
A NOTE ON THE COMPUTATION OF THE
EULER-KRONECKER CONSTANTS FOR CYCLOTOMIC FIELDS

ALESSANDRO LANGUASCO

Abstract. The goal of this note is to introduce an alternative method to compute the Euler-
Kronecker constants for cyclotomic fields and to compare it with other two different ways of
computing the same quantity. The new algorithm requires the values of the generalised gamma
functions Γ1, also known as 2Γ, at some rational arguments in (0, 1). Using such method we were
able to get EK964477901 = −0.182374 . . . , thus giving an independent confirmation of Theorem 4
of [7], EK+964477901 = 10.402223 . . . , and to compute the values of EKq and EK+q for every odd
prime q ≤ 100000. We also computed the value of EKq for some larger prime number q but with
no success in finding another negative value. Moreover, as a by-product, we will also provide
more data on the generalised Euler constants in arithmetic progressions. The programs used to
performed the computations here described and the numerical results obtained are available at
the following web address: http://www.math.unipd.it/~languasc/EK-comput.html.

1. introduction

The goal of this note is to introduce an alternative method to compute the Euler-Kronecker
constants for cyclotomic fields and to compare it with other two different ways of computing the
same quantity. Moreover, as a by-product, we will also provide more data on the generalised
Euler constants in arithmetic progressions.
The definition of the Euler-Kronecker constant for number fields is given in section 1.3 of

Ford-Luca-Moree [7], see eq. (1.14) there, but we are here just interested in the special case
of cyclotomic fields. In this situation we can use eq. (2.6) of [7]: if q is an odd prime then we
define the Euler-Kronecker constant for the cyclotomic field Q(ζq) as

EKq := γ +
∑
χ,χ0

L′(1, χ)
L(1, χ) , (1)

where ζq is a primitive q-root of unity, γ is the Euler constant, χ are the non-trivial Dirichlet
characters mod q and χ0 is the trivial Dirichlet character mod q. In [7] the quantity EKq is
denoted as γq but this conflicts with notations used in literature.
As we will see later, other quantities related to EKq are the generalised Euler constants in

arithmetic progressions, sometimes also called Stieltjes constants in arithmetic progressions,
denoted as γk(a, q), k ∈ N, q ≥ 1, 1 ≤ a ≤ q, which are defined by

γk(a, q) := lim
N→+∞

(∑
0<m≤N

m≡a mod q

(log m)k
m

− (log N)k+1

q(k + 1)

)
= −1

q

((log q)k+1

k + 1
+

k∑
n=0

(
k
n

)
(log q)k−nψn

(a
q
))
, (2)

2010 Mathematics Subject Classification. Primary 11-04; Secondary 11Y60.
Key words and phrases. Euler-Kronecker constants, generalised Euler constants in arithmetic progressions,

digamma functions.
1

ar
X

iv
:1

90
3.

05
48

7v
2

 [
m

at
h.

N
T

]
 2

2
M

ar
 2

01
9

http://www.math.unipd.it/~languasc/EK-comput.html

2 ALESSANDRO LANGUASCO

see eq. (1.3)-(1.4) and (7.3) of Dilcher [5], where

ψn(z) := −γn −
(log z)n

z
−
+∞∑
m=1

((log(m + z))n
m + z

− (log m)n
m

)
(3)

for n ∈ N and z ∈ C \ {0,−1,−2, . . . }, ψn(1) = −γn, and the generalised Euler constants γn are
defined as

γn := lim
N→+∞

(N∑
j=1

(log j)n
j
− (log N)n+1

n + 1

)
=

+∞∑
m=1

((log m)n
m

− (log(m + 1))n+1 − (log m)n+1

n + 1

)
, (4)

by, e.g., eq. (3)-(4) of Bohman-Fröberg [1]. Remark that γ0 = γ = 0.577215664901 . . . , the
Euler-Mascheroni constant.
The quantities in (2) and, as we will see in sections 2-3 below, the one in (1), are hence

connected with the values of ψn, n ≥ 1, which is the logarithmic derivative of Γn, a generalised
Gamma function, see Deninger [4], Dilcher [6] and Katayama [10], whose definition for n = 1 is
given in section 3.2. In some sense we can say that the ψn-functions, n ≥ 1, are the analogue
of the usual digamma function. In the following we will denote as ψ the standard digamma
function Γ′/Γ; we also remark that it can be represented as the function ψ0 defined in (3).
The theoretical part about the proofs of the identities that we will use in sections 2-3 is

classical; a key tool is the functional equation for the Dirichlet L-functions. Such proofs can
be found in Cohen’s books [2]-[3], for instance. Other useful references are also the papers of
Dilcher [5, 6] and Deninger [4].

2. Ford-Luca-Moree’s method

Recall that q is an odd prime. If we do not distinguish between Dirichlet characters’ parities,
we can use use eq. (6.1) and (7.4) of Dilcher [5], as in Ford-Luca-Moree, see eq. (3.2) in [7]. In
fact eq. (6.1) of [5] gives

L′(1, χ) = −
q−1∑
a=1

χ(a)γ1(a, q),

where γ1(a, q) is defined in (2) which, for k = 1, becomes

γ1(a, q) = −
1
q

(1
2
(log q)2 + log q ψ

(a
q
)
+ ψ1

(a
q
))
,

for any q ≥ 1 and 1 ≤ a ≤ q, where ψ, ψ1 are defined in (3). Again using (3), we define

T(x) := γ1 + ψ1(x) = −
log x

x
−
+∞∑
m=1

(log(x + m)
x + m

− log m
m

)
, (5)

and, specialising (4), we also have

γ1 = lim
N→+∞

(N∑
j=1

log j
j
− (log N)2

2

)
= −0.0728158454835 . . .

To compute γ1 and other similar constants with a very large precision, see section 5.3 below.
Recalling now eq. (3.1) of [7], i.e.,

L(1, χ) = −1
q

q−1∑
a=1

χ(a) ψ
(a
q
)
, (6)

COMPUTATION OF THE EULER-KRONECKER AND GENERALISED EULER CONSTANTS 3

by the orthogonality of Dirichlet’s characters and (6), we obtain eq. (3.2) of [7], i.e.

L′(1, χ) = log q
q

q−1∑
a=1

χ(a) ψ
(a
q
)
+

1
q

q−1∑
a=1

χ(a) T
(a
q
)
= −(log q)L(1, χ) + 1

q

q−1∑
a=1

χ(a) T
(a
q
)
,

where T(x) is defined in (5) (pay attention to the change of sign in (5) with respect to eq. (3.2) of
[7]). Summarising, we finally get

L′(1, χ)
L(1, χ) = − log q +

1
qL(1, χ)

q−1∑
a=1

χ(a) T
(a
q
)
= − log q −

∑q−1
a=1 χ(a) T(a/q)∑q−1
a=1 χ(a) ψ(a/q)

. (7)

Formula (7), which was the one used in the paper by Ford-Luca-Moree [7], let us see that we
can compute EKq via (1) using the values of ψ(a/q) and T(a/q), which is connected to ψ1(a/q)
via (5), together with the values of the non-trivial Dirichlet characters mod q.

From a computational point of view it is clear that in (7) we first have to evaluate T(a/q) and
ψ(a/q) for every 1 ≤ a ≤ q − 1. For the ψ(a/q)-values we can rely on the PARI/Gp function
psi while, for the T(a/q)-values we can use the summing function sumnum. We’ll see more on
these computations in section 4.

3. An alternative method: distinguishing Dirichlet characters’ parities

3.1. χ , χ0 is a primitive odd Dirichlet character. Recall that q is an odd prime, let χ , χ0 be
a primitive odd Dirichlet character mod q and let τ(χ) :=

∑q
a=1 χ(a) e(a/q), e(x) := exp(2πix),

be the Gauss sum associated with χ. The functional equation for L(s, χ), see, e.g., the proof of
Theorem 3.5 of Gun-Murty-Rath [9], gives

L(s, χ) = 1
πi

(2π
q

) s
Γ(1 − s)τ(χ)√

q
cos

(πs
2

)
L(1 − s, χ)

and hence
L′(s, χ)
L(s, χ) = log

(2π
q

)
− Γ

′(1 − s)
Γ(1 − s) −

π

2
tan

(πs
2

)
− L′(1 − s, χ)

L(1 − s, χ) ,

which, evaluated at s = 0, gives

L′(0, χ)
L(0, χ) = log

(2π
q

)
+ γ − L′(1, χ)

L(1, χ) .

By the Lerch identity about values of the Hurwitz zeta-function, see, e.g., either eq. (3.1) of
Gun-Murty-Rath [9] or Proposition 10.3.5 of Cohen [3], and the orthogonality of Dirichlet
characters, we get

L′(0, χ) = − log q
q−1∑
a=1

χ(a)
(1
2
− a

q

)
+

q−1∑
a=1

χ(a) log
(
Γ
(a
q
))

=
log q

q

q−1∑
a=1

aχ(a) +
q−1∑
a=1

χ(a) log
(
Γ
(a
q
))

= −(log q)L(0, χ) +
q−1∑
a=1

χ(a) log
(
Γ
(a
q
))
,

4 ALESSANDRO LANGUASCO

since, see Corollary 10.3.2 of Cohen [3], we have L(0, χ) = −(∑q−1
a=1 aχ(a))/q. Summarising we

obtain

L′(1, χ)
L(1, χ) = γ + log(2π) − 1

L(0, χ)

q−1∑
a=1

χ(a) log
(
Γ
(a
q
))

= γ + log(2π) + q

∑q−1
a=1 χ(a) log

(
Γ(a/q))∑q−1

a=1 aχ(a)
. (8)

From a computational point of view, in (8) we need to compute the log
(
Γ(a/q)

)
-values instead

of the ψ(a/q) ones as in (7); to do so we can rely on internal PARI/Gp functions. In the next
paragraph we will see that we have to reuse such values for the even Dirichlet characters case.

3.2. χ , χ0 is a primitive even Dirichlet character. Recall that q is an odd prime. Assume
now that χ , χ0 is a primitive even Dirichlet character mod q. We follow Deninger’s notation in
[4] by calling R(x) = log(Γ1(x)), x > 0. By eq. (3.5)-(3.6) of [4] we have

L′(1, χ) = (γ + log(2π))L(1, χ) + τ(χ)
q

q−1∑
a=1

χ(a) R
(a
q
)
,

where, see eq. (2.3.2) of [4], the R-function is defined for every x > 0 by

R(x) := −ζ ′′(0) − S(x), (9)

S(x) := 2γ1x + (log x)2 +
+∞∑
m=1

((
log(x + m)

)2 − (log m)2 − 2x
log m

m

)
(10)

and −ζ ′′(0) =
(
(log(2π))2 + π2

12 − γ2 − 2γ1
)
/2 = 2.006356455908 . . . Comparing (9)-(10) with

(5), we see that ψ1(x) = R′(x)/2; please pay attention to the different definition of γ1 on page
174 of Deninger’s paper. Remark also that R(1) = −ζ ′′(0) and S(1) = 0. By the orthogonality of
the Dirichlet characters, we immediately get

∑q−1
a=1 χ(a) R

(a
q

)
= −∑q−1

a=1 χ(a) S
(a

q

)
.

For L(1, χ), we use formula (2) of Proposition 10.3.5 of Cohen [3] and the parity of χ to get

L(1, χ) = 2
τ(χ)

q

q−1∑
a=1

χ(a) log
(
Γ
(a
q
))
,

since W(χ) = τ(χ)/q1/2 for even Dirichlet characters, see Definition 2.2.25 of Cohen [2].
Summarising, if χ is an even Dirichlet character mod q, we finally get

L′(1, χ)
L(1, χ) = γ + log(2π) − τ(χ)

qL(1, χ)

q−1∑
a=1

χ(a) S
(a
q
)

= γ + log(2π) − 1
2

∑q−1
a=1 χ(a) S(a/q)∑q−1

a=1 χ(a) log
(
Γ(a/q)

) . (11)

We remark that in (11) we have to perform the computation of the S-function but here we can
reuse the log

(
Γ(a/q)

)
-values, 1 ≤ a ≤ q − 1, already computed in eq. (8). For the S(a/q)-values

we can use the PARI/Gp summing function sumnum.
We finally remark that the computation in this section reveals that the Euler-Kronecker constant

EK+q for the maximal real subfield of Q(ζq) is directly connected with the S-function values at

COMPUTATION OF THE EULER-KRONECKER AND GENERALISED EULER CONSTANTS 5

a/q since, according to eq. (10) of Moree [11] and (11), we have

EK+q := γ +
∑
χ,χ0

χ(−1)=1

L′(1, χ)
L(1, χ) =

q − 1
2

γ +
q − 3

2
log(2π) − 1

2

∑
χ,χ0

χ(−1)=1

∑q−1
a=1 χ(a) S(a/q)∑q−1

a=1 χ(a) log
(
Γ(a/q)

)
and hence it seems that in this case the relevant information is encoded in the S-function. By (8)
it is then trivial to get that

EKq − EK+q =
∑
χ

χ(−1)=−1

L′(1, χ)
L(1, χ) =

q − 1
2

(
γ + log(2π)

)
+ q

∑
χ

χ(−1)=−1

∑q−1
a=1 χ(a) log

(
Γ(a/q)

)∑q−1
a=1 aχ(a)

.

4. About the computations of EKq: comparing methods, results and running times

First of all we notice that PARI/Gp, v. 2.11.1, has the ability to generate the Dirichlet
L-functions (and many other L-functions) and hence the computation of EKq can be performed
using (1) with few instructions of the gp scripting language. This computation has a linear cost
in the number of calls of the lfun function of PARI/Gp and, at least for 271 ≤ q ≤ 20011, is, on
our Macbook laptop, slower than both the approaches we are about to describe below.
Comparing (8) and (11) with (7), we see that in both cases we can rely on internal PARI/Gp

functions to compute either the log
(
Γ(a/q)

)
-values or the ψ(a/q)-values, 1 ≤ a ≤ q − 1, and

finally we have to evaluate the T and S series respectively involved. Remarking that all these
functions have a pole in 0 and that we will take q very large, it is also relevant to know their
order of magnitude for x → 0+; it is easy to verify that log

(
Γ(x)

)
∼ log(1/x), S(x) ∼ (log x)2,

ψ(x) ∼ −1/x and T(x) ∼ log(1/x)/x. Hence for x → 0+, we can expect that log
(
Γ(x)

)
and

S(x) will be exponentially smaller than ψ(x) and T(x). Another difference is that, for the odd
Dirichlet characters, eq. (8) before does not involve the estimation of an infinite series. So it
seems reasonable to compare the following two approaches:
a) use the T-series formulae and the ψ(a/q)-values for computing both the odd and the even

Dirichlet characters cases like in [7];
b) use the S-series formulae for the even case and the finite sum of the aχ(a)-values for the odd

one; remark that in both cases we have to evaluate a sum of the log
(
Γ(a/q)

)
-values.

This way we can double check the computation performed in [7] not only because we are
developing a different implementation of the same formulae, but also because we can approach
the problem in an alternative way. In the computation we will use the PARI/Gp scripting language
to exploit its ability in accurately evaluate the infinite sums involved in the definition of the T
and S series previously described via the predefined summing function sumnum.
To check the correctness of the practical computations it is possible to use the following

formulae; recalling γ = 0.577215664901 . . . and ζ ′′(0) = −2.006356455908 . . . , we have that
q−1∑
a=1

log
(
Γ
(a
q
))
=

1
2

(
(q − 1) log(2π) − log q

)
, (12)

q−1∑
a=1

S
(a
q
)
= −ζ ′′(0)(q − 1) − log q log(2π) − (log q)2

2
, (13)

q−1∑
a=1

ψ
(a
q
)
= −γ(q − 1) − q log q, (14)

6 ALESSANDRO LANGUASCO

q−1∑
a=1

T
(a
q
)
=

q
2
(log q)2 + γq log q. (15)

Formula (12) follows from Gauß’ multiplication formula, see, e.g, section 12.15 of Whittaker-
Watson [13], formula (13) is an immediate consequence of Theorem 2.5 of Deninger [4] and
formulae (14)-(15) follow respectively from equations (7.9)-(7.10) of Dilcher [5].
We also remark that approaches a)-b) trivially require a quadratic number of products to

perform the computations in (7)-(8) and (11), but this can be improved by using the Discrete
Fourier Transform (DFT) and the following argument. Focusing on (7)-(8) and (11), we
remark that, since q is prime, it is enough to get g, a primitive root of q, and χ1, the
Dirichlet character mod q given by χ1(g) = e2πi/(q−1), to see that the set of the non-trivial
characters mod q is {χ j

1 : j = 1, 2, . . . , q − 2}. Hence, if, for every k ∈ {0, . . . , q − 2}, we
denote gk ≡ ak ∈ {1, . . . , q − 1}, every summation in (7)-(8) and (11) is either of the type∑q−1

k=1 e2πi j k/(q−1) f (ak/q) or
∑q−1

k=1 e−2πi j k/(q−1) f (ak/q), where j ∈ {1, . . . , q − 2} and f is a
suitable function. As a consequence, such quantities are the DFT, or its inverse transformation,
of the sequence { f (ak/q) : k = 0, . . . , q − 2}. This was used in [7] to speed-up the computation
of these quantities via the use of DFT-dedicated software libraries. Unfortunately in the scripting
language of PARI/Gp the DFT-functions work only if q = 2` + 1, for some ` ∈ N. So we had to
trivially perform these summations and hence, in practice, this part is the most time consuming
one in both the approaches a) and b) since it has a quadratic cost in q; this is the reason why
for q > 2011 the direct approach using the lfun function of PARI/Gp becomes faster than the
others (trivially performing the sums over a = 1, . . . , q − 1).
Being aware of such limitations, we performed the computation of EKq with these three

approaches for every q prime, q ≤ 300, on a Macbook Air laptop (“Early 2015”, 8Gb RAM, 1.6
Ghz Intel Core i5, two cores) using a precision of 30 decimal digits, see Table 1 of section 6.
The results coincide up the desired precision and are coherent with the data of Table 1 on page
1472 of [7]. Moreover it seems that the version which uses the T-function is a bit faster than
the one with the S-function probably because the internal sequence involved in its summation
has a simpler form with respect to the one involved in the sum defining S, although the general
term of such series have roughly the same decay order. In fact the computation of the values of
Table 1 needed 1 minute and 7 seconds using the T-function, 1 minute and 18 seconds using the
S-function and 1 minute and 23 seconds via the direct approach. We also computed the values of
EKq for q = 1009, 2003, 3001, 4001, 5003, 6007, 7001, 8009, 9001, 10007, 20011, 30011, as you
can see in Table 2 of section 6. These numbers were chosen to heuristically evaluate how the
computational cost depends on the size of q. In this case, in the fifth column of Table 2 we also
reported the running time of the direct approach, i.e. using (1), the third and fourth columns are
respectively the running times of the approaches a) and b), while the sixth one indicates the used
precision. For these values of q it became clear that the computation time spent in performing
the sums having the Dirichlet characters values as coefficients was the longest one. This means
that inserting a DFT-algorithm in the approaches a) and b) is fundamental to further improve
their performances.
Hence for larger values of q we used the gp2c compiler tool to obtain suitable C programs

to perform the precomputations of the needed T , ψ, S and log(Γ)-values. Then we passed
such values to other C programs which used the fftw [8] library to perform the final stage.
In this final stage the performances were extremely good in the sense that such a part was
thousands-times faster than the same one trivially performed. This way we computed the values
of EKq for q = 40009, 42611, 50021, 60013, 70001, 80021, 90001, 100003, 305741, 1000003,

COMPUTATION OF THE EULER-KRONECKER AND GENERALISED EULER CONSTANTS 7

4178771, 6766811, 10000019, 28227761, with double, long double and quadruple precisions,
see Table 3. Some of these q-values were chosen for their dimension, while others because
their measures using the “greedy sequence of prime offsets”, http://oeis.org/A135311, are
larger than 1.2 so that they are good candidates to have a negative Euler-Kronecker constant,
see sect. 1.4 of [7] or sect. 2-3 of [11]. Such computations were performed with and Dell
OptiPlex-3050, equipped with an Intel i5-7500 processor, 3.40GHz, four cores, 8 GB of RAM
and running Ubuntu 18.04. We remark that the quadruple precision computation performances
are affected from a lack of hardware support of the FLOAT128 type of the C programming
language.
After having evaluated the running times of the previous examples, we decided to provide

the scattered plots, see Figures 1-2, of the normalised values of EKq and EK+q (both in long
double precision) for every odd prime q ≤ 105 thus doubling the known range of such data,
see [7]. Such computation required the use of the cluster of the Mathematical Department of
the University of Padova; for a description of the used cluster see http://www.math.unipd.
it/~languasc/EKcomput/Description-Cluster-Math-Unipd.pdf. The minimal value
of EKq/log q, 3 ≤ q ≤ 105, q prime, is 0.23449 . . . and it is attained at q = 42611, as expected.
For even larger values of q the precomputations, if performed on a single desktop computer,

would require too much time; hence we parallelised them on the cluster previously mentioned.
This way we were able to obtain an independent confirmation of Theorem 4 of [7] getting
EK964477901 = −0.18237472563711916085 . . . , EK+964477901 = 10.40222338242826353694 . . .
with the S-function and EK964477901 = −0.18237469280744579234 . . . with the T-function,
since we computed them using the quadruple precision at the final stage. To do so we first
split the computation, with a precision of 38 decimal digits, of the needed values of T , ψ, S
and log(Γ) in 97 subintervals I j of size 107 each; the computation time required for each I j
was on average about about 2100 minutes on the cluster for the slower function involved (the
S-function); finally the final DFT-step needed about 65 minutes (long double precision) or 522
minutes (quadruple precision) of computation time using the FFTW library [8] on an Intel(R)
Xeon(R) CPU E5-2650 v3 @ 2.30GHz, with 160 GB of RAM.

Further improvements on our programs were then performed to lower the RAM and disk
occupation and to use a dedicated FFTW interface, called guru64, for being able to work on
transformswhose length is ≥ d(232−1)/2e (the int bound for the C programming language). This
let us to evaluate the Euler-Kronecker constants for larger “good” candidates q (in the sense that
their measures using the greedy sequence of prime offsets were larger than 1.2). This way, after
having used the cluster to get the values ofT , ψ, S and log(Γ), in about 90 minutes of computation
time on the same machine mentioned before we got that EK2918643191 = 0.302789 . . . and
EK+2918643191 = 12.573983 . . . using the long double precision. In this case it seems that double
precision version performed using the T-function is much less stable than the one with the
S-function probably because of the fact that T(x) and ψ(x) are, for x → 0+, respectively much
larger that S(x) and log(Γ(x)).

The PARI/Gp scripts and the C programs used and the computational results obtained are avail-
able at the following web address: http://www.math.unipd.it/~languasc/EK-comput.
html.

5. On the generalised Euler constants in arithmetic progressions γk(a, q)
Recall that q is an odd prime. In the case we are using the T-series, we have to precompute

their values at a/q and the ones of ψ at the same arguments. Hence, as a by-product we can
also obtain the values of the generalised Euler constants γ0(a, q) and γ1(a, q) as you can see in

http://oeis.org/A135311
http://www.math.unipd.it/~languasc/EKcomput/Description-Cluster-Math-Unipd.pdf
http://www.math.unipd.it/~languasc/EKcomput/Description-Cluster-Math-Unipd.pdf
http://www.math.unipd.it/~languasc/EK-comput.html
http://www.math.unipd.it/~languasc/EK-comput.html

8 ALESSANDRO LANGUASCO

paragraphs 5.1-5.2. In practice this is obtained by activating an optional flag in the main gp
script. The case about γk(a, q), k ≥ 2, is described in paragraph 5.3.

5.1. Generalised Euler constants γ0(a, q). For γ0(a, q) with 1 ≤ a ≤ q − 1, q odd prime, by
(2) we have

γ0(a, q) = −
1
q

(
log q + ψ(a

q
)
)
.

Recalling ψ(1) = −γ, we also have γ0(q, q) = (γ − log q)/q.

5.2. Generalised Euler constants γ1(a, q). For γ1(a, q) with 1 ≤ a ≤ q − 1, q odd prime, we
can use eq. (2) and (5). This way we get

γ1(a, q) = −
1
q

((log q)2
2

+ (log q)ψ(a
q
) + ψ1(

a
q
)
)
=

1
q

(
γ1 −

(log q)2
2

− (log q)ψ(a
q
) − T

(a
q
))
.

Moreover, since ψ(1) = −γ and T(1) = 0, we also have

γ1(q, q) =
1
q

(
γ1 + γ log q − (log q)2

2

)
.

Using the formulae in the previous two paragraphs we computed γ0(a, q) and γ1(a, q) with q
prime, 3 ≤ q ≤ 100, 1 ≤ a ≤ q, in about 9 seconds of computation time with a precision of 30
digits. Such results are listed at the bottom of the gp-script file that can be downloaded here:
http://www.math.unipd.it/~languasc/EK-comput.html.

5.3. The general case γk(a, q), k ≥ 2. The general case γk(a, q), k ∈ N, k ≥ 2, q ≥ 1,
1 ≤ a ≤ q, do not follow from the data already computed for the Euler-Kronecker constants since
we need information about the values of ψn(x), for every 2 ≤ n ≤ k. Such a direct computation
of both ψn(a/q) and γn can be easily performed via eq. (2)-(3) using the PARI/Gp summing
function sumnum paying attention to submit a sufficiently fast convergent sum. For example, to
compute γn, n ∈ N, we used the formulae

γn =

+∞∑
m=1

((log m)n
m

− 1
n + 1

n∑
j=0

(
n + 1

j

)
(log m) j(log(1 + 1/m))n+1− j

)
(16)

and

γn =

+∞∑
m=1
(log m)n

(1
m
− log

(
1 +

1
m

))
− 1

n + 1

n−1∑
j=0

(
n + 1

j

)
(log m) j(log(1 + 1/m))n+1− j

)
, (17)

which both easily follow from (4). We get, in less than 15 seconds of time and with a precision
of at least 40 digits, the results in Table 4 of section 6; to be sure about the correctness of such
results we computed them twice using the formulae (16)-(17) and then we compared their results.
Such values are in agreement with the data on page 282 of Bohman-Fröberg [1] for n = 0, . . . , 20.
For larger n’s the formulae in (16)-(17) seem to be not good enough to get precise results via the
sumnum function with this precision level.

To compute ψn(a/q) and, as a consequence, γk(a, q), we can proceed in a similar way as we did
for T(a/q) and γ1(a, q), see the program file here http://www.math.unipd.it/~languasc/
EK-comput.html. At the bottom of such program file you can find a large list (too long to be
included here) of computed values of γk(a, q) for 1 ≤ k ≤ 20, 1 ≤ q ≤ 9, 1 ≤ a ≤ q, with a
precision of 20 digits. In about 1 minute and 33 seconds of computation time we replicated
Dilcher’s computations since the values we got are in agreement with the data on pages S21-S24
of [5].

http://www.math.unipd.it/~languasc/EK-comput.html
http://www.math.unipd.it/~languasc/EK-comput.html
http://www.math.unipd.it/~languasc/EK-comput.html

COMPUTATION OF THE EULER-KRONECKER AND GENERALISED EULER CONSTANTS 9

Acknowledgements. I wish to thank Karim Belabas and Bill Allombert for a couple of key
suggestions about libpari and gp2c and Luca Righi for his help in developing the quadruple
precision versions of the fft-programs, in designing the parallelised precomputations and in
organising the computational runs on the cluster of the Math. Dept. of the University of Padova.

References

[1] J. Bohman and C.-E. Fröberg, The Stieltjes Function–Definition and Properties, Math.
Comp. 51 (1988), 281–289.

[2] H. Cohen, Number Theory. Volume I: Tools and Diophantine Equations, Graduate Texts in
Mathematics, vol. 239, Springer, 2007.

[3] H. Cohen, Number Theory. Volume II: Analytic and Modern Tools, Graduate Texts in
Mathematics, vol. 240, Springer, 2007.

[4] C. Deninger, On the analogue of the formula of Chowla and Selberg for real quadratic
fields, J. Reine Angew. Math. 351 (1984), 171–191.

[5] K. Dilcher, Generalized Euler constants for arithmetical progressions, Math. Comp. 59
(1992), 259–282.

[6] K. Dilcher, On generalized gamma functions related to the Laurent coefficients of the
Riemann zeta function, Aequationes Math. 48 (1994), 55–85.

[7] K. Ford, F. Luca, and P. Moree, Values of the Euler φ-function not divisible by a given
odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields, Math.
Comp. 83 (2014), 1447–1476.

[8] M. Frigo and S. G. Johnson, The Design and Implementation of FFTW3, Proceedings of
the IEEE 93 (2), 216–231 (2005). The C library is available at http://www.fftw.org.

[9] S. Gun, M. R. Murty, and P. Rath, Transcendental nature of special values of L-functions,
Canad. J. Math. 63 (2011), 136–152.

[10] K. Katayama, Class number formulas, Kronecker’s limit formulas, Chowla–Selberg
formulas and the generalized gamma functions, J. Number Theory 133 (2013), 2092–2120.

[11] P. Moree, Irregular Behaviour of Class Numbers and Euler-Kronecker Constants of
Cyclotomic Fields: The Log Log Log Devil at Play, Irregularities in the Distribution of
Prime Numbers. From the Era of Helmut Maier’s Matrix Method and Beyond (J. Pintz and
M.Th. Rassias, eds.), Springer, 2018, pp. 143–163.

[12] The PARI Group, PARI/GP version 2.11.1, Bordeaux, 2018. Available from http:
//pari.math.u-bordeaux.fr/.

[13] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge U. P., 1996.

Alessandro Languasco, Università di Padova, Dipartimento di Matematica, “Tullio Levi-Civita”,
Via Trieste 63, 35121 Padova, Italy. e-mail: alessandro.languasco@unipd.it

http://www.fftw.org
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

10 ALESSANDRO LANGUASCO

6. Tables

q EKq

3 0.945497280871680703239749994158 . . .
5 1.72062421251340476169572878865 . . .
7 2.08759407471733013281542471957 . . .
11 2.41542590428326783034287963583 . . .
13 2.61075773741765019699776108857 . . .
17 3.58197604409757765927178812919 . . .
19 4.79040941571428332590703936458 . . .
23 2.61128917618820092550739164964 . . .
29 3.09373170599426872316275179819 . . .
31 4.31444292526747509770757441042 . . .
37 4.30493818995760201798557926417 . . .
41 3.97152162792133216028257040014 . . .
43 4.37862750574695049413775062336 . . .
47 4.79939425890741613452758429988 . . .
53 4.33773685859709231869696082307 . . .
59 5.43351634538500398077634438193 . . .
61 5.07108519057651619595805098113 . . .
67 5.29213930662896260873428461831 . . .
71 5.25525819281894616772013128637 . . .
73 4.06694909044749529201648815625 . . .
79 4.99827631817068010789431392945 . . .
83 3.03313611343607418716403819105 . . .
89 4.16409079888983276880841110372 . . .
97 4.89124074040389666830751468857 . . .
101 5.29701289150966971887860032739 . . .
103 5.14433955125208822113330503220 . . .
107 5.45827420997024503421680245453 . . .
109 6.90663814626423653219469837704 . . .
113 4.02173038257803067578318006617 . . .
127 5.08859912415333449423215636240 . . .

q EKq

131 2.83682634158837909860285797321 . . .
137 4.93700022614368468691962999711 . . .
139 5.88916863399867186726383730369 . . .
149 5.98342477769515981450242785739 . . .
151 5.04201611352872179914519461022 . . .
157 7.40802206572222729350845201390 . . .
163 5.92966482288720678755499913844 . . .
167 8.03300175268872470467583357802 . . .
173 3.38434753653206190344297798897 . . .
179 3.86236132549903008112126130282 . . .
181 5.14111848776848135810136664257 . . .
191 4.69286990201422664003552434812 . . .
193 5.16342219673915483320078262720 . . .
197 7.55148715896640647886485129372 . . .
199 6.47366513609320738699497459778 . . .
211 7.73613578424586162532810587585 . . .
223 7.81777971785991367471336734851 . . .
227 8.08053156951296218697071193757 . . .
229 7.16298632058099546745778115058 . . .
233 3.11948354485127541303115295258 . . .
239 3.99911017207833249512632297919 . . .
241 6.03752521401034215065709250935 . . .
251 5.04313708502347351042811119022 . . .
257 8.16991391232741391670225155227 . . .
263 7.30343624736815435414348077406 . . .
269 6.26034831666577102735252755712 . . .
271 5.97717804854803304223773905976 . . .
277 4.59280817714077895164777081661 . . .
281 4.66496432366211457505220852623 . . .
283 7.15028579741068251409225231188 . . .
293 3.38438152121953978658468259238 . . .

Table 1. Values of EKq for every odd prime up to 300 with a precision of 30
digits; computed with PARI/Gp, v. 2.11.1.

q EKq time T-version time S-version time direct version digits
1009 8.44213515184929927586069467274 . . . 11 sec. 13 sec. 23 sec. 30
2003 5.79342136907936332803849821625 . . . 30 sec. 36 sec. 1 min. 0 sec. 30
3001 8.64746513696838693880234535092 . . . 54 sec. 1 min. 6 sec. 1 min. 51 sec. 30
4001 7.00343554620314399435685176843 . . . 1 min. 28 sec. 1 min. 44 sec. 2 min. 48 sec. 30
5003 5.54929300458161422773687954041 . . . 2 min. 16 sec. 2 min. 37 sec. 3 min. 59 sec. 30
6007 8.31161012199848381656290344038 . . . 3 min. 7 sec. 3 min. 35 sec. 5 min. 30 sec. 30
7001 8.50527787610087713931687803847 . . . 4 min. 15 sec. 4 min. 38 sec. 6 min. 43 sec 30
8009 11.6868463915493575353450869960 . . . 5 min. 48 sec. 6 min. 16 sec. 8 min. 22 sec. 30
9001 10.1094784318383409358225035802 . . . 6 min. 32 sec. 7 min. 35 sec. 9 min. 49 sec. 30
10007 12.6646120045606923275389356783 . . . 7 min. 49 sec. 9 min. 15 sec. 12 min. 21 sec. 30
20011 10.7996803112999205186430402899 . . . 33 min. 31 sec. 35 min. 38 sec. 35 min. 7 sec. 30
30011 10.3330799721240242255136062255 . . . 74 min. 44 sec. 79 min. 18 sec. 65 min. 19 sec. 30

Table 2. Few other values of EKq with a precision of 30 digits; computed with
PARI/Gp, v. 2.11.1.

COMPUTATION OF THE EULER-KRONECKER AND GENERALISED EULER CONSTANTS 11

q EKq q EKq

40009 13.14688498189670340252 . . . 305741 1.65052277946237473601 . . .
42611 2.49968848052266852388 . . . 1000003 17.37997023827717073547 . . .
50021 9.91050713790501287268 . . . 4178771 0.92285541557399964022 . . .
60013 12.81035968578751809187 . . . 6766811 1.60404528321177759204 . . .
70001 12.57276479037455044850 . . . 10000019 17.08794469564282064569 . . .
80021 14.18563290071312273227 . . . 28227761 2.36156224708899177985 . . .
90001 11.81942408990480618779 . . . 964477901 −0.18237472563711916085 . . .

100003 15.16607400737259891798 . . . 2918643191 0.302789 . . .

Table 3. Few other values of EKq; computed with PARI/Gp, v. 2.11.1. and fftw,
v. 3.3.8., with long double or quadruple precision.

n γn
0 0.57721566490153286060651209008240243104 . . .
1 −0.0728158454836767248605863758749013191 . . .
2 −0.0096903631928723184845303860352125293 . . .
3 0.00205383442030334586616004654275338428 . . .
4 0.00232537006546730005746817017752606800 . . .
5 0.00079332381730106270175333487744444483 . . .
6 −0.0002387693454301996098724218419080042 . . .
7 −0.0005272895670577510460740975054788582 . . .
8 −0.0003521233538030395096020521650012087 . . .
9 −0.00003439477441808804817791462379822739 . . .

10 0.00020533281490906479468372228923706530 . . .
11 0.00027018443954390352667290208206795567 . . .
12 0.00016727291210514019335350154334118344 . . .
13 −0.00002746380660376015886000760369335518 . . .
14 −0.0002092092620592999458371396973445849 . . .
15 −0.0002834686553202414466429344749971269 . . .
16 −0.0001996968583089697747077845632032403 . . .
17 0.00002627703710991833669946659763051013 . . .
18 0.00030736840814925282659275475194862564 . . .
19 0.00050360545304735562905559643771716003 . . .
20 0.00046634356151155944940059482443355052 . . .
21 0.00010443776975600011581079567436772049 . . .
22 −0.0005415995822039977016551961731741055 . . .
23 −0.0012439620904082457792997415995371658 . . .
24 −0.0015885112789035615619061966115211158 . . .
25 −0.0010745919527384888247242919873531730 . . .
26 0.00065680351863715443150477300335621524 . . .
27 0.00347783691361853820900735957425881154 . . .
28 0.00640006853170062945810722822194586366 . . .
29 0.00737115177047223913441240242355940215 . . .
30 0.00355772885557316094791353774890840261 . . .

Table 4. Computation of the generalised Euler constants γn, 0 ≤ n ≤ 30, with a
precision of at least 40 digits; computed with PARI/Gp, v. 2.11.1.

12 ALESSANDRO LANGUASCO

Figure 1. The values of EKq/log q, q prime, 3 ≤ q ≤ 100000, plotted using
GNUPLOT, v.5.2, patchlevel 2.

COMPUTATION OF THE EULER-KRONECKER AND GENERALISED EULER CONSTANTS 13

Figure 2. The values of EK+q /log q, q prime, 3 ≤ q ≤ 100000, plotted using
GNUPLOT, v.5.2, patchlevel 2.

	1. introduction
	2. Ford-Luca-Moree's method
	3. An alternative method: distinguishing Dirichlet characters' parities
	3.1. 0 is a primitive odd Dirichlet character.
	3.2. 0 is a primitive even Dirichlet character.

	4. About the computations of EKq: comparing methods, results and running times
	5. On the generalised Euler constants in arithmetic progressions k(a,q)
	5.1. Generalised Euler constants 0(a,q)
	5.2. Generalised Euler constants 1(a,q)
	5.3. The general case k(a,q), k2

	References
	6. Tables

