Brazilian Primes Which Are Also Sophie Germain Primes

Jon Grantham
Hester Graves
Institute for Defense Analyses
Center for Computing Sciences
Bowie, Maryland 20715
United States
grantham@super.org
hkgrave@super.org

Abstract

We disprove a conjecture of Schott that no Brazilian prime is a Sophie Germain prime. We compute all counterexamples up to 10^{46}.

1 Introduction

The term "Brazilian numbers" originated at the 1994 Iberoamerican Mathematical Olympiad [6] in Fonseca, Brazil, in a problem proposed by the Mexican math team. They became a topic of lively discussion on the forum mathematiques.net, Bernard Schott [4] summarized the results in the standard reference on Brazilian numbers.

Definition 1. A Brazilian number n is an integer whose base $-b$ representation has all the same digits for some $1<b<n-1$.

In other words, n is Brazilian if and only if $n=m\left(\frac{b^{q}-1}{b-1}\right)=m b^{q-1}+\cdots+$ $m b+m$, with $q \geq 2$. These numbers are A125134 in the OEIS; the entry links to Schott's article [4].

A Brazilian prime (or "prime repunit") is a Brazilian number that is prime; by necessity, $m=1$ and $q \geq 3$. See A085104 in the OEIS for the sequence of Brazilian primes. In 2010, Schott [4] conjectured that no Brazilian prime is also a Sophie Germain prime.

2 Enumerating Counterexamples

Recall that a Sophie Germain prime is a prime p such that $2 p+1$ is also prime. If p is a Sophie Germain prime, then we say that $2 p+1$ is a safe prime.

To aid our search, we use a few lemmas.
Lemma 2. If $p=\frac{b^{q}-1}{b-1}$ is a Brazilian prime, then q is an odd prime.
Proof. Recall $x^{q}-1$ is divisible by the m th cyclotomic polynomial $\Phi_{m}(x)$ for $m \mid q$; therefore p can only be prime if q is also prime. Note that $q>2$ because $b<p-1$, so q is an odd prime.

The preceding lemma is also Corollary 4.1 of Schott [4].
Lemma 3. If p is a Brazilian prime and a Sophie Germain prime, then $p \equiv q \equiv 2(\bmod 3)$ and $b \equiv 1(\bmod 3)$.

Proof. If p is a Sophie Germain prime, then 3 cannot divide the safe prime $2 p+1$, so p cannot be congruent to $1(\bmod 3)$. The number 3 is not Brazilian, so $p \neq 3$ and thus $p \equiv 2(\bmod 3)$.

If $3 \mid b$, then

$$
p=b^{q-1}+b^{q-2}+\cdots+b+1 \equiv 1 \quad(\bmod 3),
$$

which is a contradiction. Lemma 2 states that q is an odd prime, so if $b \equiv 2$ $(\bmod 3)$, then $p \equiv 1(\bmod 3)$, a contradiction. We conclude that $b \equiv 1(\bmod$ $3)$, so that $q \equiv p(\bmod 3)$, and therefore $q \equiv 2(\bmod 3)$.

For $q=5$, we use a modification of the technique described in [5] to compute a table of length -5 Brazilian primes up to 10^{46}. We will describe this computation in full in a forthcoming paper [2]. Of these, 104890280 are Sophie Germain primes. The smallest is $28792661=73^{4}+73^{3}+73^{2}+73+$ 1. We very easily prove the primality of Sophie German primes with the Pocklington-Lehmer test.

For $q \geq 11$, we very quickly enumerate all possibilities for $b \leq 10^{46 /(q-1)}$. We find 22 Brazilian Sophie Germain primes for $q=11$, and none for larger q. (We have $q<\log _{2} 10^{46}+1<154$.) The smallest is

$$
14781835607449391161742645225951=1309^{10}+1309^{9}+\cdots+1309+1
$$

While we disprove Schott's conjecture, we do have the related

Proposition 4. The only Brazilian prime which is a safe prime is 7 .
Proof. Recall that a safe prime is a prime p where $\frac{p-1}{2}$ is also prime. (Equivalently, $\frac{p-1}{2}$ is a Sophie Germain prime.) If $p=b^{q-1}+\cdots+b+1$ is a safe prime, then $\frac{p-1}{2}=\frac{1}{2}\left(b^{q-1}+\cdots+b\right)$ must also be prime. This expression, however is divisible by $\frac{b(b+1)}{2}$, which is only prime when $b=2$ and $p=7$.

The list of Brazilian Sophie Germain primes is A306845 in the OEIS. The first few counterexamples were also discovered by Giovanni Resta and Michel Marcus; see the comments for A085104.

3 Conditional Results

The infinitude of these type of primes, as well as the asymptotic number of them, is the consequence of well-known conjectures.

Proposition 5. Assuming Schnizel's Hypothesis H, there are infinitely many Brazilian Sophie Germain primes.

Proof. Recall that Hypothesis H [3] says that any set of polynomials, whose product is not identically zero modulo any prime, is simultaneously prime infinitely often. Take our two polynomials to be $f_{0}(x)=x^{4}+x^{3}+x^{2}+x+1$ and $f_{1}(x)=2 x^{4}+2 x^{3}+2 x^{2}+2 x+3$. Then $f_{0}(b)$ is Brazilian and $f_{1}(b)=2 f_{0}(b)+1$. Rather than checking congruences, it suffices to note the existence of the above primes of this form to see that the conditions of Hypothesis H are satisfied.

The Bateman-Horn Conjecture [1] implies a more precise statement about the number of Brazilian Sophie Germain primes. The following proposition follows from it immediately.

Proposition 6. For an odd prime q, let $\phi_{q}(x)$ be the qth cyclotomic polynomial. Assuming the Bateman-Horn Conjecture, the number of values of $b<x$ such that $\phi_{q}(b)$ and $2 \phi_{q}(b)+1$ are simultaneously prime is 0 or $\sim C_{q} \frac{x}{\log x^{2}}$, for some constant C_{q}, depending on whether $\phi_{q}(b)\left(2 \phi_{q}(b)+1\right)$ is identically zero for some prime p.

If we instead look at the number of primes $<x$ that are of this form, we get $\sim C_{q}^{\prime} \frac{x^{1 / q-1}}{\log x^{2}}$. We sum over all $q \equiv 2(\bmod 3)$ and notice that the $q=5$ term dominates. This gives us the following corollary.

Corollary 7. The number of Brazilian Sophie Germain primes is $\sim C \frac{x^{1 / 4}}{\log x^{2}}$, for some C.

References

[1] Paul T. Bateman and Roger A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp. 16 (1962), 363-367.
[2] J. Grantham and H. Graves, Goldbach variations. in preparation, 2019.
[3] A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185-208; erratum 5 (1958), 259.
[4] Bernard Schott, Les nombres brésiliens, Quadrature (76) (2010), 30-38.
[5] Marek Wolf, Some conjectures on primes of the form $m^{2}+1$, J. Comb. Number Theory 5(2) (2013), 103-131.
[6] R. E. Woodrow, The Olympiad corner, Crux Mathematicorum 24(7) (1998), 385-395.

2010 Mathematics Subject Classification: Primary 11A41; Secondary 11A63. Keywords: Brazilian number, Sophie Germain prime, prime repunit, repunit.

