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Abstract

We consider a game with two piles, in which two players take turn to add
a or b chips (a, b are not necessarily positive) randomly and independently to
their respective piles. The player who collects n chips first wins the game. We
derive general formulas for pn, the probability of the second player winning the
game by collecting n chips first and show the calculation for the cases {a, b}
= {−1, 1} and {−1, 2}. The latter case was asked by Wong and Xu [5]. At
the end, we derive the general formula for pn1,n2

, the probability of the second
player winning the game by collecting n2 chips before the first player collects
n1 chips.

Accompanied Maple program

This paper comes with the Maple program Piles which can be found on the second
author’s website www.thotsaporn.com .

1 Introduction

Game is the source of motivation to do mathematics. A will to win a game is the
motivation to figure out mathematics behind it. It is evident that pile games have
been played since ancient times. For examples, Nim, Wythoff and their variants are
some of the classical pile games. In such games, two players take turn to remove
chips from the existing pile(s). The rule of removing chips from the pile(s) varies
according to the game. In Nim, a game with multiple piles, each player may remove
any number of chips from one of the available piles. The player who takes the last
chip loses the game (misere game). In some other games, the player who takes the
last chip wins the game (normal play). In Wythoff, a game with two piles, a player is
allowed to remove any number of chips from one or both piles; when removing chips
from both piles, the number of chips removed from each pile must be equal. The
player who takes the last chip (remove any chip) wins the game. These games are
quite well known and well studied. For example, the “bible of combinatorial game
theory”, Winning ways for your Mathematical Plays, written by Berlekamp, Conway
and Guy [1] is a good reference for a mathematical introduction to these games.

http://arxiv.org/abs/1903.03274v1


In this paper, we consider a more general version of the game investigated by
Wong and Xu [5], where two players take turn to collect a specific number of chips
randomly and independently in order to build their own piles (instead of ‘remove
any chip from their own piles’). The player who collects n chips first is the winner.
Formally speaking, let n be a fixed non-negative integer. In our game, both players
start without any chip. In each turn, each player flips a fair coin to decide whether
to add a or b chips (a, b are not necessarily positive) to their own piles. The player
who collects n chips first is the winner.

Let the random variable Sk be the number of chips collected by a player on his
kth move. Let A be the first player and B be the second player. The chance that B
wins the game by collecting n chips first is

pn =

∞
∑

k=1

P (A does not win on his kth move) · P (B wins on his kth move). (1)

Important notation

• pn = the probability for the second player to win the game by collecting n chips
first.

• q(n, k) = the probability that a player does not win the game on his kth move,
i.e., he never collects n chips on or before his kth move.

• r(n, k) = the probability that a player collects n chips for the first time on his
kth move.

The equation (1) can be written as follows:

pn =

∞
∑

k=1

q(n, k) · r(n, k) (2)

where q(n, k) = P (Sj < n for all j = 0, 1, . . . , k) and r(n, k) = P (Sk ≥ n and Sj <
n for all j = 0, 1, . . . , k − 1).

There is a nice connection between the probabilities q(n, k) and r(n, k) as follows:

Claim 1: For any positive integer n,

r(n, k) = q(n, k − 1)− q(n, k), k = 1, 2, . . . .

This can be shown by

r(n, k) = P (Sk ≥ n and Sj < n, for all j = 0, 1, . . . , k − 1)

= P (Sk ≥ n)− P (Sk−1 ≥ n)

= (1− q(n, k))− (1− q(n, k − 1))

= q(n, k − 1)− q(n, k).
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Remark: By Claim 1 and the fact that q(n, 0) = 1 for all n ≥ 1, we write q(n, k)
where k ≥ 1, by

q(n, k) = 1−
k

∑

j=1

r(n, j). (3)

The following claim works under the condition that the game will not go on indefi-
nitely (the probability that either one of the players wins the game is 1).

Claim 2: For any fixed positive integer n, if lim
k→∞

q(n, k) = 0 (i.e., a+ b ≥ 0), then

∞
∑

k=1

[q(n, k − 1) + q(n, k)] · r(n, k) = 1.

This can be shown by

∞
∑

k=1

[q(n, k − 1) + q(n, k)] · r(n, k)

=

∞
∑

k=1

[q(n, k − 1) + q(n, k)] · [q(n, k − 1)− q(n, k)] from Claim 1

=
∞
∑

k=1

[q2(n, k − 1)− q2(n, k)]

= q2(n, 0)− lim
k→∞

q2(n, k) = 1.

Claim 2 can also be explained combinatorially as

1 = P ( first player wins) + P ( second player wins) + P ( nobody wins)

=
∞
∑

k=1

r(n, k)q(n, k − 1) +
∞
∑

k=1

q(n, k)r(n, k) + lim
k→∞

q2(n, k).

In Theorem 1 below, we write the probability pn in terms of the probabilities
r(n, k) alone.

Theorem 1. If lim
k→∞

q(n, k) = 0, then pn =
1

2
− 1

2

∞
∑

k=1

r2(n, k).

Proof. By definition,

pn =

∞
∑

k=1

q(n, k) · r(n, k).

On the other hand, based on Claim 2, we have

pn = 1−
∞
∑

k=1

q(n, k − 1) · r(n, k).
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Then, by combining the first two equations above, we obtain

pn =
1

2
− 1

2

∞
∑

k=1

[q(n, k − 1)− q(n, k)] · r(n, k).

Then, the result follows by applying Claim 1.

In order to find pn, by Theorem 1, we just need to compute the probabilities r(n, k)
and find the sum of squares of them. For example, for the case {a, b} = {1, 2}, the
probability r(n, k) is given by the following expression [5, Theorem 3]:

r(n, k) =
1

2k

[(

k

n− k

)

+

(

k − 1

n− k

)]

.

Although it can be shown that the expression
∞
∑

k=1

r2(n, k) does not have a closed-

form formula (strictly speaking, the sum is not Gosper-summable. See Chapter 8 of
the book ‘A = B’ [3] for reference), its approximation was done by Wong and Xu [5,
p.12]. In particular, they showed that

∞
∑

k=1

r2(n, k) ∼
√

27

8πn

when n is large.
Furthermore, they worked on the cases a > 0, b > 0 and asked the reader to investi-
gate the case {a, b} = {−1, 2}. We will answer their question along with the answer
to the case {a, b} = {−1, 1}.

2 The case {a, b} = {−1, 1}
Each player adds/removes one chip with probability 1/2 to/from his pile. The pile
is allowed to have a negative number of chips. The first player who collects n chips
wins the game.

If n = 0, the first player will always win as both players start without any chip. The
probability for the second player to win the game is 0, i.e., p0 = 0.

2.1 The winning probability for the first non-trivial case:

n = 1

In this subsection, we simplify our notation slightly. The probabilities q(1, k) and
r(1, k) defined in Section 1 are abbreviated to q(k) and r(k) respectively.

Let C(k) be the number of ways for a player to have no chip on his kth move without
ever collecting one chip (so the game still goes on).

4



At this point, the reader may notice that the number C(k) is related to the famous
Catalan numbers. In fact, for m = 1, 2, . . . , we have

C(2m− 1) = 0

and

C(2m) =

(

2m

m

)

m+ 1
.

The probability that the second player collects one chip for the first time on his kth

move is

r(k) =
C(k − 1)

2k

because the player has no chip on his (k− 1)th move, and on his next move he must
collect one chip to win the game. Hence, for m = 1, 2, . . . , we have

r(2m) = 0

and

r(2m− 1) =
(2m− 2)!

m!(m− 1)!
· 2

4m
.

We would like to apply Theorem 1 to find p1, the probability of the second player
winning the game by collecting one chip first. First, we need to verify that the
condition lim

k→∞

q(k) = 0 is true, i.e., the probability that one of the players wins the

game by collecting one chip is 1. Equivalently, by (3), we show that

∞
∑

k=1

r(k) = 1. (4)

Fortunately, there are many ways to evaluate this sum. The second author’s favorite
tool for evaluating geometric sums (the binomial sum is a geometric sum) is Gosper’s
Algorithm. The detail of the algorithm was beautifully explained in Chapter 5 of
the book ‘A = B’, a masterpiece written by Petkovsek, Wilf and Zeilberger [3]. This
algorithm has been implemented in all major symbolic computation programs like
Maple and Mathematica. For example, in Maple, one conveniently types

sum( (2*m-2)!/m!/(m-1)!*2/4^m, m=1..M);

then Maple will return the expression 1 − (2M)!

M !M !4M
. By an application of the Stir-

ling’s formula: n! ≈
√
2πn

(n

e

)n

, we note that

1− (2M)!

M !M !4M
→ 1 as M → ∞.

Hence, the equation (4) is true.
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We are ready to find p1 by Theorem 1. To evaluate

∞
∑

k=1

r2(k),

in Maple, we type

sum( ( (2*m-2)!/m!/(m-1)!*2/4^m )^2, m=1..infinity);

and then Maple returns
4

π
− 1. By Theorem 1,

p1 =
1

2
− 1

2

(

4

π
− 1

)

≈ 0.3633802277.

Hence, the value of p1 is conveniently obtained by applying Theorem 1 and the
summation tools in Maple.

2.2 The winning probabilities for the cases n ≥ 2

Analogously, let C(n, k) be the number of ways for a player to have n − 1 chips on
his kth move without ever collecting n chips.

Lemma 2. For n ≥ 0, k ≥ 1 such that (n− k) ≡ 0 mod 2, then

C(n, k) = 0.

Otherwise, for s ≥ 0,

C(2s+ 1, 2m) =
2s+ 1

m+ s+ 1

(

2m

m− s

)

, for m = 0, 1, 2, . . . ,

C(2s, 2m− 1) =
s

m

(

2m

m− s

)

, for m = 1, 2, . . . , .

Proof. The main recurrence relation for the numbers C(n, k) is

C(n, k) = C(n− 1, k − 1) + C(n+ 1, k − 1), n ≥ 1, k ≥ 1.

If the first move is 1, then the number of ways for a player to have n − 1 chips on
his kth move is C(n− 1, k− 1). On the other hand, if the first move is −1, then this
number is C(n+ 1, k − 1). We rearrange terms and shift variables to obtain

C(n, k) = C(n− 1, k + 1)− C(n− 2, k), n ≥ 2, k ≥ 0. (5)

Then the results follow by induction on n where base cases are given by

C(0, k) = 0, C(1, 2m− 1) = 0 and C(1, 2m) =

(

2m

m

)

m+ 1
.

It is also important to note that C(n, 0) = 0 for all n ≥ 0 except C(1, 0) = 1.
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We proceed the same way as in Section 2.1. The following relation between the
numbers r(n, k) and C(n, k − 1) is true for n ≥ 0:

r(n, k) =
C(n, k − 1)

2k
. (6)

By Lemma 2, for n ≥ 0, k ≥ 1 and n− k ≡ 1 mod 2, we have

r(n, k) = 0. (7)

Otherwise, for s ≥ 0,

r(2s+ 1, 2m+ 1) =
C(2s+ 1, 2m)

22m+1
=

2s+ 1

(m+ s+ 1) · 2 · 4m
(

2m

m− s

)

, for m = 0, 1, 2, . . . ,

r(2s, 2m) =
C(2s, 2m− 1)

22m
=

s

m · 4m
(

2m

m− s

)

, for m = 1, 2, . . . , .

To apply Theorem 1, it is necessary to prove the following lemma.

Lemma 3. For each n ≥ 1, the probability that one of the players wins the game (by
collecting n chips first) is 1, i.e.,

∞
∑

k=1

r(n, k) = 1.

Proof. This can be done by induction on n. By (5) and (6), we have the following
recurrence relation for the numbers r(n, k),

r(n, k) =
C(n, k − 1)

2k
=

C(n− 1, k)

2k
− C(n− 2, k − 1)

2k

= 2r(n− 1, k + 1)− r(n− 2, k). (8)

By (4), we note that

∞
∑

k=1

r(1, k) = 1. (9)

For n = 2, by (8) and (9), we get

∞
∑

k=1

r(2, k) =
∞
∑

k=1

(2r(1, k + 1)− r(0, k)) = 2
∞
∑

k=1

r(1, k + 1) + 2r(1, 1)− 2r(1, 1)

= 2
∞
∑

k=1

r(1, k)− 2r(1, 1) = 2− 1 = 1,

since r(0, k) = 0 for all k ≥ 1.
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For the cases n ≥ 3, by (8) and the inductive hypothesis, we have

∞
∑

k=1

r(n, k) =
∞
∑

k=1

(2r(n− 1, k + 1)− r(n− 2, k))

= 2
∞
∑

k=1

r(n− 1, k)−
∞
∑

k=1

r(n− 2, k) = 2− 1 = 1,

since r(n− 1, 1) = 0 for all n ≥ 3.

Finally, we are in the position to apply Theorem 1 for each value of n. For example,

to evaluate

∞
∑

k=1

r2(2, k), we type

sum( (binomial(2*m,m-1)/m/4^m)^2 ,m=1..infinity);

and then Maple returns
16

π
− 5. By Theorem 1,

p2 =
1

2
− 1

2
(
16

π
− 5) ≈ 0.4535209109.

The other values of pn are

n = 3,
∞
∑

k=1

r2(3, k) =
236

3π
− 25 and p3 ≈ 0.4798111434,

n = 4,

∞
∑

k=1

r2(4, k) =
1216

3π
− 129 and p4 ≈ 0.4891964033,

n = 5,

∞
∑

k=1

r2(5, k) =
32092

15π
− 681 and p5 ≈ 0.4933044576,

n = 6,

∞
∑

k=1

r2(6, k) =
172144

15π
− 3653 and p6 ≈ 0.4954322531.

. . . .

There is an interesting pattern for the values of

∞
∑

k=1

r2(n, k) for n = 1, 2, . . . . In

fact, let Tn be

∞
∑

k=1

r2(n, k). The terms Tn satisfy a recurrence relation with polyno-

mial coefficients:

(n + 3)Tn+3 − (7n+ 16)Tn+2 + (7n+ 5)Tn+1 − nTn = 0.

(Remark: The guessing recurrence relation was found by a holonomic ansatz, i.e.,
we assume that the sequence Tn satisfies a relation of the form

(a0n + b0)Tn + (a1n+ b1)Tn+1 + · · ·+ (aNn+ bN )Tn+N = 0

8



for some specific N . Then, by plugging in values of n, Tn, Tn+1, . . . , Tn+N , say, for
n = 1, 2, . . . , 30, we can solve the system of linear equations for the unknowns ai and
bi.) The authors believe that it can be shown formally by Zeilberger’s algorithm, see
Chapter 6 of the book ‘A=B’ [3] and Zeilberger’s Maple package Ekhad. However,
since the terms Tn are separated into two cases (n is odd or n is even), the proof
may not be straightforward.

2.3 The winning probability within k moves

The case {a, b} = {−1, 1} is so nice that we can even answer more questions than the
one that was asked in the first place. In this subsection, for a fixed positive integer
n, we find the probability that the second player wins within k moves. All this could
be done, thanks once again to Gosper’s algorithm!

First, we demonstrate it for the case n = 1. The other cases can be done in the same
way, although we have to do it case by case. We recall from Section 2.1 that

r(2m) = 0

and

r(2m− 1) =
(2m− 2)!

m!(m− 1)!
· 2

4m
.

By the remark after Claim 1,

q(2m) = q(2m− 1) = 1−
m
∑

j=1

r(2j − 1) = 1−
m
∑

j=1

(2j − 2)!

j!(j − 1)!
· 2

4j
.

This finite sum is Gosper-summable. In Maple, we type

simplify( 1-sum( (2*j-2)!*2/j!/(j-1)!/4^j ,j=1..m));

and then the output is

(

2m

m

)

4m
. (The expression is so nice! It is screaming for a com-

binatorial explanation!)

Lastly, the probability that the second player wins within k moves (the partial sum
of (2)) is

9



k
∑

i=1

q(i)r(i) =

⌊k+1

2 ⌋
∑

j=1

q(2j − 1)r(2j − 1)

=

⌊k+1

2 ⌋
∑

j=1

(

2j

j

)

4j
(2j − 2)!

j!(j − 1)!
· 2

4j

=

⌊k+1

2 ⌋
∑

j=1

(

2j

j

)2

· 1

16j
· 1

2j − 1
.

In Maple, we type

sum(binomial(2*j,j)^2/16^j/(2*j-1),j=1..L);

and then we again have a closed-form solution. The probability that the second
player wins within k moves is

1− 2L+ 1

16L

(

2L

L

)2

, where L =

⌊

k + 1

2

⌋

.

2.4 Average duration of a game play

The question about the average duration of a game play comes up naturally from the
work in the previous section. It would also be interesting to do research on average
duration of different kind of games. As a reference, we refer to the work done earlier
by Robinson and Vijay on the duration of the game Dreidel [4]. In this subsection,
we let a random variable X be the number of moves required to end the game.

Theorem 4. For any take-away move {a, b} where a and b are not necessarily pos-

itive, the average duration of the game is

∞
∑

k=0

q(n, k)2.
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Proof. We compute E[X ] as follows:

E[X ] =
∞
∑

k=1

k · P ( the game ends at the kth turn)

=
∞
∑

k=1

k · [q(n, k − 1)r(n, k) + q(n, k)r(n, k)]

=

∞
∑

k=1

k · [q(n, k − 1)2 − q(n, k)2]

=

∞
∑

k=1

q(n, k − 1)2.

The result follows by shifting the index k by 1.

Corollary 5. For the case {a, b} = {−1, 1}, E[X ] = ∞ for any n ≥ 1.

Proof. For n = 1, by our computation of the probability q(k) in Section 2.3, we have

E[X ] =
∞
∑

k=0

q(k)2 = 1 + 2 ·
∞
∑

m=1

[

(

2m

m

)

4m

]2

= ∞.

The last equality was found by Maple. But it can also be seen through the following
approximation:

[

(

2m

m

)

4m

]2

≈ 1

πm
as m → ∞.

The sum indeed diverges but the rate of divergence is as slow as the harmonic series.
For n > 1, it is clear that the average duration of the game will be longer than n = 1.
Therefore, E[X ] = ∞ too for n > 1.

3 The case {a, b} = {−1, 2}
For this case, each player is allowed to add two chips to his pile or remove one chip
from his pile, each with probability 1/2. The pile is allowed to have a negative num-
ber of chips. The first player who collects n chips wins the game.

Let D(n, k) be the number of ways for a player to have n − 1 or n − 2 chips on
his kth move without ever collecting n chips (so the game still goes on).

Lemma 6. The numbers D(n, k) satisfy the following recurrence relation,

D(n, k) = D(n− 1, k + 1)−D(n− 3, k)

with base cases D(−1, k) = D(0, k) = 0 and

D(1, 3m) =

(

3m

m

)

2m+ 1
, D(1, 3m+ 1) =

(

3m+1

m+1

)

2m+ 1
, D(1, 3m+ 2) = 0.

11



Proof. The recurrence relation arises from whether the first move is +2 or −1,

D(n, k) = D(n− 2, k − 1) +D(n+ 1, k − 1).

After shifting indexes and rearranging terms, we get the desired recurrence relation.

For the base cases, the sequence of non-negative integers D(1, 3m) is a generalization
of Catalan numbers. More precisely, the number D(1, 3m) is the number of ways
for the permutation of 2m copies of −1 and m copies of 2 such that the partial
sum is never more than 0. It is the sequence A001764 in OEIS and was named as
3-Raney sequences in Section 7.5 in the book ‘Concrete Mathematics’ [2]. Similarly,
the number D(1, 3m+1) is the number of ways for the permutation of 2m+1 copies
of −1 and m copies of 2 such that the partial sum is never more than 0. It is the
sequence A006013 in OEIS.

We have the following relation

r(n, k) =
D(n, k − 1)

2k

because the player has n−1 or n−2 chips on his (k−1)th move, and on his next move
he must collect 2 chips to win the game. Also, it is intuitively clear that the number
q(n, k) in this case is less than or equal to q(n, k) for the case {a, b} = {−1, 1} for any
fixed n and k. Therefore, lim

k→∞

q(n, k) = 0 for each n ≥ 0. For each n ≥ 1, we evaluate
∞
∑

k=1

r2(n, k) and apply Theorem 1 to find the winning probability of the second player.

However, this sum is not Gosper-summable (no nice closed-form formula for the
partial sum). And these sums do not seem to converge to any famous constant
neither. We list their numerical values below.

n
∞
∑

k=1

r2(n, k) pn

1 0.3221721826105... 0.33891390869471156...
2 0.2886887304423... 0.35565563477884626...
3 0.1547549217692... 0.42262253911538507...
4 0.1241072133089... 0.43794639334553199...
5 0.0941564190484... 0.45292179047578731...
10 0.047917368748... 0.47604131562562199...
20 0.028469734522... 0.48576513273891113...
100 0.010952807500... 0.49452359624969611...

4 A remark on Theorem 1

We would like to find an analog of Theorem 1 when players have the same set of
moves (add a or b chips), but now the first player wins if he collects n1 chips first

12



and the second player wins if he collects n2 chips first.

For a fixed set of moves {a, b}, let pn1,n2
be the probability that the second player

collects n2 chips before the first player collects n1 chips. Then

pn1,n2
=

∞
∑

k=1

q(n1, k) · r(n2, k). (10)

Similarly, the probability that the first player collects n1 chips before the second
player collects n2 chips is

∞
∑

k=1

q(n2, k − 1) · r(n1, k).

Assuming that the game will not go on indefinitely (the probability that either one
of the players wins the game is 1), i.e., a+ b ≥ 0, we have

∞
∑

k=1

q(n2, k − 1) · r(n1, k) +

∞
∑

k=1

q(n1, k) · r(n2, k) = 1.

By Claim 1, we have the generalized version of Theorem 1 as follows:

Proposition 7. For a fixed set of moves {a,b}, let pn1,n2
be the probability that

the second player collects n2 chips before the first player collects n1 chips. If the
probability that either one of the player wins the game is 1, then

pn1,n2
+ pn2,n1

+
∞
∑

k=1

r(n1, k) · r(n2, k) = 1.

4.1 pn1,n2
for the case {a, b} = {−1, 1}

We list some values of pn1,n2
obtained by the equation (10). Note again that, for any

fixed n, the probability q(n, k) has a nice closed form in k. For example, previously,
in Section 2.3, we obtained

q(1, 2m) = q(1, 2m− 1) =

(

2m

m

)

4m
.

All of the infinite sums for different values of n1 and n2 in the equation (10) also
simplify nicely. For more values of pn1,n2

, one can use the function Win2(n1, n2) in
the accompanied program.
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n1 \ n2 1 2 3 4 5

1
π − 2

π

4− π

π

10− 3π

π

3π − 8

3π

15π − 46

3π

2
2(π − 2)

π

3π − 8

π

2(10− 3π)

π

3(16− 5π)

π

2(15π − 46)

3π

3
3π − 2

3π

7π − 20

π

39π − 118

3π

296− 93π

3π

5(142− 45π)

3π

4
8

3π

16− 3π

3π

8(12π − 37)

3π

195π − 608

3π

8(63− 20π)

π

5
5π − 2

5π

92− 27π

3π

926− 285π

15π

7(23π − 72)

π

5115π − 16046

15π

Table 1: The winning probability of the second player, pn1,n2
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