
CYCLOTOMIC COINCIDENCES

CARL POMERANCE AND SIMON RUBINSTEIN-SALZEDO

Abstract. In this paper, we show that if m and n are distinct positive integers and x is a
nonzero real number with Φm(x) = Φn(x), then 1

2 < |x| < 2 except when {m,n} = {2, 6}
and x = 2. We also observe that 2 appears to be the largest limit point of the set of values
of x for which Φm(x) = Φn(x) for some m 6= n.

1. Introduction

For a positive integer n, let Φn denote the nth cyclotomic polynomial. In this paper we
consider roots of Φm(x) − Φn(x), where m,n are unequal positive integers. Our principal
theorem is the following.

Theorem 1.1. If m 6= n are positive integers and x is a nonzero real number with Φm(x) =
Φn(x), then 1

2
< |x| < 2, except for Φ2(2) = Φ6(2).

We show that on the prime k-tuples conjecture the upper bound 2 in the theorem is optimal
in that replacing it with 2−ε for any fixed ε > 0, there are infinitely many counterexamples.

A corollary of Theorem 1.1 is the cyclotomic ordering conjecture of Glasby. He conjec-
tured that if m,n are positive integers, then either Φm(q) ≤ Φn(q) for all integers q ≥ 2 or
the reverse inequality holds for all q. This would put a total ordering on the set of cyclo-
tomic polynomials. This ordering is also the topic of the sequence A206225 in the On-Line
Encyclopedia of Integer Sequences [Slo], where it seems to be tacitly assumed such a total
ordering exists.

In addition, Glasby conjectured that in the total ordering of the cyclotomic polynomials,
Φ2·3i is adjacent to Φ3i for all i ≥ 2. We prove a generalization of this, where 3 may be
replaced with any odd prime; see Proposition 6.2.

2. Background on Cyclotomic Polynomials

Definition 2.1. For a positive integer n, the nth cyclotomic polynomial Φn(x) is defined as

Φn(x) =
∏

1≤a≤n
gcd(a,n)=1

(x− ζan),

where ζn is a primitive nth root of unity.

Let φ(n) denote Euler’s function at the positive integer n, let µ(n) be the Möbius function
at n, and let ω(n) denote the number of distinct primes that divide n. Also, let rad(n) denote
the largest squarefree divisor of n and q(n) = n

rad(n)
. Some familiar facts about cyclotomic

polynomials are as follows.
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Proposition 2.2. The degree of Φn(x) is φ(n). Further, Φn(x) is an irreducible polynomial
in Z[x].

Proposition 2.3. We have

xn − 1 =
∏
d|n

Φd(x) and Φn(x) =
∏
d|n

(xd − 1)µ(
n
d
).

When n > 1, the latter equality can be rewritten as

Φn(x) =
∏
d|n

(1− xd)µ(
n
d
).

Proposition 2.4. When n > 1, Φn(x) is a reciprocal polynomial; i.e., Φn(x) = xφ(n)Φn(1/x).

Proposition 2.5. If p is prime and p | n, then Φnp(x) = Φn(xp). In general, Φn(x) =
Φrad(n)(x

q(n)).

Proposition 2.6. If n is an odd positive integer, and k ≥ 2 is an integer, then

Φn(−x) = Φ2n(x), Φ2n(−x) = Φn(x), and Φ2kn(−x) = Φ2kn(x).

Proposition 2.7. If ω(n) ≤ 2, then all the coefficients of Φn(x) lie in {−1, 0, 1}.

3. Rational coincidences

Theorem 3.1. Suppose m and n are distinct positive integers. Then Φm(r) 6= Φn(r) for
rational numbers r /∈ {−1, 0, 1} unless r = 2 and {m,n} = {2, 6}.

Proof. For integers a ≥ 2 with r = a, the result follows from Bang’s Theorem [Ban86], which
says that if a, n > 1 are integers and (a, n) 6= (2, 6), (2j − 1, 2) for some integer j ≥ 2, then
there is a prime p such that p | (an− 1) but p - (ak − 1) for any k < n. Now, suppose n > m
with n 6= 6, and let p be a prime dividing an − 1 but not ak − 1 for any k < n. Then by
Proposition 2.3, p | Φn(a) but p - Φm(a). Thus Φm(a) 6= Φn(a). When a = 2 and n = 6,
we can just check the values of Φm(2): we have Φm(2) = 1, 3, 7, 5, 31 for m = 1, 2, 3, 4, 5,
respectively, while Φ6(2) = 3. Finally, in the case of m = 1, n = 2, we see that Φm(x)−Φn(x)
has no roots at all. For integers a ≤ −2, the result follows from Proposition 2.6 by considering
the separate cases where m is odd, 2 (mod 4), or divisible by 4, and the same for n.

When r = a/b /∈ Z, where a, b are coprime integers, we use the generalization of Bang’s
theorem due to Zsigmondy [Zsi92]. This asserts that an − bn has a prime divisor that does
not divide any ak − bk for 1 ≤ k ≤ n− 1 but for the Bang exceptions. Let

Φn(x, y) = yφ(n)Φn(x/y),

so that Φn(x, y) is a homogeneous polynomial with integer coefficients, and as in Proposition
2.3, we have

Φn(x, y) =
∏
d |n

(xd − yd)µ(n/d).

If Φm(a/b) = Φn(a/b) with φ(m) ≤ φ(n), then Φm(a, b) = bφ(n)−φ(m)Φn(a, b), yet the side of
this equation corresponding to the larger of m,n has a prime factor that does not divide the
other side. This completes the proof. �
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4. An inequality

The following result will be useful.

Lemma 4.1. Let x be a real number with x ≥ 2 and let k be a positive integer. Then

| log(1− x−k)| >
∑
j>k

| log(1− x−j)|.

Proof. The left side of the inequality is ∑
i≥1

1

i
x−ik,

while the right side is ∑
i≥1

1

i

∑
j>k

x−ij =
∑
i≥1

1

i
· x

−ik

xi − 1
<
∑
i≥1

1

i
x−ik,

using x ≥ 2. This completes the proof. �

Note that the following result when x is integral is due to Hering [Her74, Theorem 3.6].

Theorem 4.2. Let x be a real number with x ≥ 2 and let n be a positive integer. Then if
µ(rad(n)) = 1, we have

xq(n) − 1

xq(n)
xφ(n) ≤ Φn(x) < xφ(n)

with equality only in the case n = 1, while if µ(rad(n)) = −1, we have

xφ(n) < Φn(x) <
xq(n)

xq(n) − 1
xφ(n).

Proof. Let fn(x) = Φn(x)/xφ(n). When n > 1, Propositions 2.3 and 2.4 imply that

(4.1) fn(x) = Φn(x−1) =
∏
d|n

(1− x−d)µ(
n
d
).

This formula continues to hold when n = 1.
First assume that n is squarefree. Taking the logarithm of (4.1) we have

log fn(x) = µ(n) log(1− x−1) +
∑
d|n
d>1

µ(n/d) log(1− x−d),

so that

(4.2) µ(n) log(1−x−1)+
∑
j>1

log(1−x−j) < log fn(x) < µ(n) log(1−x−1)−
∑
j>1

log(1−x−j).

Thus, by Lemma 4.1, we have

(1 + µ(n)) log(1− x−1) < log fn(x) < (−1 + µ(n)) log(1− x−1).
Since log(1 − x−1) < 0, we have fn(x) > 1 when µ(n) = −1 and fn(x) < 1 when µ(n) = 1.
This proves two of the four inequalities of the theorem in the squarefree case.

Still assuming that n is squarefree, if p is a prime not dividing n, then we have

fn(x)fnp(x) =
∏
d|n

(1− x−d)µ(
n
d
)(1− x−d)µ(

pn
d
)(1− x−pd)µ(

pn
pd

) =
∏
d|n

(1− x−pd)µ(
n
d
).
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We claim first that f(n)f(np) < 1 if µ(n) = 1 and f(n)f(np) > 1 if µ(n) = −1. To see this,
take logarithms, and this is equivalent to saying that∑

d|n

µ
(n
d

)
log(1− x−pd) < 0

if µ(n) = 1 and ∑
d|n

µ
(n
d

)
log(1− x−pd) > 0

if µ(n) = −1. Let us consider the case where µ(n) = 1; the other case is similar. We have∑
d|n

µ
(n
d

)
log(1− x−pd) ≤ log(1− x−p)−

∑
d|n
d>1

log(1− x−pd)

< log(1− x−p)−
∑
j>p

log(1− x−j) < 0,

by Lemma 4.1.
We now complete the proof of the theorem for squarefree numbers by induction on n. The

base case is n = 1, where we have f1(x) = Φ1(x)/x = (x− 1)/x, so the theorem holds here.
Now, suppose that the result is true for n. We prove it for np, where p is a prime not dividing
n. If µ(n) = 1, then µ(np) = −1. To get the upper bound, we have (x − 1)/x ≤ fn(x) < 1
and fn(x)fnp(x) < 1, so

fnp(x) <
1

fn(x)
≤ x

x− 1
,

as desired. The case where µ(n) = −1 is similar.
Finally, we must handle the case where n is not squarefree. Using Proposition 2.5 and

noting that φ(n) = q(n)φ(rad(n)), we apply the squarefree case to Φrad(n)(x
q(n)). �

Corollary 4.3. Under the same assumptions as in Theorem 4.2, we have

1

2
xφ(n) ≤ Φn(x) < xφ(n)

when µ(rad(n)) = 1, with equality only in the case n = 1 and x = 2. Else, if µ(rad(n)) = −1,

xφ(n) < Φn(x) < 2xφ(n).

We now give a proof of a similar result that holds as well for complex numbers.

Proposition 4.4. For z ∈ C with |z| ≥ 2,

1

2
|z|φ(n) ≤ |Φn(z)| < 2|z|φ(n),

with equality only in the cases n = 1, z = 2 and n = 2, z = −2.

Proof. Our starting point is (4.1), which holds as well for complex numbers. Also, as in the
proof of Theorem 4.2, it suffices to handle the case when n is squarefree. The cases n = 1, 2
are true by inspection, so we take n > 2. Assume that µ(n) = 1; the case when µ(n) = −1
will follow by the same argument. Let p be the least prime factor of n. By (4.1) we have

(4.3)
|Φn(z)|
|z|φ(n)

=
|1− z−1|
|1− z−p|

∏
d|n
d>p

|1− z−d|µ(d),
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using µ(n/d) = µ(d) when n is squarefree and µ(n) = 1. By the triangle inequality, when
|z| ≥ 2,

|1− z−1|
|1− z−p|

=
1

|1 + z−1 + · · ·+ z−(p−1)|
≥ 1

1 + |z|−1 + · · ·+ |z|−(p−1)

≥ 1

2− 2−(p−1)
=

1

2
(1− 2−p)−1.(4.4)

We now find a lower bound for the remaining product in (4.3). For |z| ≥ 2, we have

|(1− z−d)µ(d)| ≥ 1− 2−d,

so that

log
∏
d|n
d>p

|(1− z−d)µ(d)| ≥
∑
d>p

log(1− 2−d) > log(1− 2−p),

by Lemma 4.1. Hence with (4.3) and (4.4), the lower bound in the proposition holds.
For the upper bound, first assume that p > 2. Referring to (4.3), note that

(4.5)
|1− z−1|
|1− z−p|

=
|zp−1(z − 1)|
|zp − 1|

≤ |z|
p−1(|z|+ 1)

|z|p − 1
= 1 +

|z|p−1 + 1

|z|p − 1
≤ 12

7
,

when |z| ≥ 2 and p ≥ 3. Note that |(1− z−d)µ(d)| ≤ (1− |z|−d)−1 for |z| > 1. So, for |z| ≥ 2
and referring to (4.3),∏

d>p
d|n

|(1− z−d)µ(d)| ≤
∏
d>p

(1− 2−d)−1 ≤
∏
d≥4

(1− 2−d)−1 < 1.14.

With (4.5) this completes the upper bound proof when p ≥ 3.
Suppose p = 2. Since n > 2 and n is squarefree, we may assume that n has an odd prime

factor, let q be the least one. Again from (4.3) we have

(4.6)
|Φn(z)|
|z|φ(n)

=
1

|1 + z−1||1− z−q|
∏
d|n
d>q

|1− z−d|µ(d) =
|z|q+1

|1 + z||1− zq|
∏
d|n
d>q

|1− z−d|µ(d).

Writing z = reiθ, we have

(|1 + z||1− zq|)2 = (r2 + 1 + 2<(z))(r2q + 1− 2<(zq))

= (r2 + 1)(r2q + 1) + 2r(r2q + 1) cos θ − 2rq(r2 + 1) cos qθ − 4rq+1 cos θ cos qθ.

Taking the derivative with respect to θ and setting it equal to 0 gives us either sin θ = 0 or

2r(r2q + 1) = 2rq(r2 + 1)q
sin qθ

sin θ
+ 4rq+1 cos qθ + 4rq+1q cos θ

sin qθ

sin θ
.

If sin θ 6= 0, using | sin qθ/ sin θ| < q and r ≥ 2, we see that for q ≥ 11 this last equation has
no solutions. So, our expression reaches a minimum at θ = 0 or θ = π, that is, z = r or
z = −r. We see that z = −r gives the minimum for |1 + z||1− zq|. For q = 3, 5, 7 we check
directly that the minimum for |1 + z||1 − zq| also occurs at z = −r. Since the logarithmic
derivative of 1/((1− r−1)(1 + r−q)) as a function of r is negative, this implies that

(4.7)
|z|q+1

|1 + z||1− zq|
≤ rq+1

(r − 1)(rq + 1)
≤ 2q+1

2q + 1
= 2

(
1− 1

2q + 1

)
.
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Referring to (4.6), we thus have for |z| ≥ 2,

log
∏
d>q
d|n

|(1− z−d)µ(d)| ≤ log
∏
d>q
4 - q

(1− 2−d)−1 =
∑
j≥1

1

j

(
1

2qj(2j − 1)
− 1

24jbq/4c(24j − 1)

)

<
13

15 · 2q
+
∑
j≥2

1

j2qj(2j − 1)
.

Since

log

(
1− 1

2q + 1

)
= −

∑
j≥1

1

j

1

(2q + 1)j
,

with the prior calculation, we see that(
1− 1

2q + 1

)∏
d>q
d|n

|(1− z−d)µ(d)| < 1.

With (4.6) and (4.7), this completes the proof when p = 2. �

5. Real coincidences

In this section we discuss solutions to Φm(x) = Φn(x), where x ∈ R, beginning with the
case x ∈ (0, 1/2].

Theorem 5.1. Let m and n be distinct positive integers, and let x be a real number with
0 < x ≤ 1

2
. Then Φm(x) 6= Φn(x).

Proof. First, we handle the case where one of m and n is equal to 1, say m = 1 and n > 1.
Then we have

Φn(x) =
∏
d|n

(1− xd)µ(
n
d
) > 0

whereas Φ1(x) = x− 1 < 0. Thus Φn(x) 6= Φ1(x).
Now assume that m,n > 1. Define g(m,n) = g(m,n, x) by

g(m,n) = g(m,n, x) = log
Φm(x)

Φn(x)
.

We have

(5.1) g(m,n) =
∑
d|m

µ
(m
d

)
log
(
1− xd

)
−
∑
e|n

µ
(n
e

)
log (1− xe) .

Recall that for a positive integer k, we let q(k) = k
rad(k)

. We may assume that q(n) ≥ q(m).

We split the remainder of the proof up into the following different cases, depending on m
and n:

• m and n are squarefree,
• m is squarefree and q(n) ≥ 4,
• m is squarefree and q(n) = 3,
• m is squarefree and q(n) = 2,
• neither m nor n is squarefree.
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First, assume that m and n are squarefree. Suppose that µ(m) 6= µ(n), i.e. µ(n) = −µ(m).
Then the coefficient of log(1−x) in (5.1) is 2µ(m), and the coefficient of each other log(1−xd)
lies in {−2,−1, 0, 1, 2}. Hence the sign of g(m,n) is the same as that of µ(m) log(1− x) by
Lemma 4.1, and in particular g(m,n) 6= 0. On the other hand, suppose that µ(m) = µ(n).
Let d0 be the least divisor of either m or n that does not divide gcd(m,n), and assume
without loss of generality that d0 | m. If d | gcd(m,n) then µ(m/d) = µ(n/d). Thus, from
(5.1)

g(m,n) = µ(m/d0) log(1− xd0) +
∑
d |m
d -n
d>d0

µ(m/d) log(1− xd)−
∑
e |n
e -m

µ(n/e) log(1− xe).

Since the d’s and e’s in these two sums are all different, it follows from Lemma 4.1 that the
sign of g(m,n) is the same as the sign of µ(m/d0) log(1 − xd0). In particular, it is not 0.
Thus, the case when m,n are squarefree is complete.

Next, we tackle the case where n is not squarefree. In general, (5.1) reduces to

(5.2) g(m,n) =
∑

d | rad(m)

µ

(
rad(m)

d

)
log(1− xdq(m))−

∑
e | rad(n)

µ

(
rad(n)

e

)
log(1− xeq(n)).

Assume that m is squarefree (that is, q(m) = 1) and n is not squarefree (that is, q(n) > 1).
As in the proof of Theorem 4.2, the sum of all of the e-terms is of the same sign as the e = 1
term and is majorized by that term. Hence, if q(n) ≥ 4, we may majorize all of the e-terms
by a single term with exponent 4 (which doesn’t appear in the d-sum). Thus, by Proposition
4.1, g(m,n) has the same sign as the d = 1 term, and so is not 0.

Now say m is squarefree and q(n) = 3. If 3 - m, then we can majorize the e-terms with
a term with exponent 3. So, assume that 3 | m. We similarly may assume that 2 | m.
Note that the d = 6 term appears with the same sign as the d = 1 term, and the d = 6
term majorizes the sum of all higher d-terms via Lemma 4.1. Assume without essential loss
of generality that µ(m) = 1. Then, majorizing the e-terms with an exponent 3 term and
allowing for the possibility of an exponent 5 term, we have

g(m,n) < log(1− x)− log(1− x2)− 2 log(1− x3)− log(1− x5).

Thus,

eg(m,n) <
1− x

(1− x2)(1− x3)2(1− x5)
=

1

(1 + x)(1− x3)2(1− x5)
.

By inspection, this expression is less than 1 for 0 < x ≤ 1
2
. Thus, g(m,n) 6= 0, completing

the proof in this case.
Now assume that m is squarefree and q(n) = 2. Assume that µ(m) = 1; the case µ(m) =
−1 is essentially the same. There is an e = 2 term and it appears with the same sign as the
d = 1 term. We may assume that 2 | m, since otherwise we may replace a putative d = 2
term with the e = 1 term and the sum of all e-terms with e > 2 with a putative d = 4 term.
If 3 - m, we replace the terms with e > 2 with a putative d = 3 term and observe that

g(m,n) < log(1− x)− 2 log(1− x2)− log(1− x3) + log(1− x4)− log(1− x5)− log(1− x6),
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so that

eg(m,n) =
1 + x2

(1 + x)(1− x3)(1− x5)(1− x6)

=
1 + x2

1 + x− x3 − x4 − x5 − 2x6 − x7 + x8 + 2x9 + x10 + x11 + x12 − x14 − x15
.

Again, by inspection this shows that eg(m,n) < 1 for 0 < x ≤ 1
2
.

Next, assume that 3 | m. Then d = 6 occurs and with the same sign as d = 1. If e = 3
occurs, then this too gives a term with exponent 6 and the same sign as d = 1, and so the
sum of all e terms with e ≥ 3 gives a contribution with the same sign as d = 1. Otherwise,
if 3 - n, then the e-terms with e > 2 all have exponent 10 or greater, and so their sum is
majorized by a term with exponent 9, which is not a d-term. Thus, we have

g(m,n) < log(1− x)− 2 log(1− x2)− log(1− x3) + log(1− x4)
− log(1− x5) + log(1− x6)− log(1− x9),

which is smaller than the expression for g(m,n) in the case 3 - m. Thus, we have handled
the case q(n) = 2, and so all of the cases with m squarefree.

Now assume that neither m nor n is squarefree and that 1 < q(m) ≤ q(n). First suppose
that q(m) = q(n) = q. Then (5.2) becomes

g(m,n) =
∑

d | rad(m)

µ

(
rad(m)

d

)
log(1− xdq)−

∑
e | rad(n)

µ

(
rad(n)

e

)
log(1− xeq)

and the proof of the case when m,n are both squarefree can be carried over here.
So, assume that 1 < q(m) < q(n). As before, assume that µ(rad(m)) = 1. We claim that

the d = 1 term in (5.2) dominates all of the others. The sum of the e-terms is majorized
by the e = 1 term, which has exponent q(n) ≥ 3. The sum of the d terms with d > 1 is
majorized by | log(1 − x2q(m)−1)|. If q(m) = 2, we thus have exponents 2 (from d = 1), at
least 3 (from d > 1), and q(n) ≥ 3, so that

g(m,n) < log(1− x2)− 2 log(1− x3).

Hence,

eg(m,n) <
1− x2

(1− x3)2
=

1 + x

1 + x+ x2 − x3 − x4 − x5

which is < 1 for 0 < x ≤ 1
2
. If q(m) > 2 the bound is better, so we are done. �

Corollary 5.2. Suppose that x is a real number with x ≥ 2. If m,n are unequal positive
integers, then Φm(x) 6= Φn(x), except when x = 2 and {m,n} = {2, 6}.

Proof. We first note that Corollary 4.3 immediately gives us the cases when |φ(m)−φ(n)| ≥ 2,
so we may assume that either φ(m) = φ(n) or they are the numbers 1, 2. In the latter case
we quickly verify the sole solution Φ2(2) = Φ6(2), which leaves φ(m) = φ(n) ≥ 4. If x ≥ 2
and Φm(x) = Φn(x), then Proposition 2.4 implies that Φm(1/x) = Φn(1/x), in violation of
Theorem 5.1. This completes the proof. �

Corollary 5.3. Suppose that x is a real number with either x ≤ −2 or x ∈ [−1
2
, 0). Then

for distinct positive integers m,n, we have Φm(x) 6= Φn(x).
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Proof. Using Proposition 2.6, this result follows immediately from Theorem 5.1 in the case
that x ∈ [−1

2
, 0) and from Corollary 5.2 when x ≤ −2. �

Note that Theorem 5.1, Corollary 5.2, and Corollary 5.3 immediately give us Theorem
1.1.

6. An ordering based on cyclotomic polynomials

A consequence of Corollary 5.2 is that we can put an ordering on the positive integers
based on the values of cyclotomic polynomials at any x > 2. More precisely, fix any x > 2.
We write m ≺ n if Φm(x) < Φn(x). By Corollary 5.2, ≺ is a strict total ordering on the
positive integers which does not depend on the choice of x. It is natural to ask about the
properties of this ordering.

The first observation is that this ordering is the lexicographic ordering on cyclotomic
polynomials. More precisely, suppose m and n are distinct positive integers, and write

Φm(x) =
∞∑
i=0

aix
i, Φn(x) =

∞∑
i=0

bix
i,

so that ai = 0 for i > φ(m) and bi = 0 for i > φ(n), and each ai and bi is an integer. Let
i be the smallest integer such that ai 6= bi. Then Φm < Φn in the lexicographic ordering if
ai < bi, and Φm > Φn if ai > bi.

Proposition 6.1. The ordering ≺ on the positive integers coincides with the lexicographic
ordering on the cyclotomic polynomials.

Proof. Let fm,n(x) = Φm(x) − Φn(x). If Φm > Φn in the lexicographic ordering, then the
leading coefficient of fm,n is positive, so for sufficiently large x, we have fm,n(x) > 0. �

Note in particular that if m ≺ n, then φ(m) ≤ φ(n). Thus in the ordering, we first sort the
positive integers by their φ-value, and then sort the cyclotomic polynomials lexicographically
within each φ-value. Since for any k there are only finitely many positive integers n with
φ(n) = k, it follows that the order type of the positive integers with respect to ≺ is ω.

It is interesting to identify consecutive pairs in the ordering ≺. While this seems to be
difficult in general, we can identify certain consecutive pairs.

Proposition 6.2. Let p be an odd prime and i ≥ 2 an integer. Then 2pi and pi are
consecutive with respect to ≺, and 2pi ≺ pi.

We defer the proof until later in this section.

Definition 6.3. The gap γ(n) of n is equal to φ(n) − i, where i is the largest integer less
than φ(n) for which the coefficient of xi in Φn(x) is nonzero.

Proposition 6.4. For any positive integer n, we have γ(n) = q(n). More precisely, for
x ≥ 2, we have

Φn(x) = xφ(n) − µ(rad(n))xφ(n)−γ(n) +O(xφ(n)−γ(n)−1).

Proof. We first prove that when n is squarefree, then γ(n) = 1 and that

Φn(x) = xφ(n) − µ(rad(n))xφ(n)−1 +O(xφ(n)−2).
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We prove this by induction on the number ω(n) of prime factors of n. When ω(n) = 0, i.e.
n = 1, we have Φ1(x) = x− 1, so the result follows. Next, suppose that the result holds for
n, where ω(n) = k ≥ 0, and p is a prime such that p - n. Then we have

Φnp(x) =
Φn(xp)

Φn(x)
.

By the inductive hypothesis, we thus have

Φnp(x) =
xpφ(n) − µ(n)xpφ(n)−p +O(xpφ(n)−2p)

xφ(n) − µ(n)xφ(n)−1 +O(xφ(n)−2)

=
x(p−1)φ(n) +O(x(p−1)φ(n)−p)

1− µ(n)x−1 +O(x−2)

= x(p−1)φ(n) + µ(n)x(p−1)φ(n)−1 +O(x(p−1)φ(n)−2).

Since (p− 1)φ(n) = φ(pn), the proof is complete in the squarefree case.
We reduce the non-squarefree case to the squarefree case using Proposition 2.5, completing

the proof. �

We now prove Proposition 6.2.

Proof of Proposition 6.2. It suffices to show that, among all the numbers n with φ(n) =
φ(pi), we have γ(pi) > γ(n) unless n ∈ {pi, 2pi}. We have φ(pi) = (p − 1)pi, so if n is not
equal to pi or 2pi but φ(n) = φ(pi), then n must have a prime factor q such that p | (q − 1).
In particular, q > p. Now, note that if n = qe11 · · · qerr , then we have

γ(n)

φ(n)
=

∏r
i=1 q

ei−1
i∏r

i=1(qi − 1)qei−1i

=
r∏
i=1

1

qi − 1
<

1

p− 1
=
γ(pi)

φ(pi)
.

Since φ(n) = φ(pi), we therefore have γ(n) < γ(pi), as desired. �

If i = 1, then it is not always true that 2p and p are consecutive with respect to ≺.
However, they are ≺-consecutive when 2p and p are the only integers whose φ-values are
equal to p− 1. When p ≡ 3 (mod 4), there is a simple criterion.

Proposition 6.5. Let p ≡ 3 (mod 4) be prime. Then 2p and p are ≺-consecutive unless
there is a prime q and an integer j ≥ 2 such that φ(qj) = p− 1.

Proof. Note that p − 1 ≡ 2 (mod 4), and that φ(q) is even for every odd prime q. Since φ
is multiplicative, if n is odd, then φ(n) ≡ 0 (mod 2ω(n)). Thus an odd n with φ(n) = p− 1
can only have one prime factor. Next, suppose that n = 2em, where m is odd and e ≥ 2.
Then φ(n) = 2e−1φ(m) is divisible by 4 unless e = 2 and m = 1, in which case n is a prime
power. If e = 1, then φ(n) = φ(m), so we have already analyzed this case. �

We remark that very few primes p ≡ 3 (mod 4) have the property that p− 1 = φ(qj) for
some prime q and exponent j > 1. An easy argument shows that the number of such primes
p ≤ x is O(

√
x).

When p ≡ 1 (mod 4), there are more ways for there to exist an integer n other than p and
2p with φ(n) = p − 1. Still, this is relatively unusual behavior: Theorem 4.1 in [BFL+05]
shows that the number of such primes up to x is ≤ x

log2+o(1) x
as x→∞. On the other hand,

it is not known unconditionally if there are infinitely many such primes, though this follows
from Schinzel’s Hypothesis H.
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There is another total ordering we can put on the positive integers based on the values of
cyclotomic polynomials at some x ∈ (0, 1

2
], thanks to Theorem 5.1. Let us write m ≺′ n if

Φm(x) < Φn(x) for some (hence any) x ∈ (0, 1
2
]. Like ≺, ≺′ is also a lexicographic ordering,

but in reverse order of degrees. That is, suppose

Φm(x) =
∞∑
i=0

aix
i, Φn(x) =

∞∑
i=0

bix
i.

If m 6= n, then let i be the smallest nonnegative integer for which ai 6= bi. Then m ≺′ n if
ai < bi, and n ≺′ m if bi < ai.

Unlike ≺, ≺′ is not a well-ordering. To see this, we produce an infinite decreasing sequence.
Let p be any prime. Then for any positive integer i, we have Φpi(x) = 1 + xp

i−1
+O(xp

i−1+1)
as x→ 0. Thus we have pi+1 ≺′ pi, so the powers of p form an infinite decreasing sequence.
In addition, the sequence of primes forms an infinite increasing sequence, which implies that
the reverse of ≺′ is not a well-ordering either. It would be interesting to describe the order
type of ≺′.

7. Near misses

Other than Φ2(2) = Φ6(2), we have shown that all real roots of of Φm − Φn are smaller
than 2. It is natural to ask whether there are roots that get close. To this end, let

S = {α ∈ R : Φm(α) = Φn(α) for some m 6= n}.

Thus we ask whether 2 is a limit point of S. We begin with some examples:

• Φ209 − Φ179 has a root at 1.99975454398254 · · · ,
• Φ407 − Φ359 has a root at 1.99975550093366 · · · ,
• Φ221 − Φ191 has a root at 1.99993512065828 · · · ,
• Φ527 − Φ479 has a root at 1.99999618493891 · · · .

These near-misses were constructed as follows: let p, q, r be primes such that pq = p+q+r,
and p < q. Then we claim that Φpq − Φr has a root very close to the largest real root of
ψp−1(x) = xp−1−xp−2−xp−3 · · ·−x−1, with this root getting closer the larger that q is. Note
that the latter polynomial has a root very close to 2, since ψp−1(2) = 1 and ψ′p−1(2) = 2p−1−1,

so the largest real root of ψp−1 is approximately 2− 1
2p−1−1 . Let us write αp−1 for the largest

real root of ψp−1.
The reason why Φpq−Φr has a root very close to αp−1 is that we have a near-factorization

of Φpq − Φr, namely

Φpq(x)− Φr(x) = ψp−1(x)xφ(pq)−φ(p) + δ(x),

where deg(δ) ≤ φ(pq) − p. Furthermore, by Proposition 2.7, all the coefficients of δ lie in
{−2,−1, 0, 1}. Note that the degree of δ is much smaller than the degree of the main term
ψp−1(x)xφ(pq)−φ(p), so this is a small perturbation.

In general, suppose we have a polynomial f(x) all of whose complex roots are distinct,
and a perturbation polynomial g(x) with deg(g) < deg(f). Let us suppose that f(x) + tg(x)

factors as
∏d

i=1(x−βi(t)), where the βi’s are continuous functions for small values of t. Then
we have

β′i(0) = − g(βi(0))

f ′(βi(0))
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p q r β αp−1 (αp−1 − β)−1 1
2q(αp−1−β)

3 5 7 1.90040519768798 1.92756197548293 36.8232198808926 1.15072562127789
3 7 11 1.92172452309274 1.92756197548293 171.307607010499 1.33834067976952
3 11 19 1.92717413781454 1.92756197548293 2578.39833911685 1.25898356402190
3 13 23 1.92745816209718 1.92756197548293 9632.66916662882 1.17586293537949
5 7 23 1.97926028654319 1.98358284342433 231.344555433128 1.80737933932131
5 13 47 1.98351307615232 1.98358284342433 14333.3682296163 1.74967873896684
5 19 71 1.9835169859533 1.98358284342433 873492.901563983 1.66605549156949
7 11 59 1.99577873757697 1.99603117973541 3961.30347707098 1.93423021341356
7 13 71 1.99596788607732 1.99603117973541 15799.3712194387 1.92863418206039
7 19 107 1.99603017934944 1.99603117973541 999614.177077968 1.90661273398964

Table 1

(see [Wil84]). In our case, with g = δ, we expect to have a root of Φpq − Φr near

αp−1 −
δ(αp−1)

Φ′pq(αp−1)− Φ′r(αp−1)− δ′(αp−1)
.

Since |δ(αp−1)| ≤ 2pq−2p−q+3 and the denominator has size on the order of 2pq−p−q, we have
a root of Φpq − Φr somewhere around

αp−1 −
1

2q
.

This matches experimental observation, as shown in Table 1. Here β is the root of Φpq −Φr

close to αp−1.

Conjecture 7.1. The largest limit point of S is 2.

This would follow from the above work if we could show that, for infinitely many primes p,
there exists a prime q > p such that pq−p− q is also prime. This would follow, for instance,
from Dickson’s prime k-tuples conjecture, which says that several linear polynomials in Z[x]
will be simultaneously prime infinitely often unless there is a congruential obstruction. In
this case, for any fixed p, we apply this to the two polynomials x and (p− 1)x− p, and the
conjecture implies there should be infinitely many x where both are prime. However, this is
stronger than what we need. Indeed, it suffices to prove that for infinitely many primes p,
there is at least one value of x > p with both x and (p − 1)x − p simultaneously prime. It
may be possible to prove this unconditionally. According to our calculations, this appears
to be the only route to Conjecture 7.1: all points in S close to 2 appear to have this form.

On the other side, there are values of m and n such that Φm(x) − Φn(x) has roots not
far from ±1

2
. For instance, if p is a large prime, then Φ3p(x) − Φ4(x) has a root near ρ :=

−0.569840290998 · · · , which is a root of x3 +x2 +2x+1. In fact, as p→∞, the polynomials
Φ3p(x)−Φ4(x) have roots that converge to ρ (and Φ6p(x)−Φ4(x) have roots which converge
to −ρ). To see this, note that Φ3p(x) = 1−x+x3−x4+x6−x7+· · ·+x2p−5−x2p−3+x2p−2. As
p→∞, these polynomials converge termwise to the power series

∑∞
n=0(1− x)x3n = 1

1+x+x2
.

If |x| < 1, then Φ3p(x) ≈ 1
1+x+x2

, so Φ3p(x)− Φ4(x) has a root near that of 1
1+x+x2

− Φ4(x),

i.e., where (1 + x + x2)(1 + x2) = 1. This means that x4 + x3 + 2x2 + x = 0. Curiously,
roots of Φ4p(x) − Φ3(x) also converge to the same number. We can do better however.
The polynomial Φ30(x) − Φ4(x) has a root at σ := 0.5284555592772 · · · , and as the prime
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p → ∞, Φ30p(x) − Φ4p(x) has a root that converges to σ. Better still: Take m as the
product of the first k ≥ 3 primes and n as 2

15
m. Then Φm(x)− Φn(x) seems to have a root

converging to a number slightly below 0.52. For example, when k = 5, there is a root at
0.51976982658213 · · · . Perhaps the number 1

2
in Theorem 1.1 is best possible, but we do not

have strong evidence either way.
Based on numerical computations, we present the following conjectures.

Conjecture 7.2. For any distinct positive integers m and n, if z ∈ C\R and Φm(z) = Φn(z),
then 1√

2
< |z| ≤

√
2. The upper bound is attained only for {m,n} = {1, 3}, {1, 4}, {1, 5}.

Conjecture 7.3. Let SC denote the set of all nonreal complex numbers z such that Φm(z) =
Φn(z) for some distinct coprime positive integers m and n. Then for any ε > 0, we have
1− ε < |z| < 1 + ε for all but finitely many elements of SC.

Without the coprime hypothesis Conjecture 7.3 is likely to be false. To see this, note that
if m and n are both odd and α is a positive real root of Φm(x) − Φn(x), then iα1/2 is a
nonreal root of Φ4m(x)−Φ4n(x). Since presumably polynomials of the form Φm(x)−Φn(x)
can have real roots arbitrarily close to 2, this implies that Φ4m(x) − Φ4n(x) can have roots
arbitrarily close to

√
−2.

However, there are infinitely many real roots bounded away from ±1. Thus we see that
apparently there is a significant behavioral difference between the real and nonreal roots of
differences of cyclotomic polynomials.

The observed behavior of roots of Φm(x) − Φn(x) is consistent with typical behavior of
random polynomials whose coefficients are each chosen uniformly in some large interval.
Let d be a large positive integer and B a large positive real number, and let f(x) be a
degree-d polynomial in R[x] whose coefficients are chosen uniformly and independently from
the interval [−B,B]. Then it is known (see [HN08]) that all but o(d) of the roots of f are
asymptotically almost surely very close to the unit circle.

On the other hand, the behavior of the real roots, of which there are o(d), behave rather
differently. Kac in [Kac49] showed that the expected number of real roots is 2

π
log d. Similarly,

Littlewood and Offord (see [LO38, LO43, LO45, LO48]) proved that for almost all f (with
coefficients chosen independently from any of several different distributions), the number rf
of real roots satisfies

log n

log log log n
� rf � log2 n.

Kac also showed that for any α ∈ (0, 1), the expected number of real roots in the range (0, α)
is O(1), but not 0.
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