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Abstract

We consider a certain natural generalization of de Bruijn words, and use it to com-
pute the exact maximum state complexity for the language consisting of the conjugates
of a single word.

1 Introduction

Let x, y be words. We say x and y are conjugates if one is a cyclic shift of the other;
equivalently, if there exist words u, v such that x = uv and y = vu. For example, the English
words listen and enlist are conjugates.

The set of all conjugates of a word x is denoted by C(x). Thus, for example, C(eat) =
{eat, tea, ate}. We also write C(L) for the set of all conjugates of elements of the language
L.
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For a regular language L let sc(L) denote the state complexity of L: the number of
states in the smallest complete DFA accepting L. State complexity is sometimes also called
quotient complexity [3]. The state complexity of the cyclic shift operation L → C(L) for
arbitrary regular languages L was studied in Maslov’s pioneering 1970 paper [17]. More
recently, Jirásková and Okhotin [14] improved Maslov’s bound, and Jirásek and Jirásková
studied the state complexity of the conjugates of prefix-free languages [13].

In this note we investigate the state complexity of the finite language C(x), over all word
x of length n. Clearly sc(C(x)) achieves its minimum — namely, n + 2 — at words of the
form an. By considering random words, it seems likely that sc(C(x)) = O(n2).

Our main result makes this precise:

Theorem 1. Let Σ be an alphabet of cardinality k ≥ 2, and let n ≥ 1 be an integer. Define
i = blogk nc. Then

max
w∈Σn

k

sc(C(w)) = 2r + n(n− 2i+ 1) + 1,

where r = (ki+1 − 1)/(k − 1).

Furthermore, we characterize those words x achieving this maximum.
Our theorem depends on a certain natural generalization of de Bruijn words, of indepen-

dent interest, which is introduced in the next section.

2 Generalized de Bruijn words

De Bruijn words (also called de Bruijn sequences) have a long history [8, 16, 10, 4, 5], and
have been extremely well studied [9, 18]. Let Σk denote the k-letter alphabet {0, 1, . . . , k−1}.
Traditionally, there are two distinct ways of thinking about these words: for integers k ≥ 2,
n ≥ 1 they are

(a) the words w of length kn +n− 1 having each word of length n over Σk exactly once as
a factor; or

(b) the words w of length kn having each word of length n over Σk exactly once as a
factor, when w is considered as a “circular word”, or “necklace”, where the word
“wraps around” at the end back to the beginning.

For example, for k = 2 and n = 4, the word

0000111101100101000

is an example of the first interpretation and

0000111101100101

is an example of the second.
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In this paper, we are concerned with the second (circular) interpretation of de Bruijn
words, and we write D(k, n) for the set of all such words. According to the definition, such
words exist only for lengths of the form kn. Is there a sensible way to generalize this class
of words so that one could speak fruitfully of (generalized) de Bruijn words of every length?

One natural way to do so is to use the notion of subword complexity (also called factor
complexity or just complexity). For 0 ≤ i ≤ N let γi(w) denote the number of distinct
length-i factors of the word w ∈ ΣN

k (considered circularly). For all words w, there is a
natural upper bound on γi(w) for 0 ≤ i ≤ N , as follows:

γi(w) ≤ min(ki, N). (1)

This is immediate, since there are at most ki words of length i over Σk, and there are at
most N positions where a word could begin in w (considered circularly).

Ordinary de Bruijn words are then precisely those words w of length kn for which γn(w) =
kn. But even more is true: w ∈ D(k, n) also achieves the upper bound in (1) for all i ≤ kn.
To see this, note that if i ≤ n, then every word of length i occurs as a prefix of some word
of length n, and every word of length n is guaranteed to appear in w. On the other hand,
all kn factors of length ≥ i are distinct, because the length-n prefixes are all distinct.

This motivates the following definition:

Definition 2. A word x of length N over a k-letter alphabet is said to be a generalized de
Bruijn word if γi(x) = min(ki, N) for 0 ≤ i ≤ N .

Example 3. Table 1 gives the lexicographically least de Bruijn words for a two-letter al-
phabet, for lengths 1 to 31, and the number of such words (counted up to cyclic shift). This
forms sequence A317586 in the On-Line Encyclopedia of Integer Sequences (OEIS) [20]. The
second author has computed these numbers up to n = 63.

The main result of this section is the following.

Theorem 4. For all integers k ≥ 2 and N ≥ 1 there exists a generalized de Bruijn word of
length N over a k-letter alphabet.

Proof. For k = 2 the proof can be found in [19], although strangely it is not explicitly stated
anywhere in the paper. (Lemma 3 implies it.)

For k > 2 we can derive this result from a paper by Lempel [15]. Lempel proved that for
all k ≥ 2, n ≥ 1, N ≤ kn, there exists a circular word w = w(k, n,N) of length N for which
the factors of size n are distinct. (Also see [11, 6].) However, as stated, this result is not
strong enough for our purposes. For example, there are circular words, such as 000101 of
length 6, having 6 distinct factors of length 4, but only 3 distinct factors of length 2. For our
purposes, then, we need a stronger version of the result, which can nevertheless be obtained
from a further analysis of Lempel’s proof.

An Euler graph is a directed graph in which, for each vertex v, the indegree of v is equal
to the outdegree of v. By a closed chain we mean a sequence of edges (a, v1), (v1, v2), (v2, v3),
. . . , (vn−1, a), where each edge is distinct, but vertices may be repeated. Each closed chain

3
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n lexicographically least generalized number of
binary de Bruijn word of length n such words

1 0 2
2 01 1
3 001 2
4 0011 1
5 00011 2
6 000111 3
7 0001011 4
8 00010111 2
9 000010111 4
10 0000101111 3
11 00001011101 6
12 000010100111 13
13 0000100110111 12
14 00001001101111 20
15 000010011010111 32
16 0000100110101111 16
17 00000100110101111 32
18 000001001101011111 36
19 0000010100110101111 68
20 00000100101100111101 141
21 000001000110100101111 242
22 0000010001101001011111 407
23 00000100011001110101111 600
24 000001000110010101101111 898
25 0000010001100101011011111 1440
26 00000100011001010011101111 1812
27 000001000110010100111011111 2000
28 0000010001100101001110101111 2480
29 00000100011001010011101011111 2176
30 000001000110010110100111011111 2816
31 0000010001100101001110101101111 4096

Table 1: Generalized de Bruijn words
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forms an Euler graph and each connected Euler graph admits a closed chain containing all
its edges.

Let Gn
k be the k-ary de Bruijn graph of order n. This is a directed graph where the

vertices are the words of length n, and edges join a word x to a word y if x = at and y = tb
for some letters a, b and a word t. So every vertex of Gn

k has k incoming edges, and k outgoing
edges, and therefore Gn

k is a regular graph of degree 2k. Building a generalized de Bruijn
word of length N = kn + i, where 0 < i ≤ (k − 1)kn, over a k-letter alphabet then amounts
to constructing a closed chain of length N in Gn

k that visits every vertex.
One of Lempel’s main results ([15, Theorem 1]) states that such a closed chain exists, but

does not mention explicitly whether it visits every vertex. In the proof, the chain is obtained
by constructing a connected Euler graph using [15, Lemma 6]. Now, the analysis of the proof
of [15, Lemma 6] shows that the constructed Euler graph is not only connected (which is the
explicit concern of the lemma) but also spanning. The closed chain is eventually obtained as
a complement of a graph G (denoted as Tp in [15]), where G is an Euler graph contained in
Gn
k such that the degree of each vertex in G is at most 2(k − 1). Therefore, its complement

is obviously spanning.

Remark 5. We have not been able to find this precise notion of generalized de Bruijn word in
the literature anywhere, although there are some papers that come very close. For example,
Iványi [12] considered the analogue of Eq. (1) for ordinary (non-circular) words. He called
a word w supercomplex if the analogue of the upper bound (1) is attained not only for
w, but also for all prefixes of w. However, binary supercomplex words do not exist past
length 9. The third author also considered the analogue of Eq. (1) for ordinary words [19].
However, Lemma 3 of that paper actually implies the existence of our generalized (circular) de
Bruijn words of every length over a binary alphabet, although this was not stated explicitly.
Anisiu, Blázsik, and Kása [2] discussed a related concept: namely, those length-n words w for
which max1≤i≤n ρi(w) = maxx∈Σn

k
max1≤i≤n ρi(x) where ρi(w) denotes the number of distinct

length-i factors of w (here considered in the ordinary sense, not circularly). Also see [7].

We now turn to an alternative characterization of our generalized de Bruijn words.

Proposition 6. A word w ∈ ΣN
k is a generalized de Bruijn word iff both of the following

hold:

(a) γr(w) = kr; and

(b) γr+1(w) = N ,

where r = blogkNc.

Proof. A generalized de Bruijn word trivially has these properties, and it is easy to see that
the two properties imply the bound in Eq. (1).

We now count the total number of factors of a generalized de Bruijn word. This is a
generalization of Theorem 2 of [19] to all k ≥ 2, adapted for the case of circular words.

5



Proposition 7. If w ∈ ΣN
k is a generalized de Bruijn word, then∑

0≤i≤N

γi(w) =
kr+1 − 1

k − 1
+N(N − r),

where r = blogkNc.

Proof. We have ∑
0≤i≤N

γi(w) =
∑

0≤i≤N

min(ki, N)

=
∑

0≤i≤r

ki +
∑
r<i≤N

N

=
kr+1 − 1

k − 1
+N(N − r).

3 State complexity

We start with a general upper bound on state complexity.

Theorem 8. Let Σ be an alphabet of cardinality k. Suppose L ⊆ Σt, and suppose |L| = m.
Define i = blogkmc and r = (ki+1−1)/(k−1). If t ≥ 2i+1 then sc(L) ≤ 2r+m(t−2i−1)+1.

Proof. A level is a set of nodes at a particular distance from the root. The complete k-ary
tree of i + 1 levels therefore corresponds to words of length ≤ i, and the total number of
nodes in this tree is 1 + k + · · ·+ ki = ki+1−1

k−1
.

The language L can be accepted by a DFA with the following topology: there is a
complete k-ary tree of i+ 1 levels rooted at the initial state pε. At the very next level there
are at most m nodes, and these nodes form the roots of at most m chains of t− 2i− 1 nodes
each. These chains need not be disjoint, but will be in the worst case. At the end, there is
another complete k-ary tree of i + 1 levels culminating in a single accepting state. Finally,
there is also a single non-accepting state that captures all transitions not yet defined. The
total number of states is therefore 2r +m(t− 2i− 1) + 1.

Define

X = Σ≤i ∪ {x : i < |x| < t− i− 1 and x is a prefix of an element of L}
Y = {y : |y| = t− i− 1 and y is a prefix of an element of L }

More formally, the states of our DFA are d, a “dead” state; px, for x ∈ X; and sz, for all z
with |z| ≤ i. The states px correspond to prefixes of words of L and the states sz correspond
to suffixes of words of L.
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The initial state is pε.
The transitions are given by δ(px, a) = pxa for x ∈ X and a ∈ Σ and δ(py, a) = sz, if

y ∈ Y and yaz ∈ L; δ(sav, a) = sv for v ∈ Σ<i and a ∈ Σ. All other transitions go to d.
Finally, the unique final state is sε.

This construction is illustrated in Figure 1 for k = 2, t = 12, m = 10, i = 3, r = 15,
t− 2i− 1 = 5, and

L = {000010100000, 000101100010, 011110100001, 100110011111, 101011110111,

110100100110, 110101010011, 110110101101, 111001100101, 111110110100}.

qε

q0

0

q1

1

q00

0

q01
1

q10

0

q11
1

q000

0

q001
1

q0100

q011

1

q100

0
q101

1

q110

0

q111
1

q0000
0

q0001

1

q0111

1

q1001
1

q1010
0

q1101

1

q1110
0

q1111

1

q00001
1

q00010
0

q01111
1

q10011
1

q10101
1

q11010
0

q11011

1

q11100
0

q11111
1

q000010
0

q000101
1

q011110
0

q100110
0

q101011
1

q110100
0

q110101

1

q110110
0

q111001
1

q111110
0

q0000101
1

q0001011
1

q0111101
1

q1001100
0

q1010111
1

q1101001
1

q1101010
0

q1101101
1

q1110011
1

q1111101
1

q00001010
0

q00010110
0

q01111010
0

q10011001
1

q10101111
1

q11010010
0

q11010101
1

q11011010
0

q11100110
0

q11111010
0

s000
0

s010
0

s100
0

s111
1

0

s011

0

s110
0

s101

1

0

s001
0

s00

0

1

s10

0

1

s01

0

1

s11
0

1

s0

0

1

s1
0

1

sε

0

1

Figure 1: Example of the construction

As a corollary, we now get an upper bound on sc(C(x)):

Corollary 9. If x is a word of length n over a k-letter alphabet, then

sc(C(x)) ≤ 2r + n(n− 2i− 1) + 1,

where i = blogk nc and r = (ki+1 − 1)/(k − 1).

Proof. Let x be a word of length n, and let L = C(x). Then |L| ≤ n. In Theorem 8 take
t = n and m ≤ n. Set i = blogk nc and r = (ki+1 − 1)/(k − 1). The inequality t ≥ 2i + 1
holds in all cases except k = 2 and n = 2; this case can be checked separately. We therefore
get sc(L) ≤ 2r + n(n− 2i− 1) + 1, as desired.

It now remains to prove that there exist words that achieve this upper bound. In fact,
such words are exactly the generalized de Bruijn words defined in Section 2.
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Theorem 10. A length-n word x over a k-letter alphabet satisfies

sc(C(x)) = 2r + n(n− 2i− 1) + 1,

where i = blogk nc and r = (ki+1 − 1)/(k − 1) iff x is a generalized de Bruijn word.

Proof. Suppose x is a generalized de Bruijn word. We first show that there are 2r + n(n−
2i− 1) + 1 inequivalent words for the Myhill-Nerode equivalence relation R associated with
C(x). This will show sc(C(x)) ≥ 2r + n(n − 2i − 1) + 1 and hence, by Corollary 9, that
sc(C(x)) = 2r + n(n− 2i− 1) + 1.

Representatives of the Myhill-Nerode classes can be classified as follows:
(a) all the words of length ≤ i;
(b) all the factors of conjugates of x of length `, for i < ` < n− i;
(c) for each word w of length ≤ i, the lexicographically least factor z of C(x) of length

n− i for which zw ∈ C(x).
(d) the single equivalence class corresponding to words not in C(x).
There are ki words in (a), and ki words in (c), there are n(n− 2i− 1) words in (b), and

one word in (d).
We need to see that these are all inequivalent. Since all the words in C(x) are of length

n, no two factors of different lengths can be equivalent. It therefore suffices to examine pairs
of words of identical length.

In group (a), let y, z be two distinct words of length j ≤ i. Since x, considered circularly,
contains all factors of length i = blogk nc, it contains y and z as factors. Let yy′ (resp., zz′)
be a conjugate of x with prefix y (resp., z). Then |y′| = |z′| = n− j ≥ i+ 1. If both yz′ and
zz′ occur in C(x), we would have two separate occurrences of z′ in x (considered circularly),
which is impossible since x is of length n and has n distinct factors (considered circularly).
So yz′ 6∈ C(x) and y, z are inequivalent under Myhill-Nerode. This gives (ki+1 − 1)/(k − 1)
equivalence classes.

In group (b), let y, z be two distinct factors of C(x) (considered circularly) of length j
with i < j < n− i. Since x is of length n and contains n distinct factors of length i, the first
i symbols of y (resp., z) uniquely determines the position of y (resp., z) within x (considered
as a circular word). So there is a unique y′ such that yy′ ∈ C(x), and similarly, there is a
unique z′ such that zz′ ∈ C(x). Just as in case (a), since |y′| = |z′| ≥ i + 1, we see that
y′ 6= z′. This gives n(n− 2i) equivalence classes.

In group (c), for each word t of length ≤ i, let xt be the lexicographically least word
of length n − i such that xtt ∈ C(x). (We know such a word exists because each such t
is a factor of x, considered circularly.) Let t, u be distinct words of length j. Then since
|xt| ≥ i+ 1, the word xt occurs in exactly one location in x, considered circularly, and there
it must be followed by t. So xtu 6∈ C(x), so xt and xu are inequivalent under Myhill-Nerode.
This gives (ki+1 − 1)/(k − 1) equivalence classes.

Now let us prove the reverse direction. Suppose x is such that sc(C(x)) = 2r+n(n−2i−
1) + 1. Then from the upper bound in Corollary 9 and the construction of Theorem 8 from
which it is derived, we know that all the words corresponding to the states of the automaton

8



n maxx∈Σn
2

sc(C(x))
1 3
2 5
3 7
4 11
5 15
6 21
7 29
8 39
9 49
10 61

Table 2: Maximum state complexity of conjugates of binary words of length n

in Theorem 8 are pairwise inequivalent under Myhill-Nerode. But there are ki such words
of length i and n such words of length i+ 1. Hence, by Proposition 6, x is a generalized de
Bruijn word.

For k = 2 the maximum state complexity of C(x) over length-n words x is given in
Table 2. It is sequence A316936 in the OEIS [20].

4 Final comments

We do not currently know an accurate asymptotic expression for the number of generalized
de Bruijn words of length n, except in few simple cases. If n = ki, then it follows from known
results [1] that this number is (counted up to cyclic shift) (k!)k

i−1
/ki.

A generalized de Bruijn word of length ki+1 corresponds to a closed path in the de Bruijn
graph Gi

k that visits one vertex exactly twice and all others exactly once. This implies that
the additional edge is a loop. Therefore, each generalized de Bruijn word of length ki + 1
is obtained from an ordinary de Bruijn word of length ki by replacing a factor ai with ai+1

where a is a letter. It follows that the number of such words is (k!)k
i−1
/ki−1. A similar

argument yields the same number of generalized de Bruijn words of length ki − 1.
Already for ki ± 2 these kinds of considerations become very complex. We leave this as

a challenging open problem for the reader.
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