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1 Introduction

In his analysis of sorting algorithms, Knuth introduced the notion of forbidden pattern in
permutations, which later became a field of interest per se [10]. By studying the basis of such
forbidden patterns for permutations reachable with k right-jumps from the identity permutation,
the authors of [1] discovered that the permutations of size n in this basis were enumerated by
the sequence of integers {bn}n≥0 given by b0 = 1, b1 = 0,

bn+2 = 2nbn+1 + (1 + n − n2)bn for all n ≥ 0. (1)

This is sequence A265165 in the OEIS1, it starts like 0, 1, 2, 7, 32, 179, 1182, 8993, 77440,
744425, 7901410, 91774375. . .

Such a sequence satisfying a recurrence with polynomial coefficients in n is called P-recursive
(for polynomially recursive), D-finite, or holonomic, depending on the authors (see e.g. [5, 7,
11, 13]). P-recursive sequences are ubiquitous in combinatorics, number theory, analysis of
algorithms, computer algebra, etc. It is always the case that the corresponding generating
function satisfies a linear differential equation, but it is not always the case that it has a closed
form. The generating function of {bn}n≥0 has in fact a nice closed form involving the golden
ratio. Indeed, putting

(α,β) ∶= (
1 +

√
5

2
,
1 −

√
5

2
)

for the two roots of the quadratic equation x2−x−1 = 0, it was shown in [1] that the exponential
generating function of the {bn}n≥0, namely

B(x) = ∑
n≥0

bn
xn

n!
, satisfies B(x) =

−β

α − β
(1 − x)α + α

α − β
(1 − x)β − 1. (2)

This is a noteworthy sequence in analytic combinatorics (see [5] for a nice presentation of this
field), as it is one of the rare sequences exhibiting an irrational exponent in its asymptotics:

bn
n!

∼
α

√
5Γ(α − 1)

nα−2(1 + o(1)) as n→∞,

where Γ(z) = ∫
+∞

0 tz−1 exp(−t)dt is the Euler gamma function.

1On-Line Encyclopedia of Integer Sequences, https://oeis.org.
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There is a vast literature in number theory analyzing the modular congruences of famous
sequences (Pascal triangle, Fibonacci, Catalan, Motzkin, Apéry numbers, see [3, 6, 8,12,14]).
The properties of bn mod m are sometimes called “supercongruences” when m is the power of
a prime number: many articles consider m = 2r, or m = 3r. We now restate an important result
which holds for any m (not necessarily the power of a prime number).

Theorem 1 (Supercongruences for D-finite functions, Theorem 7 of [1]).
Consider any P-recurrence of order r:

P0(n)un =
r

∑
i=1
Pi(n)un−i ,

where the polynomials P0(n), . . . , Pr(n) belong to Z[n], and where the polynomial P0(n) is
ultimately invertible mod m ( i.e., gcd(P0(n),m) = 1 for all n large enough). Then the sequence
(un) is eventually periodic2 mod m. In particular, recurrences such that P0(n) = 1 are periodic
mod m. Additionally, the period is always bounded by m2r, therefore there is an algorithm to
compute it.

N.B.: It is not always the case that P-recursive sequences are periodic mod p. E.g., it was
proven in [9] that Motzkin numbers are not periodic mod m, and it seems that

(n + 3)(n + 2)un = 8(n − 1)(n − 2)u(n − 2) + (7n2 + 7n − 2)u(n − 1) , u0 = 0, u1 = 1 ,

is also not periodic mod m, for any m > 2 (this P-recursive sequence counts a famous class
of permutations, namely, the Baxter permutations). This is coherent with Theorem 1, as the
leading term in the recurrence (the factor (n + 3)(n + 2)) is not invertible mod m, for infinitely
many n.

For our sequence {bn}n≥1 (defined by recurrence (1)), this theorem explains the periodic
behavior of bn mod m. By brute-force computation, we can get bn mod m, for any given m.
For example bn mod 15 is periodic of period 12:

{bn mod 15}n≥9 = (10,5,10,10,0,10,5,10,5,5,0,5)∞.

The period can be quite large, for example bn mod 3617 has period 26158144. More generally,
for every positive integer m, the sequence {bn mod m}n≥1 is eventually periodic: there exist
Tm > 0 and nm such that, for all n ≥ nm, one has bn+Tm ≡ bn (mod m). We write Tm for the
smallest such period. In this paper, we study some of the properties of {Tm}m≥1.

This is sequence A306699 in the OEIS, here are its first values T2, . . . , T100:
2, 12, 8, 1, 12, 84, 8, 36, 2, 1, 24, 104, 84, 12, 16, 544, 36, 1, 8, 84, 2, 1012, 24, 1, 104, 108, 168, 1, 12, 1, 32,
12, 544, 84, 72, 2664, 2, 312, 8, 1, 84, 3612, 8, 36, 1012, 4324, 48, 588, 2, 1632, 104, 5512, 108, 1, 168, 12, 2,
1, 24, 1, 2, 252, 64, 104, 12, 2948, 544, 3036, 84, 1, 72, 10512, 2664, 12, 8, 84, 312, 1, 16, 324, 2, 13612, 168,
544, 3612, 12, 8, 1, 36, 2184, 2024, 12, 4324, 1, 96, 18624, 588, 36, 8.
Do you detect the hidden patterns in this sequence? This is what we tackle in the next section.

2In the sequel, we will omit the word “eventually”: a periodic sequence of period p is thus a sequence for
which un+p = un for all large enough n. Some authors use the terminology “ultimately periodic” instead.

3

https://oeis.org/A306699


Cyril Banderier & Florian Luca Period mod m of P-recursive sequences: a case study

2 Periodicity mod m, supercongruences and links with
number theory

Our main result is the following.

Theorem 2. Let bn be the sequence defined by the recurrence of Formula 1. The period Tm of
this sequence bn mod m satisfies:

a) If m = pe1
1 . . . pek

k (where p1, . . . , pk are distinct primes), then3

Tm = lcm(Tpe1
1
, . . . , Tpek

k
).

b) We have Tm = 1 if and only if m is the product of primes p ≡ 0,1,4 (mod 5).

c) For every prime p, we have Tp ∣ 2pord5(p) (and thus Tp ∣ 2p(p − 1)).

d) If Tm > 1 then Tm is even (and a multiple of 4 if m is prime).

e) For m ≥ 3, we have Tm = 2 if and only if m is even and m
2 is the product of primes

p ≡ 0,1,4 (mod 5).

f) For any prime p not 0,1,4 (mod 5), we have Tpk ∣ 2pk(p − 1).

The function Tm thus shares some similarities with the Carmichael function introduced
in [2, p. 39], and it is expected that its asymptotic behavior is also similar (following e.g. the
lines of [4]). In this article, we focus on the rich arithmetic properties of this function. Note
that it allows to compute Tm in a much faster way than the brute-force algorithm mentioned in
Section 1: the complexity goes from m2r via brute-force to e.g. ln(m)3 via Shor’s algorithm (or
some other sub-exponential complexity in ln(m) with other efficient algorithms).

Proof of Part a). The proof will use a little preliminary result and the following definition.
We call Tm the “eventual period of the sequence mod m”, or for short with a slight abuse
of terminology, the “period of the sequence mod m” (even if the sequence starts with some
terms which does not satisfy the periodic pattern). The following lemma holds for all eventually
periodic sequences of integers.

Lemma 1. Tm divides all other periods of {un}n≥0 modulo m.

Proof. Let Tm = a and assume there is b (not a multiple of a) which is also a period modulo
m. Thus, there are na, nb such that un+a ≡ un (mod m) for all n > na and un ≡ un+b
(mod m) for all n > nb. Let d = gcd(a, b). By Bézout’s identity, one has then d = Aa +Bb
for some integers A, B. Let na,b = max{na, nb} + ∣A∣a + ∣B∣b and assume that n > na,b. Then
ua+d = un+Aa+Bb ≡ u(n+Aa)+bB (mod m) ≡ un+Aa (mod m) ≡ un (mod m) so d < a is a period
of {un}n≥0 modulo m, contradicting the minimality of a.

3As usual, lcm stands for the least common multiple.
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An immediate consequence is the following4:

Corollary 1. We have T[m1,...,mr] = [Tm1 , . . . , Tmr].

Proof. First consider r = 2, and let a ∶=m1, b ∶=m2. Since [Ta, Tb] is a multiple of both Ta and
Tb, it follows that it is a period of {un}n≥0 modulo both a and b, so modulo [a, b]. It remains
to prove that it is the minimal one. To this aim, suppose that T[a,b] < [Ta, Tb]. Then either
Ta ∤ T[a,b] or Tb ∤ T[a,b]. Since the two cases are similar, we only deal with the first one. In this
case we would have that both Ta and T[a,b] would be periods modulo a. By the previous lemma,
this would force gcd(Ta, T [a, b]) < Ta, which would obviously be a contradiction. Now, a trivial
induction on the number r ≥ 2 gives that

T[m1,...,mr] = [Tm1 , . . . , Tmr]

holds for all positive integers m1, . . . ,mr.

In particular Part a) of Theorem 2 holds: Tm = lcm(Tpe1
1
, . . . , Tpek

k
). Let us now tackle the

proofs of Parts b)–f).

Proof of Part b). We use the generating function (2), which tells us that

[xn]B(x) =
bn
n!

=
(−1)n
√

5
(α(

β

n
) − β(

α

n
)) . (3)

Thus,
bn =

(−1)n−1
√

5
(βα(α − 1)⋯(α − (n − 1)) − αβ(β − 1)⋯(β − n + 1)) . (4)

By Fermat’s little theorem,
p−1

∏
k=0

(X − k) =Xp −X (mod p). (5)

Assume now that p ≡ 1,4 (mod 5). Then
p−1

∏
k=0

(α − k) ≡ αp − α (mod p) ≡ 0 (mod p),

where for the last congruence we used the law of quadratic reciprocity: since p ≡ 1,4 (mod 5),
we have

(
5
p
) = (

p

5
) = 1,

where (
●

p
) is the Legendre symbol. Thus,

αp = (
1 +

√
5

2
)

p

≡
1 +

√
5 ⋅ 5(p−1)/2

2p
(mod p) ≡ α (mod p), (6)

because 5(p−1)/2 ≡ (
5
p
) ≡ 1 (mod p) by Euler’s criterion.

4We use the notation [m1, . . . , mr] = lcm(m1, . . . , mr) for the least common multiple of integers m1, . . . , mr.
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In the above and in what follows, for two algebraic integers δ, γ and an integer m we write
δ ≡ γ (mod m) if the number (δ − γ)/m is an algebraic integer. This shows that

1
p

p−1

∏
k=0

(α − k)

is an algebraic integer. The same is true with α replaced by β. Now take r ≥ 1 be any integer
and take n ≥ pr. Then, for each ` = 0,1, . . . , r − 1, we have that both

1
p

p−1

∏
k=0

(α − (p` + k)) and 1
p

p−1

∏
k=0

(β − (p` + k))

are algebraic integers. Thus, if n ≥ pr, then
√

5bn
pr

= (−1)n−1 ⎛

⎝
β
r−1
∏
`=0

p−1

∏
k=0

(α − (p` + k))
n−1
∏
k=pr

(α − k) − α
r−1
∏
`=0

p−1

∏
k=0

(β − (p` + k))
n−1
∏
k=pr

(β − k)
⎞

⎠

is an algebraic integer. Thus, 5b2
n/p

2r is an algebraic integer and a rational number, so an
integer. Since p ≠ 5, it follows that p2r ∣ b2

n, so pr ∣ bn for n ≥ pr. This shows that Tpr = 1
for all such primes p and positive integers r. The same is true for p = 5. There we use that
α − 3 =

√
5β, so

√
5 ∣ α − 3. Thus, if n ≥ 10r, we have that

n

∏
k=1

(α − k) is a multiple of
2r−1
∏
`=0

(α − (3 + 5`)) in Z[(1 +
√

5)/2],

which in turn is a multiple of 5r =
√

52r in Z[(1 +
√

5)/2]. Thus, if n ≥ 10r, then 5r ∣ bn. This
shows that also T5r = 1 and in fact, m ∣ bn for all n > nm if m is made up only of primes 0,1,4
(mod 5). This finishes the proof of b).

Proof of Part c). The claim is satisfied for p = 2, as {bn mod 2}n≥0 = (1,0)∞, thus
T2 = 2∣4. Now consider p > 2. Evaluating Formula (5) at α = 1+√5

2 , one has
p−1

∏
k=0

(α − k) ≡ αp − α (mod p).

Since 5(p−1)/2 ≡ −1 (mod p), the argument from (6) shows that αp ≡ β (mod p). Thus
2p

∏
k=1

(α − k) =
p

∏
k=1

(α − k)
2p

∏
k=p+1

(α − k) ≡ (β − α)2 (mod p) ≡ 5 (mod p).

The same is true for α replaced by β. Thus, it follows that for n > 2p, we have

bn+2p =
(−1)n+2p−1

√
5

(β
n+2p−1

∏
k=0

(α − k) − α
n+2p−1

∏
k=0

(β − k))

≡
(−1)n−1

√
5

5(β
n−1
∏
k=0

(α − k) − α
n−1
∏
k=0

(β − k)) (mod p)

≡ 5bn (mod p).

6
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Applying this k times, we get
bn+2pk ≡ 5kbn (mod p).

Taking k = p − 1 and applying Fermat’s little theorem 5p−1 ≡ 1 (mod p), we get Tp ∣ 2p(p − 1).
In fact, taking k = ordp(5), where ordp(5) is the order of 5 modulo p (the smallest k > 0 such
that 5k ≡ 1 (mod p)) gives the slightly stronger claim: Tp ∣ 2pordp(5).

Proof of Part d). There are more things to learn from the above argument. We first
prove by contradiction the second claim of d): 4∣Tp, for a prime p such that Tp > 1. Assume
ν2(Tp) < 2, where νq(a) is the exponent of q in the factorization of a. That is, Tp is either odd
or 2 times an odd number. Since Tp ∣ 2p(p − 1), it follows that if we write p − 1 = 2ak, where k
is odd, then Tp ∣ 2pk. Thus,

bn ≡ bn+2pk ≡ 5kbn (mod p) (7)

for all n > np. Since 5 is not a quadratic residue, it follows that 5k /≡ 1 (mod p) (since
−1 ≡ 5(p−1)/2 ≡ (5k)2a−1

(mod p)). So, the above congruence (7) implies that p ∣ (5k − 1)bn but
p ∤ 5k − 1, so bn ≡ 0 (mod p) for all large n. Take n and n+ 1 and rewrite the information that
bn ≡ bn+1 ≡ 0 (mod p) in Z[α]/pZ[α] as

bn = β
n−1
∏
k=0

(α − k) − α
n−1
∏
k=0

(β − k) ≡ 0 (mod p) ,

bn+1 = β (
n−1
∏
k=0

(α − k)) (α − n) − β (
n−1
∏
k=0

(β − k)) (β − n) ≡ 0 (mod p).

We treat this as a linear system in the two unknowns

(X,Y ) = (β
n−1
∏
k=0

(α − k), α
n−1
∏
k=0

(β − k))

in the field with p2 elements Z[α]/pZ[α]. This is homogeneous. None of X or Y is 0 since p
cannot divide β∏n−1

k=0(α − k). Thus, it must be that the determinant of the above matrix is 0
modulo p, but this is

∣
1 −1

α − n −(β − n)
∣ =

√
5,

which is invertible modulo p. Thus, indeed, it is not possible that bn and bn+1 is a multiple of p
for all large n, getting a contradiction. This shows that Tp is a multiple of 4.

Proof of Part e) (and first claim in Part d). Now let m which is not like in b), i.e. one
has at least one prime p ≡ 2,3 (mod 5) such that p ∣ m. Then 4 ∣ Tp by what we have done
above, and so 4 ∣ Tm by a). Thus, such m cannot participate in the situations described either
at d) or e). Further, one has T4 = 8 as {bn mod 4}n≥0 = (1,0,1,2,3,0,3,2)∞. Thus, if 4 ∣m,
then 8 ∣ Tm. Hence, if Tm = 2, then the only possibility is that 2 ∣m and m/2 is a product of
primes congruent to 0,1,4 modulo 5. Conversely, if m has such structure then Tm = 2 by a)
and the fact that T2 = 2 and Tpr = 1 for all odd prime power factors pr of m. This ends the
proof of e) and d).

7



Cyril Banderier & Florian Luca Period mod m of P-recursive sequences: a case study

Proof of Part f). Finally, f) is based on a slight generalization of (5) namely
pr−1

∏
k=0

(X − k) ≡ (Xp −X)p
r−1

(mod pr) (8)

valid for all odd primes p and r ≥ 1. Let us prove (8). We first prove it for r = 2. We return to
(5) and write

p−1

∏
k=0

(X − k) =Xp −X + pH1(X),

where H1(X) ∈ Z[X]. Changing X to X − p` for ` = 0,1, . . . , p − 1, we get that
p−1

∏
k=0

(X − (p`+ k)) = (X − p`)p − (X − p`) + pH(X − p`) ≡ (Xp −X − pH(X)) − p` (mod p2).

In the above, we used the fact that H(X − p`) ≡H(X) (mod p). Thus,
p2−1

∏
k=0

(X − k) =
p−1

∏
`=0

p−1

∏
k=0

(X − (p` + k))

≡
p−1

∏
k=0

((Xp −X − pH(X)) − p`) (mod p2)

≡ (Xp −X − pH(X))p − (Xp −X − pH(X))p−1p(
p−1

∑
`=0
`) (mod p2)

≡ (Xp −X)p − (Xp −X − pH(X))p−1p(
p(p − 1)

2
) (mod p2)

≡ (Xp −X)p (mod p2).

In the above, we used the fact that p is odd so p(p− 1)/2 is a multiple of p. This proves (8) for
r = 2. Assuming r ≥ 2 and that (8) holds for pr, we get that for all ` ≥ 0, we have

pr−1

∏
k=0

(X − (pr` + k)) ≡ ((X − pr`)p − (X − pr`))p
r−1

+ prHr(X − pr`) (mod pr+1)

≡ (Xp −X)p
r−1

+ prHr(X) (mod pr+1),

where Hr(X) ∈ Z[X]. Thus,
pr+1−1

∏
k=0

(X − k) =
p

∏
`=0

pr−1

∏
k=0

(X − (pr` + k))

≡ ((Xp −X)p
r−1

+ prHr(X))p (mod pr+1)

≡ (Xp −X)p
r

(mod pr+1),

which is what we wanted. Letting p > 2 be congruent to 2,3 (mod 5), we and evaluating the
above in α and using that αp ≡ β (mod p), we get easily that
pr−1

∏
k=0

(α − k) ≡ (Xp −X)p
r−1

(mod pr) ≡ (αp − α)p
r−1

(mod pr) ≡ (β − α)p
r−1

(mod pr).

8
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This shows that

2pr−1

∏
k=0

(α − k) ≡ (β − α)2pr−1
(mod pr) ≡ 5pr−1

(mod pr).

The same is true for β leading to

bn+2pr ≡
(−1)n+2pr−1

√
5

5pr−1
(β

n−1
∏
k=0

(α − k) − α
n−1
∏
k=0

(β − k)) (mod pr) ≡ 5pr−1
bn (mod pr).

Thus, applying this k times we get

bn+2prk ≡ 5pr−1kbn (mod pr).

Taking k = p−1 and applying Euler’s theorem 5pr−1(p−1) ≡ 1 (mod pr), we get that bn+2pr(p−1) ≡ bn
(mod pr). Thus, Tpr ∣ 2pr(p − 1). As in c), we can replace p − 1 by ordp(5) and the divisibility
holds.

Finally, it remains to prove f) for p = 2. Here, by inspection, we have

7
∏
k=0

(X − k) ≡ (X2 −X)4 (mod 4).

By induction on r ≥ 2, one shows that

2r+1−1
∏
k=0

(X − k) ≡ (X2 −X)2r

(mod 2r).

Evaluating this in α, we get

2r+1−1
∏
k=0

(α − k) ≡ (α2 − β)2r

≡ 52r−1
(mod 2r).

The same holds for β, so

bn+2r+1 =
(−1)n+2r+1−1

√
5

52r−1
(β

n−1
∏
k=0

(α − k) − α
n−1
∏
k=0

(β − k)) (mod 2r)

≡ 52r−1
bn (mod 2r) ≡ bn (mod 2r)

showing that T2r ∣ 2r+1 for all r ≥ 2.

9
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3 Comments and generalizations
Along the proof of our main result we showed that if p ≡ 2,3 (mod 5), then

bn+2p ≡ 5bn (mod p).

From here we deduced that Tp ∣ 2p(p − 1) via the fact that 5p−1 ≡ 1 (mod p). One may ask
whether it can be the case that Tp2 ∣ 2p(p − 1) for some prime p. Well, first of all, we will
need that 5p−1 ≡ 1 (mod p2). This makes p a base 5 Wieferich prime. There is a conjecture
that there are infinitely many such primes. The smallest known which is also congruent to
2,3 (mod 5) is 40487. However, the condition of condition of p being base 5 Wieferich is not
sufficient. A close analysis of our arguments show that in addition to this condition, it should
also hold that

2p−1

∏
k=0

(α − k) − 5 ≡ 0 (mod p2) ,

and if this is the case then indeed Tp2 ∣ 2p(p − 1). Since the integer (1/p)(∏2p−1
k=0 (α − k) − 5) in

Z[α] should be the zero element in the finite field Z[α]/pZ[α], with p2 elements, it could be
that the “probability” that this condition happens is 1/p2. By the same logic, the “probability”
that p is base 5 Wieferich should be 1/p. Assuming these events to be independent, we could
infer that the probability that both these conditions hold is 1/p3 and the series

∑
p≡2,3 (mod 5)

1
p3

is convergent, which seems to suggest, heuristically, that there should be only finitely many
primes p ≡ 2,3 (mod 5) such that Tp2 ∣ 2p(p − 1).

Finally, our results apply to other sequences as well. More precisely, let a, b be integers and
let α, β be the roots of x2 − ax − b. Let

Ba,b =
−β

α − β
(1 − x)α + α

α − β
(1 − x)β = ∑

n≥0
bn
xn

n!
.

The sequence {bn}n≥0 satisfies b0 = 1, b1 = 0, and, for n ≥ 0

bn+2 = (2n − a + 1)bn+1 + (b + an − n2)bn.

In case α and β are rational (hence, integers), B(x) is a rational function, so bn = n!un, where
{un}n≥0 is binary recurrent with constant coefficients. It then follows that bn ≡ 0 (mod m)

for all m provided n > nm is sufficiently large. Thus, Tm = 1. In case α,β are irrational, then
a similar result holds as for the case when (a, b) = (1,1). Namely, bn ≡ 0 (mod m) for all
n sufficiently large whenever m is the product of odd primes p for which (

∆
p
) = 0,1, where

∆ = a2 + 4b is the discriminant of the quadratic x2 − ax − b. In case p is odd and (
∆
p
) = −1, we

have that Tp ∣ 2p(p− 1) and Tp is a multiple of 4. Also, Tpr ∣ 2pr(p− 1) for all r ≥ 1 in this case.
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The proofs are similar. In the case of the prime 2 one needs to distinguish cases according to the
parities of a, b. For example, if a and b are odd, then ∆ ≡ 5 (mod 8), so 2 is not a quadratic
residue modulo ∆, so T2r ∣ 2r+1 for all r ≥ 1, whereas if a is odd and b is even then T2 = 1. This
concludes our analysis of the periodicity of such P-recursive sequences mod m.
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