be a set of cardinality f(1). Define

Sk :=
∑
j|k

µ(k/j)f(ωjn) whenever k|n.

If Sk ≥ 0 for all k, then there is a cyclic group action Cn acting on X, such that
(X,Cn, f(q)) is a CSP-triple.

Note that the integers Sk are exactly the number of elements in X which are in
a Cn-orbit of size k.
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Proposition 28. If (Y ⊂ X,Cn, f(q)) is a subset-CSP, then there is a group action
Ĉn on Y such that (Y, Ĉn, f(q)) is a CSP-triple.

Proof. Let
Sk :=

∑
j|k

µ(k/j)f(ωjn).

Then Sk is the number of elements inX in a Cn-orbit of size k, so Sk ≥ 0 for all k ≥ 1.
The fact that a group action Ĉn exists on Y now follows from Theorem 27. �

5.1. Lattice paths with subset CSP. We shall now provide an instance of a
subset CSP, on a family of lattice paths.

Let AVL(n,w) be the set of lattice paths from (0, 0) to (n, n) that never touch
the diagonals ±w.

Proposition 29. The maj-count of AVL(n,w) is given by

|AVL(n,w)|q =
∑
s∈Z

q2s2w+sw

([
2n

n+ 2sw

]
q

−
[

2n
n+ w + 2sw

]
q

)
.

Proof. The proof is analogous to the inclusion-exclusion argument in Corollary 20.
�

We can now provide an example of a subset-CSP on the set AVL(n,w). Notice
that AVL(n,w) is a subset of AVL(n, n+ 1) — the set of all lattice paths from (0, 0)
to (n, n).

Theorem 30. Let n,w ≥ 1 such that gcd(n,w) = 1. Let Cn act on AVL(n,w) by
letting the generator β shift the binary word associated with the path two steps. Then

(AVL(n,w) ⊂ AVL(n, n+ 1), 〈β〉, |AVL(n,w)|q)

is a subset-CSP-triple.

Proof. We need to evaluate |AVL(n,w)|q at nth roots of unity. Let q = exp(2πi`/m),
where m|n and gcd(`,m) = 1, so that q is a primitive m:th root of unity. Note that
it follows that gcd(w,m) = 1 as well and we introduce d = n/m. Our goal is to
show that |AVL(n,w)|q evaluates to the number of paths in AVL(n,w) fixed under
a shift of 2d steps. It is clear that such paths are in bijection with AVL(d,w). There
are two cases to consider.

Case m even. Using the q-Lucas theorem, Lemma 6, we have that∑
s∈Z

q2s2w+sw
[

2n
n+ 2sw

]
q

=
∑
s∈Z

e
2πi`ws(2s+1)

m

(
2d

d+ b2sw/mc

)[
0

{2sw}m

]
q

. (27)

Notice that the q-binomial is 0 unless m divides 2s. Hence, by letting t := 2s/m,
we can rewrite the sum as∑
t∈Z

eπi`wt(tm+1)
(

2d
d+ tw

)
=
∑
t∈Z

eπit
(

2d
d+ tw

)
=
∑
t∈Z

(
2d

d+ 2tw

)
−
∑
t∈Z

(
2d

d+ w + 2tw

)
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since `, w and tm+ 1 are all odd if m is even. In a similar fashion,∑
s∈Z

q2s2w+sw
[

2n
n+ w + 2sw

]
q

=
∑
s∈Z

e
2πi`ws(2s+1)

m

(
2d

d+ bw(2s+ 1)/mc

)[
0

{w(2s+ 1)}m

]
q

,

(28)

but the last term is always zero, since m does not divide w(2s+ 1)

Case m odd. We consider (27), and see that the q-binomial expression vanish
unless s is it is a multiple of m. We let t = s/m and obtain∑

s∈Z

(
2d

d+ 2tw

)
.

For the other term in (28), 2s+ 1 must be an odd multiple of m in order for the
q-binomial to be non-zero. Thus, t = (2s+ 1)/m is an integer and the expression
simplifies to ∑

s∈Z

(
2d

d+ w + 2tw

)
.

In conclusion, in both above cases, |AVL(n,w)|q evaluates to the expression we have
for |AVL(d,w)|. �

Problem 31. Find a natural cyclic action Ĉn on AVL(n,w) that makes

(AVL(n,w), Ĉn, |AVL(n,w)|q)
into a CSP-triple.

6. Möbius action on binary words

6.1. A new cyclic sieving on binary words. Let BW(n) denote the set of binary
words of length n, and define an action η on BW(n) as

η : (b1, b2, . . . , bn) 7→ (b̂n−1, b̂n, b1, b2, . . . , bn−2)

where b̂i := 1− bi. Note that the shift is indeed two steps, and that η◦n(b) = b for
all words b of length n. For example,

η(101) = 0̂1̂1 = 101, η(110010) = 011100.

We extend the notation so that b̂ := (b̂1, . . . , b̂n).

Lemma 32. The number of words in BW(n) fixed under η◦m is given by 2d if nd is
odd and 0 otherwise, where d = gcd(m,n).

Proof. Because η generates a cyclic group of order n, the number of words fixed by
η◦m is the same as the number of words fixed by η◦d. Therefore it suffices to show
that if n = kd, then η◦d fixes 2d elements if k is odd, and 0 elements otherwise.

Let b ∈ BW(n) and partition b into k contiguous blocks of length d. Note that
η◦d maps block i onto block i+ 2 (mod k). Suppose now b is fixed under η◦d and
consider the following cases.

Case k even. We have that blocks 1, 3, 5, . . . , k − 1 must all be equal. However,
block k − 1 and block 1 must also be different, as η◦d not only shift bits 2d steps



22 PER ALEXANDERSSON, SVANTE LINUSSON, AND SAMU POTKA

to the right, but also flips all bits that wrap around. This is impossible, so there
cannot be any fixed words in this case.

Case k odd. A similar argument as above shows that all odd-indexed blocks
are equal, all even-indexed blocks are equal, and an even block is given by flipping
all bits in an odd block. Hence, the entire word is determined by the first block.
There are 2d such possibilities, as there are d bits in a block.

�

Lemma 33. For fixed n, all the expressions

(A)
n∑
k=0

q(
k
2)
[
n

k

]
q

(B)
n−1∏
j=0

(1 + qj) (C)
∑

b∈BW(n)

qmaj(b)+maj(b̂) (29)

are equal.

Proof. Identity (A) = (B). This is simply a consequence of the q-binomial theorem,
(see [KC01, p. 14])

n−1∏
j=0

(1 + xqk) =
n∑
k=0

q(
k
2)
[
n

k

]
q

xk.

Identity (B) = (C). We do induction over n. The base case n = 1 is easy. Now
assume that the identity hold for n− 1. Consider a binary word b of length n− 1.
We can either append 0 or 1 to make a word b′ of length n. If the last bit of b is
equal to the appended bit,

maj(b) + maj(b̂) = maj(b′) + maj(b̂′),
otherwise, the right hand side larger by n. �

Proposition 34. Let η act on the binary words BW(n) as before. Then(
BW(n), 〈η〉,

n∑
k=0

q(
k
2)
[
n

k

]
q

)
is a CSP-triple.

Proof. We need to evaluate Bn(q) :=
∑n
k=0 q

(k2)[n
k

]
q
at nth roots of unity. Suppose

n = md and ξ = e2πi `m with gcd(`,m) = 1. Note that Lemma 6 gives that[
n

k

]
ξ

=
{(

d
k/m

)
if m|k

0 otherwise.

Therefore,

Bn(ξ) =
n∑
k=0

ξ(
k
2)
[
n

k

]
ξ

=
d∑
j=1

ξ(
mj

2 )
[
n

mj

]
ξ

since only terms in the left hand side where k is a multiple of m contribute. We
then get that

Bn(ξ) =
d∑
j=0

e2πi `m (mj2 )
(
d

j

)
=

d∑
j=0

(−1)`j(mj−1)
(
d

j

)
=
{

0 if m even,
2d otherwise.
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The two cases in the last step is as follows: if m is even, then ` must be odd, and it
follows that the sum is 0. If m is odd, then every term is positive and we get 2d.

That
(

BW(n), 〈η〉,
∑n
k=0 q

(k2)[n
k

]
q

)
exhibits the CSP now follows from Lemma 32.

�

6.2. Cyclic sieving on circular Möbius paths. Recall the definition of circular
Möbius paths, and Lemma 12, showing that |CMP(n)| = 2n−1. As CMP(n) ⊆
CDP(n), we use the same definition of major index for circular Möbius paths as for
the circular Dyck paths.

Let OBW(n) ⊂ BW(n) be the set of binary words with odd parity. Note
that the last bit can be deduced from the remaining word. We have a bijection
M : OBW(n)→ CMP(n) by

M(b1, . . . , bn) 7→ (b1, b2, . . . , bn−1, 0, b̂1, b̂2, . . . , b̂n−1, 1).
Since η preserves the parity of the word, η act on OBW(n) and thus induces a Cn
action η̃ on CMP(n).

Example 35. Consider the first path in Figure 4 of length 16. The first half
of the corresponding binary word is given by 10110110, which is identified with
10110110 ∈ OBW(n). We apply η to this word and get 01101101. We drop the
last bit and append a 1: 01101101 this determines a new Möbius path in CMP(8),
namely second path in Figure 4.

Lemma 36. We have the following formula for |CMP(n)|q, mod (qn − 1):∑
b∈CMP(n)

qmaj(b) ≡ 1
2

n∑
k=0

q(
k
2)
[
n

k

]
q

mod (qn − 1).

Proof. First note that by definition in (4) that

|CMP(n)|q =
∑

b∈CMP(n)

qmaj(b) =
∑

b∈BW(n)
bn=0

qmaj(b∼b̂) (30)

where ∼ denotes concatenation. Now observe that maj(b ∼ b̂) ≡n maj(b) + maj(b̂).
Any descent in the second half of the concatenation contributing to maj can simply
be shifted by n. Furthermore, any contribution to maj by a descent between the
first and second half must be exactly 0 or n. It is also clear by symmetry that∑

b∈BW(n)
bn=0

qmaj(b∼b̂) =
∑

b∈BW(n)
bn=1

qmaj(b∼b̂).

This together with Lemma 33 implies (30). �

We are now ready to present a cyclic sieving phenomenon on circular Möbius
paths of size n.

Theorem 37. The triples(
CMP(n), 〈η̃〉, 1

2

n∑
k=0

q(
k
2)
[
n

k

]
q

)
and (CMP(n), 〈η̃〉, |CMP(n)|q)
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are CSP-triples, where 〈η̃〉 is the cyclic group of order n that acts on CMP(n).

Proof. First, Lemma 36 implies that both CSP-instances are the same, up to choice
of nice polynomial in q. The mapM above shows that the cyclic sieving phenomenon
on CMP(n) is simply half of the cyclic sieving phenomenon in Proposition 34. �

Remark 38. There is an alternative way to prove CSP on CMP(n). We view
elements in CMP(n) as (x,b), a starting point and a path with 2n steps. Let β act
on the binary word b by cyclically shifting the path by two steps. Clearly, β does
not preserve the set CMP(n), but it is fairly easy to prove that

(CMP(n) ⊂ X, 〈β〉, |CMP(n)|q)

is a subset-CSP-triple, where X is chosen appropriately. Proposition 28, now implies
the existence of a CSP on CMP(n) with |CMP(n)|q as CSP-polynomial.

7. Lyndon-like cyclic sieving

Most results on cyclic sieving regards a family of combinatorial objects, where
the cyclic group Cn acts on a set Xn. The main result of this paper is no exception.
In such cases, it is natural to pay extra attention to families where the various
fixed-points in Xn under elements in Cn are in bijection with Xk for some k ≤ n.
This occur when the group action is some type of cyclic shift on words, as we shall
see.

Definition 39. Let {(Xn, Cn, fn(q))}∞n=1 be a family of instances of the cyclic
sieving phenomenon. We say that the family is Lyndon-like if for every pair of
positive integers m, n, with m|n, we have

fn/m(1) = fn

(
e

2πi
m

)
.

By the definition of CSP, we have that

fn

(
e

2πi
m

)
= |{x ∈ Xn : gn/m(x) = x}|,

where 〈g〉 = Cn. Hence, the family is Lyndon-like if and only if the number of
elements in Xn fixed under gd is equal to |Xd|, for every d|n.

Apart from Theorem 22 and Theorem 30, there are several other Lyndon-like
families of CSP. Here we list a few others.

(1) Words of length n, in the alphabet [k], with fn(q) =
∑
w∈[k]n q

maj(w) as the
polynomial.

(2) In [Uhl19], a Lyndon-like CSP instance related to non-symmetric Macdonald
polynomials is conjectured. Here, the family fn(q) is defined as fn(q) =∑
T∈NAF (nλ,k) q

maj(T ), where NAF (λ, k) is a certain set of non-attacking
fillings with maximal entry at most k and shape λ. This CSP generalizes
the Lyndon-like CSP on words.
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Lemma 40. Let {(Xn, Cn, fn(q))}∞n=1 be a Lyndon-like family of instances of the
CSP. Then there are unique non-negative integers {td}∞d=1 such that for every n ≥ 1
we have

|Xn| =
∑
d|n

d · td.

Proof. Let On,k be the set of elements in Xn that are in an orbit of size k under
g. We let tn := 1

n |On,n|, so the identity we wish to prove is via Möbius inversion
equivalent to the right hand side of

|Xn| =
∑
d|n

d · td ⇐⇒ |On,n| =
∑
d|n

µ
(n
d

)
|Xd|. (31)

Now since the family is Lyndon-like, we have that for all d|n,

|Xd| = |{x ∈ Xn : gd(x) = x}| =
∑

1≤k≤d
k|d

|On,k|. (32)

Thus, combining (31) and (32), it suffices to show that

|Xn| =
∑

1≤d≤n
d|n

µ
(n
d

) ∑
1≤k≤d
k|d

|On,k|.

Möbius inversion on the outer sum gives that

|Xn| =
∑

1≤k≤n
k|n

|On,k|

which is obviously true since every element in Xn belongs to exactly one orbit of
some size. The parameters tn are by construction unique. �

We let the integers td be called Lyndon parameters, since if we choose td to be
the usual Lyndon numbers, we get that |Xn| = 2n. A CSP instance with these
parameters can be constructed by considering binary words of length n, with Cn
acting via cyclic shift. The Lyndon words of length n are then in bijection with
1
n |On,n| in the notation above — that is, they are representatives of orbits of size n
under cyclic shift.

Lemma 41. There is no Lyndon-like cyclic sieving phenomenon where Cn act on
on some family of Catalan objects Cat(n).

Proof. We have that |Cat(1)| = 1 and |Cat(3)| = 5, so we must have C3 acting
on 5 objects. But then, we must have t1 = 2, t3 = 1 or t1 = 5, both of which is
incompatible with |Cat(1)| = 1. �

The goal of the remainder of this section is to prove the converse of Lemma 40.
That is, there is a Lyndon-like family of CSP instances for any choice of Lyndon
parameters.

Proposition 42. For any sequence of Lyndon parameters T = {td}∞d=1, there is a
Lyndon-like family of instances of the CSP.
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Proof. It is enough to construct Xn and a Cn-action on Xn with the properties in
Lemma 40. Let

Xn = {(d, i, j) : d|n, 1 ≤ i ≤ tk, 1 ≤ j ≤ d}

and let the generator g act as g · (d, i, j) = (d, i, j + n/d), where the last coordinate
is taken modulo d. It is straightforward to show from the construction that for all
n and k|n

|Xn| =
∑
d|n

d · td and |Xk| = |{x ∈ Xn : gk(x) = x}|.

We can then use fn(q) from Proposition 2 to make (Xn, Cn, fn(q)) into a CSP-
triple. �

It is possible to biject the Cn-action in Proposition 42 into an action on certain
(however, quite artificial) words of length n, where Cn act by a one-step shift. Thus,
it is no accident that the examples we have given above are all of this form.

Also note that the Lyndon parameters uniquely define the family of instances of
the CSP in the following sense.

Proposition 43. Let (Xn, Cn, fn(q)) and (Yn, Cn, gn(q)) be two families of Lyndon-
like instances of the CSP with the same Lyndon parameters. Then there are Cn-
equivariant bijections ψn : Xn → Yn such that for all g ∈ Cn and x ∈ Xn, ψn(g ·x) =
g · ψn(x).

Proof. First, we have that |Xn| = |Yn| for all n, by Lemma 40. From Definition 39,
it then follows that

{x ∈ Xn : gn/k · x = x} = |Xk| = |Yk| = {y ∈ Yn : gn/k · y = y}.

By using Möbius inversion on (32), it is clear that the number of Cn-orbits of size d
in Xn is equal to the number of Cn-orbits of size d in Yn. We can then simply let
ψn map orbits to orbits in an equivariant manner. �

Remark 44. Note that Definition 39 gives a method to computationally check if a
sequence of polynomials {fn(q)}∞n=1 might be completed to a Lyndon-like family of
CSP. In this case, one might be able to narrow down the search for a suitable group
action.

Problem 45. Given T = {td}∞d=1, find a natural family {fn(q)}∞n=1 so that fn(q) is
the sequence of polynomials in a Lyndon-like CSP family with Lyndon parameters
T .

8. Homomesy under area shift

There is a concept called homomesy that means that a statistic has the same
average in each orbit as it has in the full space.

Theorem 46. For the words from circular Dyck paths, inv(w) is homomesic with
respect to the action α, i.e. rotation by 1.
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Example 47. For n = 2, we have the binary strings ending with a one divided
into orbits by α: {0011, 1001}, {0101}. The inversion numbers are inv(0011) = 4,
inv(1001) = 2, inv(0101) = 3, so the average for each orbit is 3. Note that the last
orbit corresponds to two different CDP, but the inversion number is the same, so it
is not important to keep track of here.

Proof. We only have to look at the orbit for any given word w, that has n zeros,
n ones and ends in a one. It turns out that it is here not important that it comes
from CDP. Let z(w) = (z1, . . . , zn) be the number of zeros between two consecutive
ones in w, i.e. zi is the number of zeros between the (i − 1)th and ith one (with
z1 =number of starting zeros). For example w = 011001 has z(w) = (1, 0, 2). Then
inv(w) =

∑n
i=1(n− i+ 1)zi. The action α is rotating z one step. Thus summing

over an orbit of size n we get∑
i

∑
j

(n− j + 1)zi =
∑
i

zi

(
n+ 1

2

)
= n ·

(
n+ 1

2

)
.

Hence the average over the orbit is
(
n+1

2
)
. If the orbit is of size shorter than n it is

still divisible by n and the same calculation holds. �

The number of inversions is not homomesic with respect to the other two actions
we have discussed; shift by 2 of a binary word or shift of the area sequence.

9. Further research directions

Computer experiments suggests that the cyclic sieving phenomenon in Theorem 22
can be refined, by taking the number of valleys of the circular Dyck path into account.
A valley of a (circular) Dyck path is an index i ∈ [n] such that ai+1 ≤ ai in its area
sequence, where the index is taken mod n. In Example 9, 2, 4, 6 are valleys.

Furthermore, one can also consider Schröder paths where diagonal steps are
allowed. We do not have an enumeration formula for these, it is an interesting open
problem as that would count certain circular vertical-strip LLT polynomials, see
[AP18].

One could also introduce CMP(n,w) ⊆ CDP(n,w) as the set of circular area
sequences, satisfying the additional Möbius restriction in (4). Using the machinery
above with some modification, it should be fairly easy to derive analogous expressions
for enumeration.
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