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Abstract

The Burgers’ equation is a one-dimensional momentum equation for a Newto-

nian fluid. The Cole-Hopf transformation solves the equation for a given initial

and boundary condition. However, in most cases the resulting integral equa-

tion can only be solved numerically. In this work a new semi-analytic solving

method is introduced for analytic and bounded series solutions of the Burg-

ers’ equation. It is demonstrated that a sequence transformation can split the

nonlinear Burgers’ equation into a sequence of linear diffusion equations. Each

consecutive sequence element can be solved recursively using the Green’s func-

tion method. The general solution to the Burgers’ equation can therefore be

written as a recursive integral equation for any initial and boundary condition.

For a complex exponential function as initial condition we derive a new analytic

solution of the Burgers’ equation in terms of the Bell polynomials. The new

solution converges absolutely and uniformly and matches a numerical solution

with arbitrary precision. The presented semi-analytic solving method can be

generalized to a larger class of nonlinear partial differential equations which we

leave for future work.

Keywords: Sequence transformation, Green’s function method, nonlinear

differential equations, Burgers’ equation, Bell polynomials

1. Introduction

The Burgers’ equation is a momentum equation for a one-dimensional vis-

cous fluid [1]. The equation describes a competition in the velocity field between
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nonlinear convection and linear diffusion. It has an important historical signif-

icance in modeling turbulence, plays an important role in nonlinear acoustics

and has applications in traffic flows [2, 3, 4, 5, 6].

The Cole-Hopf transformation converts the Burgers’ equation into a linear

diffusion equation which can be solved by the Green’s function method for any

initial and boundary condition [7, 8]. For some initial data the resulting integral

equation can be solved explicitly in a closed-form solution or series solution

[9, 10]. For many initial and boundary conditions however explicit solutions

cannot be obtained and the integral equation has to be solved numerically. As

a result, the capability to analytically understand the nonlinear dynamics is

limited and other semi-analytic solving methods become important.

In this work we solve the Burgers’ equation using a sequence approach. We

show that the Burgers’ equation can be transformed into a sequence of lin-

ear diffusion equations for holomorphic and bounded series solutions. Each

consecutive sequence element can be solved recursively using the Green’s func-

tion method. The general solution to any initial value problem of the Burgers’

equation can therefore be written as a recursive integral equation. This novel

semi-analytic method is termed the sequence transformation method. For some

initial and boundary conditions this recursive integral equation can be solved

explicitly and written in a closed-form series. We show that we are able to

obtain a closed-form series solution for a specific initial condition for which the

Cole-Hopf integral solution holds no known closed-form solution.

Other semi-analytical methods such as the homotopy analysis method, Ado-

mian decomposition method, differential transform method and variational it-

eration method have been successfully used in the past to solve the Burgers’

equation [11, 12, 13, 14, 15, 16, 17, 18]. The approach in these methods resem-

bles our approach, in the sense that the solution is an infinite series whose terms

can be calculated term-wise. However our approach does not require a defor-

mation parameter, an auxiliary convergence parameter, predefined expansion

polynomials, an expansion parameter, explicit Taylor series or Lagrange multi-

pliers. Instead, the sequence of linear diffusion equations follows naturally from
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a sequence transformation applied to the Burgers’ equation. Any initial con-

dition, boundary condition or source term can be straightforwardly integrated

using the Green’s function method.

In §2 a Banach space is introduced including a set of sequence operations.

The sequence transformation method is presented in §3. In §4 the complex

valued Burgers’ differential equation is given. A new and complete analytic

solution to the Burgers’ equation is presented in §5 written in terms of the Bell

polynomials for a complex exponential function as initial condition. Finally in

§6 we conclude and discuss possible future directions.

2. Preliminaries

In §2.1 we introduce a Banach space for a class of well behaved and physically

relevant functions. In the remainder of this section we discuss four important

operations in the Banach space that are used in this work. First in §2.2 we show

that differentiation and integration for a series in this space can be performed

term-wise. In §2.3 the Cauchy product is introduced for two series. Finally in

§2.4 we introduce the concept of a complete function and show that analytic

continuation is a unique process.

2.1. Banach space and series

Let Ω ⊆ C2 be an open subset and let F(Ω) be a Banach space of all bounded

holomorphic functions of two variables f(z, w) : Ω → C with the supremum

norm ||f(z, w)|| := sup(z,w)∈Ω |f(z, w)|. We define the sequence space Fs(Ω) as

the set of all possible infinite sequences {fn(z, w)} with fn(z, w) ∈ F(Ω) and

n ∈ N whose series converges by the Weierstrass M-test. That is, a sequence

{fn(z, w)} is only member of Fs(Ω) when ||fn(z, w)|| ≤ Mn and
∑∞
n=1Mn <

∞. As a result, any sequence {fn(z, w)} ∈ Fs(Ω) has a series that converges

absolutely and uniformly on Ω to a member in F(Ω), since the Banach space is

complete. Our notation for a series is

f(z, w) :=
∑
n

fn(z, w) :=
∑
n

{fn(z, w)}, (1)
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where the summation over a sequence results in a series.

2.2. The differentiation and integration of a series

A series f(z, w) ∈ F(Ω) of the sequence {fn(z, w)} ∈ Fs(Ω) is infinitely

differentiable term-wise with respect to z or w, since f(z, w) converges uniformly

in Ω and is analytic in both z and w. Furthermore integration of the series

f(z, w) along any continuous path in Ω with respect to the variable z or w can be

performed term-wise, since f(z, w) converges uniformly in Ω and is continuous

in both z and w.

2.3. The product of two series

Two series f(z, w) ∈ F(Ω) of the sequence {fn(z, w)} ∈ Fs(Ω) and g(z, w) ∈
F(Ω) of the sequence {gn(z, t)} ∈ Fs(Ω) may be multiplied together using the

Cauchy product as

f(z, w)g(z, w) :=

(∑
n

fn(z, w)

)(∑
n

gn(z, w)

)
=
∑
n

(
n−1∑
m=1

fm(z, w)gn−m(z, w)

)
.

(2)

The functions f(z, w), g(z, w) and the product f(z, w)g(z, w) are absolutely and

uniformly convergent in Ω. Therefore we have that the product f(z, w)g(z, w)

is a member of F(Ω), since the Banach space is complete.

2.4. Analytic continuation and complete functions

A function F (z, w) ∈ F(Φ) may consist of a finite set of function elements

(fk(z, w) ∈ F(Ωk),Ωk ⊆ Φ), (3)

such that

F (z, w) :=
⋃
k

fk(z, w),

Φ :=
⋃
k

Ωk,

where Ωk and Φ ⊆ C2 are open, k ∈ N and we use superscript notation for

a function element k (not to be confused with the derivative). If Φ denotes the
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natural boundary for F (z, w) such that there exists no analytic continuation of

F (z, w) outside Φ then F (z, w) is complete.

The analytic continuation of two function elements (fk(z, w),Ωk) and (fλ(z, w),Ωλ)

is unique when Ωk ∩ Ωλ 6= ∅ and λ ∈ N. That is, suppose (u(z, w),Ωλ) and

(v(z, w),Ωλ) are two analytic continuations of (fk(z, w),Ωk). Now if u(z, w) =

v(z, w) = fk(z, w) for all (z, w) ∈ (Ωk∩Ωλ) we must have that u(z, w) = v(z, w)

for all (z, w) ∈ Ωλ, since u(z, w) and v(z, w) are both analytic and Ωk∩Ωλ 6= ∅.

3. The sequence transformation method

Let us define a transformation T : Fs(Ω)→ F(Ω) for a sequence {fn(z, w)} ∈
Fs(Ω) to a tagged series f̂(z, w, s) ∈ F(Ω) by

T
[
{fn(z, w)}

]
:=
∑
n

fn(z, w) exp(ins), (4)

where i is the imaginary unit and s ∈ [−π, π]. The tagged series

f̂(z, w, s) =
∑
n

fn(z, w) exp(ins) (5)

converges absolutely and uniform on Ω× [−π, π], because

||fn(z, w) exp(ins)|| ≤ ||fn(z, w)|| ≤Mn

for all (z, w, s) ∈ Ω× [−π, π]. The inverse transformation T −1 : F(Ω)→ Fs(Ω)

from a tagged series f̂(z, w, s) ∈ F(Ω) to a sequence {fm(z, w)} ∈ Fs(Ω) is

defined as

T −1

[
f̂(z, w, s)

]
=

{
1

2π

ˆ π

−π
f̂(z, w, s) exp(−ims) ds

}
= {fm(z, w)}, (6)

where m ∈ N and we are allowed to integrate term-by-term, since the integrand

converges uniformly on Ω× [−π, π]. The identity transform is given by

T −1T
[
{fn(z, w)}

]
=

{
1

2π

ˆ π

−π

(∑
n

fn(z, w) exp(ins)

)
exp(−ims) ds

}

=

{∑
n

1

2π

ˆ π

−π
fn(z, w) exp(i(n−m)s) ds

}
= {fm(z, w)}.
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The remarkable feature of this transformation is that every sequence in

Fs(Ω) has a tagged series for which the inverse transformation allows to obtain

the original sequence. We can use this property to split a nonlinear differential

equation into a sequence of linear differential equations which we show in the

next section for the Burgers’ equation.

4. The Burgers’ equation

Let f(z, w) ∈ F(Ω) be a series of the sequence {fn(z, w)} ∈ Fs(Ω) and be

a solution of the Burgers’ differential operator A : F(Ω) → F(Ω) given by the

zero-map

A
[
f(z, w)

]
=
∂f(z, w)

∂w
− ν ∂

2f(z, w)

∂z2
+ f(z, w)

∂f(z, w)

∂z
= 0, (7)

where ν ∈ R > 0 is the viscosity.

In §4.1 we apply the sequence transformation to the Burgers’ equation and

show that the nonlinear differential equation can be decomposed in a sequence

of linear diffusion equations for all holomorphic and bounded series solutions. In

§4.2 the Green’s function method is introduced to solve the resulting sequence

of linear diffusion equations for an initial value problem. In order to simplify the

analysis, the scope is limited to complex-valued functions with real arguments.

Finally, in §4.3 the concept of a complete solution is explained.

4.1. The sequence differential equation

Instead of solving (7) directly for a function f(z, w), we first decompose

the nonlinear equation into a sequence of linear diffusion equations by making

use of the sequence transformation, see §3. We start by applying the differen-

tial operator A to a tagged series f̂(z, w, s) and calculate the inverse sequence

transformation T −1 by
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T −1

[
A
[
f̂(z, w, s)

]]
= T −1

[
∂f̂(z, w, s)

∂w
− ν ∂

2f̂(z, w, s)

∂z2
+ f̂(z, w, s)

∂f̂(z, w, s)

∂z

]
= T −1

[∑
n

(
∂fn(z, w) exp(ins)

∂w
− ν ∂

2fn(z, w) exp(ins)

∂z2
+

(
n−1∑
l=1

fl(z, w)
∂fn−l(z, w)

∂z

)
exp(ins)

)]

=

{
∂fm(z, w)

∂w
− ν ∂

2fm(z, w)

∂z2
+

m−1∑
l=1

fl(z, w)
∂fm−l(z, w)

∂z

}
(8)

= {0},

where {0} is the null sequence, m ∈ N, the product f̂(z, w, s)∂f̂(z,w,s)
∂z is written

out using the Cauchy product (see section 2.3) and we have used that f̂(z, w, s)

is a holomorphic function and absolutely and uniformly convergent. As a result,

we see that each sequence element fm(z, w) is a solution of an in-homogeneous

linear diffusion equation.

In the next section we use the Green’s function method to solve the sequence

of linear diffusion equations.

4.2. Solving the sequence differential equation on two lines in the complex plane

To simplify our analysis, we will only consider functions u(x, t) : ∆ → C,

where ∆ ⊆ R2. If we set z = x exp(iθx) and w = t exp(iθt) as the complex polar

coordinates, we can define u(x, t) as the function

u(x, t) := f(x exp(iθx), t exp(iθt)), (9)

where (θx, θt) ∈ R2 are two constants and (x, t) ∈ R2 are two real variables.

As a result, the function u(x, t) is actually the function f(z, w) restricted on

two line segments in the complex plane. The function u(x, t) is analytic along

the line segments in the complex plane, since f(z, w) is holomorphic on Ω and

∆ ⊂ Ω. An example on how to solve (7) with an initial and boundary conditions

in the full complex plane is outside the scope of this work.

Let u(x, t) be a bounded and analytic series of the sequence {un(x, t)} and

a solution of the Burgers’ differential operator (7), restricted on ∆ : (xa, xb) ×
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(ta, tb) ⊆ R2, then the sequence differential equations, following (8), are given

by

∂u1(x, t)

∂t
− ν ∂

2u1(x, t)

∂x2
= 0,

∂u2(x, t)

∂t
− ν ∂

2u2(x, t)

∂x2
= −u1(x, t)

∂u1(x, t)

∂x
,

∂u3(x, t)

∂t
− ν ∂

2u3(x, t)

∂x2
= −

(
u1(x, t)

∂u2(x, t)

∂x
+ u2(x, t)

∂u1(x, t)

∂x

)
,

· · · = · · ·

∂um(x, t)

∂t
− ν ∂

2um(x, t)

∂x2
= −

m−1∑
l=1

ul(x, t)
∂um−l(x, t)

∂x
.

We see that each individual sequence element is an in-homogeneous linear

diffusion equation that can be solved using the Green’s function method as

u1(x, t) =

ˆ xb

xa

G(x, x0; t, ta)u(x0, ta) dx0 (10)

+ ν

ˆ t+

ta

(
G(x, x0; t, t0)

∂u(x0, t0)

∂x0
− u(x0, t0)

∂G(x, x0; t, t0)

∂x0

)∣∣∣∣x0=xb

x0=xa

dt0,

um≥2(x, t) = −
ˆ t+

ta

ˆ xb

xa

G(x, x0; t, t0)

(
m−1∑
l=1

ul(x0, t0)
∂um−l(x0, t0)

∂x0

)
dx0 dt0,

where G(x, x0; t, t0) is the Green’s function and satisfies the causal diffusion

equation

−∂G(x, t;x0, t0)

∂t0
− ν ∂

2G(x, t;x0, t0)

∂x2
0

= δ(x− x0)δ(t− t0),

where G(x, x0; t, t+) = 0 and δ is the Dirac delta function. The general solution

of the Burgers’ equation (7) for any initial and boundary condition can therefore

be written as a recursive integral equation by

u(x, t) =

∞∑
m=1

um(x, t) =

ˆ xb

xa

G(x, x0; t, ta)u(x0, ta) dx0 (11)

+ ν

ˆ t+

ta

(
G(x, x0; t, t0)

∂u(x0, t0)

∂x0
− u(x0, t0)

∂G(x, x0; t, t0)

∂x0

)∣∣∣∣x0=xb

x0=xa

dt0

−
∞∑
m=2

ˆ t+

ta

ˆ xb

xa

G(x, x0; t, t0)

(
m−1∑
l=1

ul(x0, t0)
∂um−l(x0, t0)

∂x0

)
dx0 dt0.
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Figure 1: The complex plane for the variables w ∈ C, θt ∈ R and t ∈ R for two line segments

w = t exp(iθt) for the intervals t ∈ (ta, tb) and t ∈ (ta, tc).

We note that the Green’s function method does not guarantee that u(x, t) is

complete, see section 2.4.

4.3. The complete solution

The Green’s function method allows to solve the sequence differential equa-

tion for given initial and boundary conditions, but it does not guarantee that the

resulting series u(x, t) is complete, i.e. the radius of convergence of the solution

is typically not the full domain of interest. Therefore the solution u(x, t) is gener-

ally a function element of some yet unknown complete solution U(x, t) : Ψ→ C,

following section 2.4, where Ψ ⊆ R2 denotes the natural boundary.

Figure 1 shows the complex plane for the complex variable w and two line

segments w = t exp(iθt) for t ∈ (ta, tb) and t ∈ (ta, tc) where tc > tb. Suppose

u(x, t) only converges on (x, t) ∈ (xa, xb) × (ta, tb), where xa and xb is the

natural boundary along x. Then there might be an analytic extension to (x, t) ∈
(xa, xb)×(ta, tc), where tc is the natural boundary along t. Hence, U(x, t) is the

complete function on the domain Ψ : (xa, xb)× (ta, tc) and u(x, t) is a function

element (u(x, t), (xa, xb)× (ta, tb)) of U(x, t).
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The Green’s function method can in this case be used to analytically extend

the function u(x, t) to a larger domain. The new function element v(x, t) can be

obtained by solving a series v(x, t) of sequence {vn(x, t)} with initial conditions

starting in between ta < t < tb.

5. An initial value problem for the Burgers’ equation

Consider the following initial value problem for the Burgers’ equation

∂u(x, t)

∂t
− ν ∂

2u(x, t)

∂x2
+ u(x, t)

∂u(x, t)

∂x
= 0,

u(x, 0) = exp(ix) = cos(x) + i sin(x) (12)

where ν ∈ R > 0, t ≥ 0, ∞ < x < ∞. To solve the differential equation, we

start in §5.1 with the ansatz that the solution is a series that can be solved using

the sequence transformation method. Later in §5.2 we proof that the ansatz is

correct and we show that the series indeed converges absolutely and uniform in

a domain ∆. Finally in §5.3 we give the absolute error of the series solution and

compare the solution convergence properties to a numerical solution using the

Cole-Hopf transformation.

5.1. Solving the initial value problem

We assume that the solution to the initial value problem (12) is a series

u(x, t) ∈ F(∆) of the sequence {un(x, t)} ∈ Fs(∆). Following (10), the solution

for the sequence {um(x, t)} is

u1(x, t) =

ˆ ∞
−∞

G(x, x0; t, 0) exp(ix0) dx0,

um≥2(x, t) = −
ˆ t+

0

ˆ ∞
−∞

G(x, x0; t, t0)

(
m−1∑
l=1

ul(x0, t0)
∂um−l(x0, t0)

∂x0

)
dx0 dt0,

where G(x, x0; t, t0) is the free-space Green’s function

G(x, x0; t, t0) =
1√

4πν(t− t0)
exp

(−(x− x0)2

4ν(t− t0)

)
H(t− t0), (13)
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Figure 2: A plot of the complex-valued solution u(x, t), given by (15), for 2π < x < 2π at

three different times t = 0, t = 1 and t = 4 with ν = 0.3. The imaginary part is plotted on the

left and the real part is plotted on the right. The series solution has been cut-off at m = 30.

where i is the imaginary unit and H(t− t0) is the Heaviside theta function [19].

The first three calculated sequence elements of {um(x, t)} are

u1(x, t) = exp(ix− tν),

u2(x, t) =
i exp(−4νt+ 2ix) (1− exp(2νt))

2ν
,

u3(x, t) = −exp(−9νt+ 3ix) (1− 3 exp(4νt) + 2 exp(6νt))

8ν2
,

· · · = · · ·

where we have omitted the Heaviside theta functions since t ≥ 0+. The sequence

can be captured in a closed from as

um(x, t) =
im−1 exp(−νm2t+ imx)

2m−1νm−1(m− 1)!
×

m∑
k=1

(−1)k−1(k − 1)!Bm,k (µ1(m, t), . . . , µm−k+1(m, t)) , (14)

where Bm,k (µ1(m, t), . . . , µm−k+1(m, t)) are the exponential Bell polynomials

and

µl(m, t) := exp(lνt(m− l)).

Following (11), the full solution to our initial value problem is then given by

u(x, t) =

∞∑
m=1

um(x, t), (15)

11



where (x, t) ∈ ∆. In figure 2 we plot the solution u(x, t) for 2π < x < 2π at

different times with ν = 0.3. The figure shows a competition between nonlinear

convection and linear diffusion in the velocity field. At t = 1 we see the de-

velopment of a shock wave in both the real and imaginary part of the solution

which is dissipated by viscosity on later times.

5.2. Proof of convergence

In order to show that our ansatz was correct, we need to proof that (15)

converges absolutely and uniform in ∆. We start by estimating

|um(x, t)| ≤ exp(−νm2t)

2m−1νm−1(m− 1)!

∣∣∣∣ m∑
k=1

(−1)k−1(k − 1)!Bm,k (µ1(m, t), . . . , µm−k+1(m, t))

∣∣∣∣,
≤ exp(−νm2t)

2m−1νm−1(m− 1)!

m∑
k=1

∣∣∣∣(−1)k−1(k − 1)!Bm,k (µ1(m, t), . . . , µm−k+1(m, t))

∣∣∣∣,
=

exp(−νm2t)

2m−1νm−1(m− 1)!

m∑
k=1

(k − 1)!Bm,k (µ1(m, t), . . . , µm−k+1(m, t)) ,

≤ exp(−νm2t) exp(ν(m− 1)mt)

2m−1νm−1(m− 1)!

m∑
k=1

(k − 1)!Bm,k (1, 1, . . . , 1) ,

=
exp(−νmt)

2m−1νm−1(m− 1)!

m∑
k=1

(k − 1)!

{
m

k

}
, (16)

where
{
m
k

}
are the Stirling numbers of the second kind. Now by the ratio test

we have that

lim
m→∞

|um+1(x, t)|
|um(x, t)| = lim

m→∞

 exp(−ν(m+1)t)
2mνm(m)!

∑m+1
k=1 (k − 1)!

{
m+1
k

}
exp(−νmt)

2m−1νm−1(m−1)!

∑m
k=1(k − 1)!

{
m
k

}


= lim
m→∞

(
exp(−νt)

2νm

∑m+1
k=1 (k − 1)!

{
m+1
k

}∑m
k=1(k − 1)!

{
m
k

} )
,

=
exp(−νt)

2ν
lim
m→∞

(
1

m

∑m+1
k=1 (k − 1)!

{
m+1
k

}∑m
k=1(k − 1)!

{
m
k

} )
,

=
r exp(−νt)

2ν
,

< 1, (17)

where r = limm→∞

(
1
m

∑m+1
k=1 (k−1)!{m+1

k }∑m
k=1(k−1)!{mk}

)
and can be calculated numerically

as r ≈ 1.4427. The convergence condition for the Weierstrass M-test is fulfilled,

12



see section 2.1, when ν > r/2 for all t ≥ 0. The sequence elements are en-

tire analytic functions and the series convergences uniformly and absolutely in

∆ = (−∞,∞) × (0,∞) for ν > r/2, therefore the solution (15) is analytic and

complete for ν > r/2.

We note that we do not have a more narrow upper bound for the Bell

polynomials in (16), therefore the series may in fact be convergent for values

ν ≤ r/2 as figure 2 shows.

5.3. The absolute error

The series solution (15) of the initial value problem (12) converges absolutely

and uniform in ∆ = (−∞,∞) × (0,∞) for ν > r/2. This means that we can

define an absolute error as

δU = |U(x, t)− UN (x, t)| , (18)

where (x, t) = sup(x,t)∈Λ |U(x, t)|, Λ ⊆ ∆, U(x, t) is the exact solution of the

initial value problem and UN (x, t) is the partial series solution given by

UN (x, t) =

N∑
m=1

um(x, t), (19)

N ∈ N. The absolute error (18) goes to zero as N → ∞ and can be used to

show how fast the partial series solution converges to the exact solution in Λ for

increasing values of N .

The exact solution with infinite precision is not known, but we can use the

absolute error (18) to show how fast the partial series solution (19) converges to

the numerical solution of the initial value problem (12) given by the Cole-Hopf

transformation [7]

U(x, t) =

´∞
−∞

(x−x0)
t exp

(
−(x−x0)2

4νt − 1
2ν

´ x0

0
exp(ix′) dx′

)
dx0

´∞
−∞ exp

(
−(x−x0)2

4νt − 1
2ν

´ x0

0
exp(ix′) dx′

)
dx0

. (20)

This integral does not have a known closed-form expression, but we can numer-

ically estimate this integral with high-precision (30 digits) using Mathematica

[20]. Figure 3 shows a log plot of the absolute error between a high-precision

13
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Figure 3: A log plot of the absolute error between a high-precision numerical solution (30-digits

accurate) of (20) and the partial series solution (19) as function of N for different viscosities

in Λ = [−2π, 2π]× [0, 3], see (18).

numerical solution of (20) and the partial series solution (19) as function of

N for different viscosities in Λ = [−2π, 2π] × [0, 3]. The figure shows that the

absolute error decreases exponentially with increasing N . Interestingly, the fig-

ure also shows that the rate of convergence decreases for decreasing ν. From

a physical point of view we expect this to happen, since in the limit ν → 0

the burgers equation has a finite time singularity where the solution blows up.

Figure 4 shows a log plot of the absolute error as function of the viscosity for

different N . This figure shows that indeed the viscosity plays an important fac-

tor in the convergence of the series solution. A singularity occurs at ν ≈ 0.239

for all plotted values N where absolute error starts to grows exponentially. In

this case the solution has a finite blow-up time where velocity gradient becomes

infinitely steep at some point in Λ = [−2π, 2π] × [0, 3]. Furthermore, the nu-

merical estimation of (20) also starts to produce convergence errors around this

value for the viscosity. We discussed in §5.2 that we need a more narrow upper

bound for the Bell polynomials in (16) in order to proof that the series is indeed

convergent for values ν ≤ r/2, which is outside the scope of this work.
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Figure 4: A log plot of the absolute error between a high-precision numerical solution (30-

digits accurate) of (20) and the partial series solution (19) as function of the viscosity ν for

different N in Λ = [−2π, 2π]× [0, 3], see (18).

6. Conclusion & Discussion

In this work we introduced a novel semi-analytic method to solve the Burg-

ers’ equation. We have shown that for any holomorphic and bounded series

solution, the Burgers’ equation can be decomposed into a sequence of linear

diffusion equations by means of a sequence transformation. The solution for

each individual sequence element can be written as a recursive integral equation

using the Green’s function method. In some cases, this recursive integral can be

explicitly solved and a closed-form expression for the sequence can be obtained.

Using the sequence transformation method, we solved an initial value prob-

lem of the Burgers’ equation on two line segments in the complex plane. We

showed that, for a complex exponential function as initial condition, the solu-

tion can be written as an infinite series using the Bell polynomials. The series

solution is analytically complete, bounded and converges absolutely when the

viscosity is larger than a threshold value. Furthermore we showed that the series

solution converges exponentially to a high-precision numerical solution using the

Cole-Hopf transformation for specific values of the viscosity.

In many physical systems one expects the solution of a nonlinear differential
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equation to be analytic or at-least piece-wise analytic in the domain of interest.

Therefore, we anticipate the sequence transformation method to be applicable

far beyond the Burgers’ equation. It would be very interesting to generalize

the sequence transformation method to a broader set of nonlinear differential

equations that admit analytic solutions and where the linear part can be solved

by a Green’s function method, e.g. wave equations such as the Sine Gordon

equation, which we leave for future work.
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