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SIGNED PARTITIONS -

A BALLS INTO URNS APPROACH

ELI BAGNO AND DAVID GARBER

Abstract. Using Reiner’s definition of Stirling numbers of type
B of the second kind, we provide a ’balls into urns’ approach for
proving a generalization of a well-known identity concerning the

classical Stirling numbers of the second kind: xn =
n
∑

k=0

S(n, k)[x]k.

1. Introduction

The partitions of the set [n] = {1, . . . , n} in k blocks are enumerated
by the Stirling numbers of the second kind, denoted by S(n, k) (see [7,
page 81]). These numbers arise in a variety of problems in enumerative
combinatorics; they have many combinatorial interpretations, and have
been generalized in various contexts and in many ways.
One of the celebrated results concerning Stirling numbers of the sec-

ond kind is the following: Let x ∈ R and let n ∈ N. Then we have:

xn =

n
∑

k=0

S(n, k)[x]k, (1)

where [x]k := x(x− 1) · · · (x− k+ 1) is the falling factorial of degree k
and [x]0 := 1.
This identity arises when one expresses the standard basis of the

polynomial ring R[x] as a linear combination of the basis consisting of
the falling factorials (see e.g. the survey of Boyadzhiev [3]).

There are some known proofs for this identity. A combinatorial one,
realizing xn as the number of functions from the set {1, . . . , n} to the set
{1, . . . , x} (for an integer x), is presented by Stanley [7, Eqn. (1.94d);
its proof is in page 83], and we quote it here (where #N = n and
#X = x):

“The left-hand side is the total number of functions f : N → X .
Each such function is surjective onto a unique subset Y = f(N)
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of X satisfying #Y ≤ n. If #Y = k, then there are k!S(n, k)
such functions, and there are

(

x

k

)

choices of subsets Y of X with
#Y = k. Hence:

xn =
n
∑

k=0

k!S(n, k)
(

x

k

)

=
n
∑

k=0

S(n, k)[x]k.”

There is a nice generalization of Identity (1), which appears in Rem-
mel and Wachs [5] and Bala [2]. In order to demonstrate this gen-
eralization combinatorially, we use the Stirling numbers of type B of
the second kind, denoted by SB(n, k), which are related to the Coxeter
group of type B. The exact definition will be given in Section 2. Their
generalization is:

Theorem 1.1. Let x ∈ R and let n ∈ N. Then we have:

xn =

n
∑

k=0

SB(n, k)[x]
B
k , (2)

where [x]Bk := (x− 1)(x− 3) · · · (x− 2k + 1) and [x]B0 := 1.

Remmel and Wachs [5] proved this equality by using the combina-
torial interpretation of SB(n, k) as counting configurations of k-non
attacking rooks (specifically, this is S0,2

n,k(1, 1) in their notation). Bala
[2] proved this equality using a generating-functions technique (S(2,0,1)

in his notation).
In [1], a geometric way to prove Equation (2), interpreting xn as

counting the number of points in a cubical lattice, is presented.

The purpose of this note (see Section 3) is a simple combinatorial
proof, which interprets both sides of Equation (2), using a balls into
urns approach. Note that our proof is actually a generalization for
Coxeter groups of type B of the proof for Equation (1), that we have
quoted above.

2. Signed partitions

We define the objects which the Stirling numbers of type B of the sec-
ond kind count, introduced by Reiner [4]. Denote [±n] := {±1, . . . ,±n}
and −C := {−i | i ∈ C} for a set C ⊆ [±n].

Definition 2.1. A signed partition is a set partition of [±n] into blocks,
which satisfies the following conditions:

• There exists at most one block satisfying −C = C, called the
zero-block. It is a subset of [±n] of the form {±i | i ∈ S} for
some S ⊆ [n].
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• If C appears as a block in the partition, then −C also appears
in that partition.

We denote by SB(n, k) the number of signed partitions of [±n] having
exactly k pairs of nonzero blocks. These numbers are called Stirling

numbers of type B of the second kind. They form the sequence A039755
in the OEIS [6]. Table 1 records these numbers for small values of n
and k.

n/k 0 1 2 3 4 5 6

0 1
1 1 1
2 1 4 1
3 1 13 9 1
4 1 40 58 16 1
5 1 121 330 170 25 1
6 1 364 1771 1520 395 36 1

Table 1. Stirling numbers of type B of the second kind SB(n, k).

Example 2.2. The following partitions

P1 = {{3,−3}, {−2, 1}, {2,−1}, {−4, 5}, {4,−5}},

P2 = {{3}, {−3}, {−2, 1}, {2,−1}, {−4, 5}, {4,−5}},

are respectively a signed partition of [±5] with a zero block {3,−3}
and a signed partition of [±5] without a zero-block.

3. The combinatorial proof

In this section, we supply a direct combinatorial proof for Theorem
1.1, where xn is interpreted as the number of assignments of n balls
numbered 1 to n into x distinguishable urns. As will be explained
below, we can assume that x is an integer.

Direct combinatorial proof. Since Equation (2) is a polynomial identity,
it is sufficient to prove it for odd natural numbers. Let m ∈ N be an
odd number. We will show:

mn =

n
∑

k=0

SB(n, k)[m]Bk . (3)

The left-hand side of Equation (3) is the number of assignments of n
balls numbered 1 to n into m urns. In the right-hand side, we associate

[m]Bk = (m− 1)(m− 3) · · · (m− 2k + 1)
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assignments to each one of the SB(n, k) signed partitions, and then we
sum them up to get the total number of assignments, thus proving the
identity.

Let B = {B0, B1,−B1, . . . , Bk,−Bk} be a signed partition, where
B0 is the zero-block (which possibly does not exist). Note that by the
definition of [x]Bk which appeared in Theorem 1.1, we have [x]Bk = 0 for
m < 2k, so we may assume that k < m

2
.

For our convenience, we impose the following order on the blocks of
the signed partition: the blocks B and −B are adjacent and the pairs
of blocks of B are ordered in such a way that pairs of blocks which
have smaller minimal positive elements precede (except for the zero-
block B0 which is always located as the first block). For each pair of
blocks B and −B, the internal order between B and −B is chosen in
such a way that the block which contains the minimal positive element
of B ∪ −B is located first. For example,

{{5,−5}, {1,−3}, {−1, 3}, {2, 4}, {−2,−4}}

is properly ordered.

For convenience, we consider an assignment of n balls into m urns
as a function f : [n] → [m], and associate with B the set of ball
assignments according to the following procedure:

• For any positive i ∈ B0, define: f(i) = 1.
• Choose a number p out of the m − 1 remaining numbers
(2 ≤ p ≤ m), and send the positive elements of B1 to p. The
absolute values of the negative elements of B1 (i.e. the positive
elements of −B1, if they exist) will be sent to the next number
in cyclical order excluding the number 1 (which might have al-
ready been occupied by the positive elements of the zero-block).
This can be done in m− 1 different ways.

• We pass to the pair of blocks B2 and −B2. Similarly, choose a
new number p′ out of the m−3 remaining numbers (the number
1 is occupied by the positive elements of the zero-block, and two
additional numbers are already occupied by the elements of the
pair of blocks B1 and −B1), and send the positive elements of
B2 to p′. For each negative i ∈ B2, the absolute value of i will
be sent to the next unoccupied number in cyclical order. This
may be done in m− 3 different ways.

• Proceeding this way, we associate a set of [m]Bk functions from
[n] to [m] to each signed partition having k pairs of nonzero
blocks.
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Conversely, we now recover the signed partition from a given function
f : [n] → [m]. Define:

B0 = {±i | f(i) = 1}.

Mark the number 1 as used. Let k ∈ [n] be the minimal positive
number such that f(k) 6= 1. Denote a := f(k). Let b ∈ [m] − {1} be
the next unused number in cyclical order. Define:

B1 = {i ∈ [n] | f(i) = a} ∪ {−i | f(i) = b},

and add the blocks B1 and −B1 to the signed partition. Now mark the
numbers a, b as used. Proceeding along these lines, we arrive at the
signed partition which induces the function f . �

Example 3.1. Let n = 6 and m = 7. Consider the signed partition

B = {{±1}, {2,−3, 5}, {−2, 3,−5}, {4,−6}, {−4, 6}}

of [±6]. Every function f : [6] → [7] which is induced by B sends 1
(which is the content of the zero block) to 1 (see Figure 1).

1 2 3 4 5 6 7

1 2

5

3 46

Figure 1. An assignment of 6 balls into 7 urns

Now we pass to the first block {2,−3, 5} (together with its negative
block {−2, 3,−5}): we have to choose a value for the images of 2 and
5 out of 6 possibilities. Take for example f(2) = f(5) = 4. Then we
have to assign f(3) = 5, which is the next free value in cyclical order.
The next block is {4,−6} (together with its negative block {−4, 6}).

For this block we are left with 4 possibilities for assigning values.
Choose for instance f(4) = 7 and so we must assign f(6) = 2, which
is the next free value in cyclical order. The resulting balls into urns
assignment is depicted in Figure 1.

Conversely, given the balls into urns assignment obtained above:

f(1) = 1, f(2) = 4, f(3) = 5, f(4) = 7, f(5) = 4, f(6) = 2.

In order to recover the signed partition B which induced this assign-
ment, we act as follows:

• Only 1 is sent to 1, so we have the zero block B0 = {±1}.



6 ELI BAGNO AND DAVID GARBER

• The current minimal unused element is 2 which is sent by f to 4,
so the positive part of the next block will be f−1({4}) = {2, 5}
and the negative part will be f−1({5}) = {3} (since 5 is the
next value after 4 in cyclical order). Hence we get the pair of
blocks: {2, 5,−3} and {−2,−5, 3}.

• Now, the current minimal unused element is 4 which is sent by
f to 7, so the positive part of the block will be f−1({7}) = {4}
and the negative part will be f−1({2}) = {6} (since 2 is the
next value after 7 in cyclical order). Hence we get the pair of
blocks: {4,−6} and {6,−4}.

So we get that the signed partition is:

B = {{±1}, {2, 5,−3}, {−2,−5, 3}, {4,−6}, {−4, 6}},

which indeed was our original signed partition.
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