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Arithmetical Structures on Paths With a Doubled Edge

Darren Glass & Joshua Wagner

Abstract

An arithmetical structure on a graph is given by a labeling of the vertices which satisfies certain

divisibility properties. In this note, we look at several families of graphs and attempt to give counts on

the number of arithmetical structures for graphs in these families.

1 Introduction

In this paper, we will consider the arithmetical structures on a particular family of graphs. While arithmetical
structures can be defined in several equivalent ways, we will take an approach that is based on elementary
number theory.

Definition 1.1. An arithmetical structure on a graph G is given by an assignment to each vertex of a
nonnegative integer so that the set of all labels is relatively prime and so that the label of each vertex is a
divisor of the sum of the label of its neighbors, counted with multiplicity where appropriate.

This definition is equivalent to the definition given by Lorenzini in [7], in which he sets A to be the
adjacency matrix of a graph G and defines an arithmetical structure to be a pair of vectors (d, r) ∈ (Z≥0)n ×
(Z>0)n so that the matrix L(G, d) := (diag(d) − A), satisfies the equation L(G, d)r = 0, with the additional
restriction that the entries of r are chosen to have no nontrivial common factor.

We denote the set of all arithmetical structures on a graph G by Arith(G), and one question of interest
is the size of this set. Lorenzini proved in [7] that the number of arithmetical structures on any given graph
is finite, but his proof does not give a way to count or even bound the number of such structures. Work of
various authors in [1], [2], [4], [5], and more are able to count the number of structures for families of graphs
such as paths, cycles, bidents, star graphs, and complete graphs. In this paper, we consider the family of
graphs consisting of a path where we double a single edge, as illustrated in Figure 1.

Definition 1.2. The graph Pm,n consists of vertices {a1, . . . , am, b1, . . . , bn} where there is a single edge
between ai and ai+1 for each 1 ≤ i < m, a single edge between bi and bi+1 for each 1 ≤ i < n, and two edges
between a1 and b1.

a3 a2 a1 b1 b2 a1 b1 b2 b3 b4 b5

Figure 1: The graphs P3,2 and P1,5

We note that for ease of notation we will refer interchangeably to the vertex ai and to the numerical label
assigned to it in a given arithmetical structure. We should also note that when considering the doubled edge
one must count the neighbors with multiplicity; in particular, the condition for an arithmetical structure
includes that a1|(a2 + 2b1) and b1|(b2 + 2a1). Examples of arithmetical structures on these graphs are given
in Figure 2.

In order to help us understand the arithmetical structures on this family, we first define a subset of
those structures which we will call smooth. We will denote the set of smooth arithmetical structures by
SArith(Pm,n).

Definition 1.3. An arithmetical structure on Pm,n is said to be smooth if we have that a1 > a2 > . . . > am

and b1 > b2 > . . . > bn.
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2 4 6 13 1 1 5 8 3 1 1

Figure 2: An example of a smooth structure on P3,2 and a non-smooth structure on P1,5.

We note that in the language of d-vectors from Lorenzini’s definition, this corresponds to the fact that
all vertices other than possibly a1 and b1 have associated d-values greater than one. Moreover, in a smooth
arithmetical structure we have that 0 < ai < ai−1 and ai−1|ai + ai−2, from which it follows that ai must be
the least residue of −ai−2 mod ai−1. In this way, we see that knowing a1 and a2 will determine the values
of all ai in a smooth arithmetical structure and the analogous results hold for the bi.

One goal of this note is to count the number of smooth arithmetical structures on P1,n, P2,n, P3,n. In
particular, we will see in Theorems 3.1, 4.2, and 5.3 that in each of these cases the number of smooth
structures on Pm,n grows on the order of a polynomial of degree m − 1 in n. This suggests the following
conjecture to the authors, which we hope to explore going forward:

Conjecture 1.4. The number of smooth arithmetical structures on the graph Pm,n grows at the same rate
as

(

m+n−1
n

)

.

We are interested in smooth structures because every arithmetical structure can be reduced to a smooth
structure by a pair of operations that we jointly refer to as smoothing and which we define in Section 2. If
a structure (r, d) on a graph G is obtained by a sequence of smoothing operations on structure (r′, d′) on a
graph H , we say that (G, (r, d)) is an ancestor of (H, (r′, d′)). Corollary 2.3 will give us a way of counting
the number of structures that are derived from the same ancestor, and this will allow us to derive a formula
for the total number of arithmetical structures from the total number of smooth structures. Sections 3, 4,
and 5 consider these questions for the cases of m = 1, 2, 3 respectively. One consequence of our results is the
following:

Theorem 1.5. For large n, there are approximately 7
2 Cn arithmetical structures on P1,n, approximately

76523
57600 Cn structures on P2,n, and approximately 78157

600 Cn structures on P3,n, where Cn = 1
n+1

(

2n
n

)

is the nth

Catalan number.

We conclude this introduction by noting that often when one considers arithmetical structures one is also
interested in the Critical Group associated to the structure, which can be defined explicitly as the cokernel
of the map from Z

m+n → Z
m+n defined by x 7→ L(G, d)x. It follows as an immediate consequence of [7,

Cor 2.3] that the order of the critical group associated to an arithmetical structure on Pm,n is given by
2

ambn
. In particular, this shows that for any arithmetical structure we either have am = bn = 1, in which

case the associated critical group is Z/2Z, or exactly one of these numbers is equal to 2, in which case the
critical group is trivial. We will prove this condition on am and bn directly in Theorem 2.9, but we note that
Lorenzini’s result allows us to explicitly determine the critical group for all structures.

2 Background on Smooth Structures

We begin this section by defining two smoothing operations on arithmetical structures. While we will
define these operations on the graphs Pm,n the definitions are more general and are essentially the same as
definitions given in [1] and [2]. In particular, they are equivalent to removing vertices of degree one or two
where the d-vector has value 1.

Definition 2.1. The following two operations, along with the analogous operations on the ai, are jointly
referred to as smoothing a vertex:

• If we are given an arithmetical structure on a graph Pm,n so that bn = bn−1 then we obtain a new
arithmetical structure on Pm,n−1 by removing the vertex bn and leaving the other values of ai, bi the
same.

2
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Figure 3: A structure on P1,5 and the results of two smoothing operations leading to the unique smooth
ancestor

• If we are given an arithmetical structure on a graph Pm,n so that bi = bi−1 + bi+1 then we obtain a
new arithmetical structure on Pm,n−1 by setting a′

j = aj for all j, b′
j = bj for j < i and b′

j = bj+1 for
j ≥ i.

If there are no vertices satisfying either of these cases then we refer to the structure as smooth. We will say
that a structure on Pm′,n′ is an ancestor of a structure on Pm,n if it is obtained from a series of smoothing
operations.

Given an arithmetical structure it is clear that one can obtain a smooth arithmetical structure after some
sequence of smoothing operations. Moreover, one can see that the smooth structure one gets will consist
precisely of the maximal decreasing subsequences of the {ai} and {bi}, and in particular each structure will
have a unique smooth ancestor. In order to count the number of arithmetical structures on Pm,n that have

the same smooth ancestor, we will first define a function C(n, k) = k
n

(

2n−k−1
n−1

)

. We note that this is equal

to B(n − 1, n − k), where B(s, t) = s−t+1
s+1

(

s+t
s

)

denotes the ballot numbers, a generalization of the Catalan
numbers that were first studied by Carlitz [3] and are defined for all s ≥ t ≥ 0. The ballot numbers and
Catalan numbers are ubiquitous in combinatorics and have many interpretations. The proofs of [2, Theorem
9] and [1, Lemma 2.9] can very easily be adapted to show that B(s, t) counts the number of arithmetical
structures on a path of length s that are descendents of a given structure on a path of length s − t. From
this, we obtain the following result:

Theorem 2.2. Any arithmetical structure on Pm,n has a unique ancestor which is a smooth arithmetical
structure on some Pm′,n′ . Moreover, for each smooth arithmetical structure on Pm′,n′ there are C(m, m′)C(n, n′)
arithmetical structures on Pm,n having it as an ancestor.

The following corollary, which is an immediate consequence, allows us to count the number of arithmetical
structures on a given graph Pm,n from the number of smooth structures on each smaller Pm′,n′ . We note that
when we define these sets we are specifying the two ‘sides’ of the path, so for example on the graph P1,1 we
are counting the structure where a1 = 2, b1 = 1 as different from the structure where a1 = 1, b1 = 2. When
m = n it might be more natural to divide all of the counts by two to account for the inherent symmetry in
the graphs.

Corollary 2.3. The number of arithmetical structures on Pm,n can be derived from the number of smooth
structures by the following formula:

| Arith(Pm,n)| =

m
∑

m′=1

n
∑

n′=1

(C(m, m′)C(n, n′))| SArith(Pm′,n′)|

To use this corollary throughout the paper, we will find the following results on the function C(n, k)
useful to have so we state them here.

Lemma 2.4. The function C(n, k) = k
n

(

2n−k−1
n−1

)

satisfies the following properties:

(a) C(n, n) = 1.

(b) C(n, n − 1) = n − 1.

(c) C(n, 1) = C(n, 2) = 1
n

(

2n−2
n−1

)

= Cn−1, the Catalan number.
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(d) C(n, 3) = Cn−1 − Cn−2 and C(n, 4) = Cn−1 − 2Cn−2.

(e)
∑n

k=s C(n, k) = C(n + 1, s + 1), and in particular
∑n

k=1 C(n, k) = Cn.

(f)
∑n

k=1 kC(n, k) = Cn+1 − Cn.

(g)
∑n

k=1 k2C(n, k) = 2Cn+2 − 5Cn+1 + Cn

(h) limn→∞
C(n,k)

Cn
= k

2k+1 .

Proof. The proof of the first four parts of this lemma are immediate from the definition.
To prove the next three parts, we will use a standard interpretation of the ballot numbers and Catalan

numbers based on lattice paths. In particular, we note that C(n, k) gives the number of paths from the
point (0, 0) to the point (n − k, n − 1) that travel only along grid lines and avoid all points (x, y) with x > y.
Additionally, we have Cn as the number of such paths from (0, 0) to (n, n). See [8] for more details on this
interpretation.

In particular, C(n + 1, s + 1) will count the number of lattice paths to the point (n − s, n). Each such
path will traverse exactly one edge from a point (j, n − 1) to (j, n) where 0 ≤ j ≤ n − s, and in particular the
number of paths that cross each such edge for a fixed j is exactly the number of lattice paths to the point

(j, n − 1), which is given by C(n, n − j). This tells us that

n−s
∑

j=0

C(n, n − j) = C(n + 1, s + 1), and statement

(e) follows from the a change of variables.
In a similar vein, we note that Cn+1 − Cn counts the number of paths from (0, 0) to (n + 1, n + 1) which

avoid the point (n, n) and therefore must include the point (n − 1, n + 1). Now, any such path must include
exactly one edge from a point (j, n − 1) to (j, n) where 0 ≤ j ≤ n − 1. Fixing one such j we note that the
number of paths including that edge is equal to the product of the number of paths from (0, 0) to (j, n − 1)
and the number of paths from (j, n) to (n − 1, n + 1). There are C(n, n − j) of the former and n − j of the

latter, so we have that
∑n−1

j=0 (n − j)C(n, n − j) = Cn+1 − Cn. Part (f) follows by setting k = n − j.
The proof of part (g) works in a similar manner, conditioning the paths to (n + 2, n + 2) on the edge they

contain from (j, n − 1) to (j, n) in the same way as the previous paragraph in order to obtain the identity
n

∑

k=1

1

2
(k2 + 5k + 4)C(n, k) = Cn+2, from which the claim follows.

The proof of the final part is a straightforward exercise in computing limits, after noting that

C(n, k)

Cn

=
k(2n − k − 1)!(n + 1)!

(n − k)!(2n)!

.

In order to understand the set SArith(Pm,n), we will first show that a smooth arithmetical structure is
uniquely determined by the choice of a1 and b1. In order to do this, we define an auxiliary function F (x1, x2).

Definition 2.5. Let x1 > 0 and x2 ≥ 0. We define a sequence {xi} by letting xi be the least residue of
−xi−2 (mod x)i−1. We then define the function F (x1, x2) to be the largest i so that xi > 0.

For example, if x1 = 8 and x2 = 5 we compute that x3 is the least residue of −8 (mod 5), which is 2.
We then get that x4 = 1, x5 = 0. In particular, F (8, 5) = 4.

Lemma 2.6. For any pair of relatively prime integers (a1, b1) there is at most one smooth arithmetical
structure on a graph of the form Pm,n. Moreover, we have that m = F (2b1, a1) − 1 and n = F (2a1, b1) − 1.

Proof. Given the pair (a1, b1) we define b2 to be the least residue of −2a1 (mod b)1, so that b1|2a1 + b2. For
i > 2 we define bi to be the least residue of −bi−2 mod bi−1. We define ai in an analogous way for i > 1. As
long as bi > 0 we therefore have that bi < bi−1, and the same is true for the ai, so the nonzero entries of this
sequence satisfy the divisibility requirements of a smooth arithmetical structure on PF (2b1,a1)−1,F (2a1,b1)−1.
The fact that a1 and b1 are relatively prime implies that the gcd of the entire set is also one.
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One approach to counting smooth structures on Pm,n would therefore be to try to understand the number
of pairs (a1, b1) so that F (2b1, a1) = m + 1 and F (2a1, b1) = n + 1. Unfortunately, we can not write down
a concise formula for F , let alone invert it, so this direct approach seems out of reach. On the other hand,
there are a number of properties of the function F (x, y) that are discussed at length in [1] that will be useful.
We will omit proofs of the following two of these facts, although they are not difficult.

Lemma 2.7. For any x > 0 and y ≥ 0 we have the following:

• F (x + ky, y) = F (x, y)

• F (x, kx + y) = k + F (x, y)

One consequence of this lemma that will come in handy later is the following:

Lemma 2.8. For any x, we have F (4, x) = x+ǫx

4 where ǫx =



















4, x ≡ 0 (mod 4)

7, x ≡ 1 (mod 4)

6, x ≡ 2 (mod 4)

13, x ≡ 3 (mod 4)

Proof. Write x = 4k +ǫ where 0 ≤ ǫ < 4. Then it follows from Lemma 2.7 that we have F (4, x) = k +F (4, ǫ).
If ǫ = 0 we note that F (4, ǫ) = 1 so F (4, x) = k + 1 = x+4

4 . If ǫ = 1 (resp. 2) then F (4, ǫ) = 2 so we
have F (4, x) = k + 2, which is equal to x+7

4 (resp. x+6
4 ). Finally, if ǫ = 3 we have that F (4, ǫ) = 4 so

F (4, x) = x−3
4 + 4 = x+13

4 .

Note that in the introduction we defined an arithmetical structure to include the criterion gcd({ai, bi}) = 1.
This is simply a way of specifying a single representative in the equivalence class of possible r-vectors. The
following theorem shows in an elementary manner that in such a representation we have that am = 1 or 2.
For this reason, each arithmetical structure also has a representative in which am = 2 which can be obtained
by scaling the entire structure by a factor of 2 if needed. We will refer to this as a r-vector for the structure,
and in subsequent sections it often turns out to be easier to count these.

Theorem 2.9. If we have an arithmetical structure on Pm,n represented by its r-vector then am ∈ {1, 2}

Proof. Note that we have that am|am−1. Moreover, we have that am−1|(am + am−2), which implies in turn
that am|am−2. We similarly see that am|ai for all i. The fact that a1|(a2 + 2b1) and am divides both a1 and
a2 now shows that am|2b1, and similar to the above we see that am|2bi for all i. By symmetry, we also have
that bn|2ai for all i. The fact that the set {ai, bi} has greatest common divisor equal to one now implies that
gcd(am, bn) = 1, but if am|2bn then we must have that am = 1 or 2.

3 Graphs of the form P1,n

In this section, we wish to count the number of arithmetical structures on the graph P1,n. It follows from
Corollary 2.3 that our first step should be to count the number of smooth structures.

Given a smooth arithmetical structure, we will consider the r-vector discussed in the previous section. In
particular, we will set a1 = 2 and fix n and ask how many choices of b1 there are so that F (2a1, b1) = n + 1
and F (2b1, a1) = 2. The latter condition is immediate as a1|2b1, and it follows from Lemma 2.8 that we have

F (2a1, b1) = F (4, b1) =
b1 + ǫb1

4

In particular, if b1 ≡ 1 (mod 4) then we want to set n+1 = b1+7
4 , so that b1 = 4n−3. Considering the other

cases of b1 (mod 4) we see that for each n we will get a structure on P1,n by choosing b1 = 4n or 4n − 2,
and if n ≥ 3 we will get an additional structure by setting b1 = 4n − 9.

In particular, we have proven the following:

Theorem 3.1. There are exactly four smooth arithmetical structures on P1,n for all n ≥ 3. There are 3
smooth arithmetical structures on each of P1,1 and P1,2.

5



This allows us to prove the following count on the total number of arithmetical structures.

Theorem 3.2. The number of arithmetical structures on P1,n is given by 4Cn − 2Cn−1

Proof. We have from Corollary 2.3 that the number of arithmetical structures on P1,n is equal to

n
∑

n′=1

C(n, n′)| SArith(P1,n′)| = 3C(n, 1) + 3C(n, 2) +

n
∑

n′=3

4C(n, n′)

=

n
∑

n′=1

4C(n, n′) − C(n, 1) − C(n, 2)

= 4Cn − 2Cn−1

It is well known that for large n we have Cn ≈ 4n
√

πn3/2 , so in particular we see that for large n we have

that the number of arithmetical structures on P1,n is approximately 7
2 Cn ≈ 7·4n

2
√

πn3/2 .

4 Graphs of the form P2,n

We will begin by counting the number of smooth arithmetical structures on the graph P2,n. We will assume
for simplicity that n > 1, as we have considered the n = 1 case in the previous section. We will again count
the number of possible r-structures. Recall in particular that this means that a2 = 2 and a1 = 2a for some
a > 1. Setting b1 = b, we are trying to find pairs (a, b) so that 2a|2b + 2 and F (4a, b) = n + 1; any such pair
satisfying these conditions will give a unique smooth structure. Our goal will be to compute the number of
such pairs (a, b) satisfying these conditions.

2 2a b . . .

The fact that 2a|2b + 2 implies that b ≡ −1 (mod a), so we let b = ka − 1. We now note that we wish
for n + 1 = F (4a, ka − 1). The right hand side of this equation will simplify in different ways depending on
the value of k (mod 4).

• If k ≡ 1 (mod 4) then we have from Lemma 2.7 that

F (4a, b) = F (4a, ka − 1) =
k − 1

4
+ F (4a, a − 1) =

k − 1

4
+ F (4, a − 1).

We can use Lemma 2.8 to further simplify to get F (4a, b) = k−1
4 + a−1+ǫa−1

4 . Knowing that this value
should be equal to n + 1 allows us to compute that k = 4n + 6 − a − ǫa−1, or in other words that
b = −a2 + (4n + 6 − ǫa−1)a − 1. We want b > 0, so any choice of a that makes this true will give us
a smooth structure. In particular for each ǫ ∈ {0, 1, 2, 3} we wish to count the number of choices of
a that are congruent to ǫ (mod 4) that make a2 − (4n + 6 − ǫa−1) + 1 < 0. To see which values of a
make this true, we will make use of the following result:

Lemma 4.1. Let γ > 2 be an integer. Then the function f(x) = x2 − γx + 1 will be negative for all
integers x ∈ [1, γ − 1] and positive for all other integers.

Proof. It is a simple algebra exercise to see that f(x) < 0 for all values of x in the range

(

γ−
√

γ2−4

2 ,
γ+

√
γ2−4

2

)

.

One can show using calculus that the left endpoint is in the range (0, 1) and the right endpoint is in the
range (γ −1, γ). In fact, one can see directly that f(0) = f(γ) = 1 > 0 and f(1) = f(γ −1) = 2−γ < 0.
Thus, the two roots of f(x) are in the ranges (0, 1) and (γ − 1, γ) so the result follows from properties
of quadratic equations.

6



In particular, if ǫ = 0 we are counting the number of values of a that are congruent to 0 (mod 4) in
the range [1, 4n + 6 − ǫ3 − 1] = [2, 4n − 8], so (because n ≥ 2) we have that there are n − 2 choices of
a that work. Similarly, if ǫ = 1 we are counting the number of choices of a ≡ 1 mod 4 in the range
[2, 4n + 1], of which there are n. The conditions are also satisfied if a ≡ 2 (mod 4) and a ∈ [1, 4n − 2]
or if a ≡ 3 (mod 4) and a ∈ [1, 4n − 1]. Summing these up gives us a total of 4n − 2 structures on P2,n.

• If k ≡ 2 (mod 4), we can compute that

F (4a, b) = F (4a, ka − 1) = F (4a, 2a − 1) +
k − 2

4
= F (2, 2a − 1) +

k − 2

4
= a + 1 +

k − 2

4
.

In particular, we have that n = k−2
4 + a, from which we can conclude that k = 4n − 4a + 2 so that

b = −(2a)2 + (2n + 1)2a − 1. It follows from Lemma 4.1 that we will have a structure for each a > 1
so that 2a ∈ [1, 2n]. In particular, there are n − 1 smooth structures that can be formed in this way.

• If k ≡ 3 (mod 4) then we can compute that

F (4a, b) = F (a + 1, 3a − 1) +
k − 3

4
= F (a + 1, a − 3) +

k + 5

4
= F (4, a − 3) +

k + 5

4

This is equal to a+k+2+ǫa−3

4 . We note that this computation only works if a ≥ 3, but separate direct
computations will show that if a = 2 then we get a structure whenever n ≥ 3. As before, setting
F (4a, b) = n + 1 allows us to compute that b = −a2 + (4n + 2 − ǫa−3) − 1. A computation similar to
the above shows that this will be positive if a ∈ [3, 4n − 11] ∪ {4n − 9, 4n − 8, 4n − 7, 4n− 5}. Therefore,
in this case we have 4n − 8 structures for each n > 3, 5 structures for n = 3, and no structures when
n = 2.

• Finally, if 4|k then we compute that

n = F (4a, b) − 1 = F (4a, ka − 1) − 1 =
k − 4

4
+ F (4a, 4a − 1) − 1 =

k

4
+ 4a − 2.

Solving for k implies that k = 4n−16a+8 and in particular that b = −16a2 +(4n+8)a−1. Lemma 4.1
implies that b will therefore be negative if 4a ∈ [1, n + 2), which will happen precisely if 1 < a < n+2

4 .
There are

⌊

n−3
4

⌋

such choices of a.

Combining these four cases gives us the following theorem:

Theorem 4.2. If n ≥ 4 then there are 9n − 11 +
⌊

n−3
4

⌋

smooth arithmetical structures on the graph P2,n.
Moreover, there are 17 smooth structures on P2,3, eight smooth structures on P2,2 and three smooth structures
on P2,1.

More specifically, when n ≥ 4 one notes that one gets four arithmetical structures for each value of
a ∈

[

2,
⌊

n−3
4

⌋]

, three structures for each a ∈
[⌊

n−3
4

⌋

+ 1, n
]

, two structures for each a ∈ [n + 1, 4n − 9] ∪
[4n − 11, 4n − 7] ∪ 4n − 5, and one structure for each a ∈ {4n − 10, 4n − 6, 4n − 3, 4n − 2, 4n − 1, 4n + 1}. In
particular, the largest value of a1 in any smooth structure is 8n + 2. It is interesting to note that the biggest
choice of b1 on any smooth arithmetical structure on P2,n occurs when a1 = 4n + 2 and b1 = 4n2 + 4n.

We can now use the results of Theorem 4.2 to count the total number of arithmetical structures on P2,n:

Theorem 4.3. The number of arithmetical structures on P2,n is given by:

|Arith(P2,n)| = 9Cn+1 − 16Cn + 5Cn−1 − Cn−2 +

⌊ n+1

4
⌋

∑

j=2

C(n + 1, 4j)

In particular, for large n we compute that

lim
n→∞

| Arith(P2,n)|
Cn+1

=
76523

14400
≈ 5.3141
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Proof. We recall from the discussion leading to Corollary 2.3 that any arithmetical structure on P2,n can
be obtained by taking a smooth structure on a small graph and subdividing it appropriately. In particular,
we can use the results from Theorems 3.1 and 4.2 and the properties of the function C(n, k) established in
Lemma 2.4 to compute:

|Arith(P2,n)| =

n
∑

n′=1

(C(2, 1) · C(n, n′) · | SArith(P1,n)| + C(2, 2) · C(n, n′) · | SArith(P2,n)|)

=

n
∑

n′=1

2C(n, n′) (| SArith(P1,n)| + SArith(P1,n)|)

= 6C(n, 1) + 11C(n, 2) + 21C(n, 3) +

n
∑

n′=4

(

9n′ − 7 +

⌊

n′ − 3

4

⌋)

C(n, n′)

=
n

∑

n′=1

(9n′ − 7)C(n, n′) + C(n, 3) + 4C(n, 1) +
n

∑

n′=7

⌊

n′ − 3

4

⌋

C(n, n′)

= 9

n
∑

n′=1

n′C(n, n′) − 7

n
∑

n′=1

C(n, n′) + C(n, 3) + 4C(n, 1) +

⌊ n+1

4
⌋

∑

j=2

n
∑

k=4j−1

C(n, k)

= 9(Cn+1 − Cn) − 7Cn + (Cn−1 − Cn−2) + 4Cn−1 +

⌊ n+1

4
⌋

∑

j=2

C(n + 1, 4j)

= 9Cn+1 − 16Cn + 5Cn−1 − Cn−2 +

⌊ n+1

4
⌋

∑

j=2

C(n + 1, 4j)

This proves the formula in the first statement of the theorem. For large k, we again note that Ck−1 ≈ Ck

4 .

Moreover, it follows from Lemma 2.4 that C(n + 1, 4j) ≈ 4j
24j+1 Cn+1 ≈ j

24j−3 Cn. Therefore, the total number
of arithmetical structures on P2,n approaches

(9 · 4 − 16 +
5

4
− 1

42
+

∞
∑

j=2

j

24j−3
)Cn =

76523

57600
Cn

Table 1 gives the number of smooth arithmetical structures as well as the overall number of arithmetical
structures on P2,n for each 1 ≤ n ≤ 10.

5 Graphs of the form P3,n

As in previous sections, we begin by first counting the number of smooth structures on P3,n. Similar to the
last section, we note that it is easier to relax the gcd condition on the r-vector and instead consider the
r-vector for each structure, which is defined as having a3 = 2, a2 = 2t, a1 = 2a, b1 = b. Moreover, we note
that t|a + 1, so a = ℓt − 1 for some ℓ ≥ 2 and a|b + t so we have that b = ka − t for some k > 1. In fact,
we will get a smooth structure on P3,n precisely for an triple of integers (t, k, ℓ) so that t, ℓ ≥ 2, k ≥ 1, and
n + 1 = F (4a, b) = F (4ℓt − 4, kℓt − k − t). In order to count the number of such triples, we will have to break
into different cases based on the values of t, k, l (mod 4). We will explicitly work through a couple of these
cases, and we summarize the full results in Table 2.
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n | SArith(P2,n)| | Arith(P2,n)|
1 3 6
2 8 17
3 17 55
4 25 177
5 34 581
6 43 1945
7 53 6625
8 62 22899
9 71 80137
10 80 283426
11 90 1011561
12 99 3638862
13 108 13180428
14 117 48031613
15 127 175978875

Table 1: The number of smooth structures and overall arithmetical structures on P2,n

If k ≡ ℓ ≡ 1 (mod 4) then we use Lemma 2.7 to compute that

n + 1 = F (4a, b)

n + 1 = F (4ℓt − 4, kℓt − k − t)

n + 1 =
k − 1

4
+ F (4ℓt − 4, ℓt − t − 1)

n + 1 =
k − 1

4
+ F (4t, (ℓ − 1)t − 1)

n + 1 =
k − 1

4
+

ℓ − 5

4
+ F (4t, 4t − 1)

n + 1 =
k − 1

4
+

ℓ − 5

4
+ 4t

n − 7 =
k − 1

4
+

ℓ − 5

4
+ 4(t − 2)

In particular, we have shown that the smooth structures in this category are in bijection with ordered
triples of nonnegative integers (x, y, z) so that x + y + z = n + 9 and 4|z.

We next consider the case where k ≡ 1 (mod 4) and ℓ ≡ 2 (mod 4). As in the previous case, we can
compute that

n + 1 = F (4a, b) =
k − 1

4
+ F (4t, (ℓ − 1)t − 1) =

k − 1

4
+

ℓ − 2

4
+ F (4t, t − 1) =

k − 1

4
+

ℓ − 2

4
+ F (4, t − 1)

Recalling Lemma 2.8, we now have that n = k−1
4 + ℓ−2

4 + t−1+ǫt−1

4 − 1. For example, if t ≡ 1 (mod 4) we
have that

n − 1 =
k − 1

4
+

ℓ − 2

4
+

t − 5

4

which shows us that the smooth structures in this category are in bijection with ordered triples of nonnegative
integers (x, y, z) so that x + y + z = n − 1. More generally, we make the following notational definition:

Definition 5.1. For any integer n, we define p3(n) to be the number of ordered triples of nonnegative
integers (x, y, z) so that x + y + z = n and p2(n) to be the number of ordered pairs of nonnegative integers
(x, y) so that x + y = n. We further define p′

3(n) (resp. p′
2(n)) to be the number of triples (resp. pairs) of

nonnegative integers summing to n with the further restriction that 4|x.

9



k (mod 4) ℓ (mod 4) t (mod 4) Equation Number

1 1 all n + 9 = k−1
4 + ℓ−5

4 + 4(t − 2) p′
3(n − 7)

1 2 1 n − 1 = k−1
4 + ℓ−2

4 + t−5
4 p3(n − 1)

1 2 2 n − 1 = k−1
4 + ℓ−2

4 + t−2
4 p3(n − 1)

1 2 3 n − 1 = k−1
4 + ℓ−2

4 + t−3
4 p3(n − 1)

1 2 0 n − 3 = k−1
4 + ℓ−2

4 + t−4
4 p3(n − 3)

1 3 all n − 2 = k−1
4 + ℓ−3

4 + (t − 2) p3(n − 2)

1 0 1 n − 3 = k−1
4 + ℓ−4

4 + t−5
4 p3(n − 3)

1 0 2 n − 5 = k−1
4 + ℓ−4

4 + t−6
4 p3(n − 5)

or t = 2, k−1
4 + ℓ−4

4 = n − 3 p2(n − 3)

1 0 3 n − 2 = k−1
4 + ℓ−4

4 + t−3
4 p3(n − 2)

1 0 0 n − 3 = k−1
4 + ℓ−4

4 + t−4
4 p3(n − 3)

2 all 1 n − 4 = k−2
4 + (ℓ − 2) + t−5

4 p3(n − 4)

2 all 2 n − 1 = k−2
4 + (ℓ − 2) + t−2

4 p3(n − 1)

2 all 3 n − 2 = k−2
4 + (ℓ − 2) + t−3

4 p3(n − 2)

2 all 0 n − 2 = k−2
4 + (ℓ − 2) + t−4

4 p3(n − 2)

3 1 all n − 4 = k−3
4 + ℓ−5

4 + (t − 2) p3(n − 4)

3 2 1 n − 5 = k−3
4 + ℓ−6

4 + t−5
4 p3(n − 5)

or ℓ = 2, k−3
4 + t−5

4 = n − 3 p2(n − 3)

3 2 2 n − 7 = k−3
4 + ℓ−6

4 + t−6
4 p3(n − 7)

or t = 2, k−3
4 + ℓ−6

4 = n − 5 p2(n − 5)
or ℓ = 2, k−3

4 + t−6
4 = n − 5 p2(n − 5)

or k = 3, ℓ = 2, k−3
4 = n − 3 1 if n ≥ 3

3 2 3 n − 4 = k−3
4 + ℓ−6

4 + t−3
4 p3(n − 4)

or ℓ = 2, k−3
4 + t−3

4 = n − 2 p2(n − 2)

3 2 0 n − 5 = k−3
4 + ℓ−6

4 + t−4
4 p3(n − 5)

k−3
4 + t−4

4 = n − 3 p2(n − 3)

3 3 all n − 9 = k−3
4 + ℓ−7

4 + 4(t − 2) p′
3(n − 9)

or ℓ = 3, n − 7 = k−3
4 + 4(t − 2) p′

2(n − 7)

3 0 1 n − 3 = k−3
4 + ℓ−4

4 + t−5
4 p3(n − 3)

3 0 2 n − 3 = k−3
4 + ℓ−4

4 + t−2
4 p3(n − 3)

3 0 3 n − 3 = k−3
4 + ℓ−4

4 + t−3
4 p3(n − 3)

3 0 1 n − 5 = k−3
4 + ℓ−4

4 + t−4
4 p3(n − 5)

0 all 1 n − 7 = k−4
4 + 4(ℓ − 2) + t−5

4 p′
3(n − 7)

0 all 2 n − 6 = k−4
4 + 4(ℓ − 2) + t−2

4 p′
3(n − 6)

0 all 1 n − 8 = k−4
4 + 4(ℓ − 2) + t−3

4 p′
3(n − 8)

0 all 1 n − 4 = k−4
4 + 4(ℓ − 2) + t−4

4 p′
3(n − 6)

Table 2: The number of smooth structures on P3,n in various cases

10



We note that it is well established in the literature (for example, [8]) that p2(n) =
(

n+1
1

)

and p3(n) =
(

n+2
2

)

.

It is straightforward to check that if n ≥ 0 then p′
2(n) =

⌊

n+4
4

⌋

. The function p′
3(n) is discussed in [6,

A130519], and we will use the following lemma about it:

Lemma 5.2. For n ≥ 0 we have that p′
3(n + 4) = p′

3(n) + n + 5.

Proof. We note that if (x, y, z) is a triple so that x + y + z = n and 4|x then by setting x′ = x + 4 we will
obtain a new triple (x′, y, z) whose entries sum to n + 4 so that 4|x′. Moreover, all such triples are attained
in this way except for the n + 5 triples of the form (0, y, n + 4 − y) where 0 ≤ y ≤ n + 4. In particular, we
see that p′

3(n + 4) = p′
3(n) + n + 5.

Theorem 5.3. For all n ≥ 5 we have that the number of smooth arithmetical structures on P3,n is given by:

| SArith(P3,n)| =



















47
4 n2 − 36n + 205

4 , n ≡ 1 (mod 4)
47
4 n2 − 36n + 51, n ≡ 2 (mod 4)
47
4 n2 − 36n + 209

4 , n ≡ 3 (mod 4)
47
4 n2 − 36n + 52, n ≡ 0 (mod 4)

Moreover, | Arith(P3,1)| = 4, | Arith(P3,2)| = 17, | Arith(P3,n)| = 48, and | Arith(P3,4)| = 95.

Proof. The results of Table 2 can be summarized by noting that for n ≥ 3 the number of smooth structures
on P3,n is given by

| SArith(P3,n)| = 4p3(n − 1) + 4p3(n − 2) + 6p3(n − 3) + 3p3(n − 4) + 4p3(n − 5) + p3(n − 7)

+2p′
3(n − 6) + 2p′

3(n − 7) + p
′
3(n − 8) + p

′
3(n − 9)

+p2(n − 2) + 3p2(n − 3) + 2p2(n − 5) + p
′
2(n − 7) + 1

From this, we can compute the values of | Arith(P3,n)| directly for n ≤ 4. As discussed above, if n ≥ 0

we have that p2(n) = n + 1 and p3(n) = (n+2)(n+1)
2 , which allows us to simplify the above formula to get

that for all n ≥ 5 we have that:

| SArith(P3,n)| = 11n2 − 30n + 40 + 2p′
3(n − 6) + 2p′

3(n − 7) + p
′
3(n − 8) + p

′
3(n − 9) + p

′
2(n − 7)

For notational convenience, we set h(n) = 2p′
3(n − 6) + 2p′

3(n − 7) + p′
3(n − 8) + p′

3(n − 9) + p′
2(n − 7). It

is straightforward to compute that we have h(5) = 0, h(6) = 2, h(7) = 7 and h(8) = 12. Moreover, Lemma
5.2 gives us the following relationship:

h(n + 4) = 2p′
3(n − 2) + 2p′

3(n − 3) + p
′
3(n − 4) + p

′
3(n − 4) + p

′
2(n − 3)

= 2(p′
3(n − 6) + n − 1) + 2(p′

3(n − 7) + n − 2) + (p′
3(n − 8) + n − 3) + (p′

3(n − 9) + n − 4) + (p′
2(n − 7) + 1)

= 2p′
3(n − 6) + 2p′

3(n − 7) + p
′
3(n − 8) + p

′
3(n − 9) + p

′
2(n − 7) + 6n − 12

= h(n) + 6n − 12

By recursion, we see that h(n+4k) = h(n)+12k2 −24k+6nk. Combining these with the values computed
above, we obtain that

h(n) =



















3n2

4 − 6n + 45
4 n ≡ 1 (mod 4)

3n2

4 − 6n + 11 n ≡ 2 (mod 4)
3n2

4 − 6n + 49
4 n ≡ 3 (mod 4)

3n2

4 − 6n + 12 n ≡ 0 (mod 4)

The theorem follows.
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n | SArith(P3,n)| | Arith(P3,n)|
1 4 16
2 17 55
3 48 200
4 95 698
5 165 2433
6 258 8529
7 376 30126
8 516 107227
9 679 384414
10 866 1387312
11 1078 5036958
12 1312 18388019
13 1569 67460437
14 1850 248605003
15 2156 919896078
16 2484 3416474991
17 2835 12731777602
18 3210 47593535704
19 3610 178420933448
20 4032 670633847016

Table 3: The number of smooth structures and overall arithmetical structures on P3,n

We can now use Theorems 5.3 and Corollary 2.3 to explicitly count the total number of arithmetical
structures on P3,n. In order to do this, we will define auxiliary functions ηi(k) which give the difference
between the actual number of smooth arithmetical structures on Pi,k and the number predicted by the
polynomials in the formulae in Theorems 3.1, 4.2, and 5.3. Explicitly, we have the following:

k η1(k) η2(k) η3(k)

1 -1 6 -23
2 -1 2 -9
3 0 1 -2
4 0 0 -1

>4 0 0 0

We will also define the function γ(k) as follows:

γ(k) =



















3
4 k ≡ 1 (mod 4)

0 k ≡ 2 (mod 4)
11
4 k ≡ 3 (mod 4)

2 k ≡ 0 (mod 4)

Then it follows from our earlier results that

| SArith(P3,k)| + 2| SArith(P2,k)| + 2| SArith(P1,k)| =
47

4
k2 − 35

2
k + 34 + γ(k) + η3(k) + 2η2(k) + 2η1(k)

In particular, this allows us to compute:
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| Arith(P3,n)| =

n
∑

k=1

C(n, k) (| SArith(P3,k)| + 2| SArith(P2,k)| + 2| SArith(P1,k)|)

=
n

∑

k=1

C(n, k)

(

47

4
k2 − 35

2
k + 34 + γ(k)

)

+
n

∑

k=1

(η3(k) + 2η2(k) + 2η1(k)) C(n, k)

=

n
∑

k=1

C(n, k)

(

47

4
k2 − 35

2
k + 34 + γ(k)

)

− C(n, 4) − 7C(n, 2) − 13C(n, 1)

=
47

4
(2Cn+2 − 5Cn+1 + Cn) − 35

2
(Cn+1 − Cn) + 34Cn − C(n, 4) − 7Cn−1 − 13Cn−1

n
∑

k=1

γ(k)C(n, k)

=
47

2
Cn+2 − 305

4
Cn+1 +

253

4
Cn − (Cn−1 − 2Cn−2) − 20Cn−1 +

n
∑

k=1

γ(k)C(n, k)

=
47

2
Cn+2 − 305

4
Cn+1 +

253

4
Cn − 21Cn−1 + 2Cn−2 +

3

4

n
∑

k≡1

C(n, k) +
11

4

n
∑

k≡3

C(n, k) + 2

n
∑

k≡0

C(n, k)

This gives an explicit formula for the number of arithmetical structures on P3,n. For large values of n,
we recall that Lemma 2.4 tells us that Ci ≈ 4Ci−1. Moreover we have that C(n, k) ≈ k

2k+1 , which can be
used to show us that

n
∑

k≡1

C(n, k) ≈
∞

∑

j=0

4j + 1

24j+2
Cn ≈ 76

225
Cn

n
∑

k≡3

C(n, k) ≈
∞

∑

j=0

4j + 3

24j+4
Cn ≈ 49

225
Cn

n
∑

k≡0

C(n, k) ≈
∞

∑

j=0

4j + 4

24j+5
Cn ≈ 32

225
Cn

In particular, one can see that for large values of n we will have that | Arith(P3,n)| ≈ κCn, where

κ =
47

2
· 42 − 305

4
· 4 +

253

4
− 21 · 1

4
+ 2 ·

(

1

4

)2

+
3

4
· 76

225
+

11

4
· 49

225
+ 2 · 32

225
=

78157

600
= 130.2616
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