Double-Recurrence Fibonacci Numbers and Generalizations

Ana Paula Chaves
Instituto de Matemática e Estatística
Universidade Federal de Goiás
apchaves@ufg.br
Carlos Alirio Rico Acevedo
Departamento de Matemática
Universidade de Brasília
alirio@mat.unb.br
Brazil

Abstract

Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence given by the recurrence $F_{n+2}=F_{n+1}+F_{n}$, for $n \geq 0$, where $F_{0}=0$ and $F_{1}=1$. There are several generalizations of this sequence and also several interesting identities. In this paper, we investigate a homogeneous recurrence relation that, in a way, extends the linear recurrence of the Fibonacci sequence for two variables, called double-recurrence Fibonacci numbers, given by $F(m, n)=F(m-1, n-1)+F(m-2, n-2)$, for $n, m \geq 2$, where $F(m, 0)=F_{m}$, $F(m, 1)=F_{m+1}, F(0, n)=F_{n}$ and $F(1, n)=F_{n+1}$. We exhibit a formula to calculate the values of this double recurrence, only in terms of Fibonacci numbers, such as certain identities for their sums are outlined. Finally, a general case is studied.

1 Introduction

Fibonacci numbers are known for their amazing properties, association with geometric figures, among others [7, 4]. Using the usual notation for such numbers, $\left(F_{n}\right)_{n \geq 0}$, they are given by the following linear recurrence of order two: $F_{n+2}=F_{n+1}+F_{n}$, for $n \geq 0$, where $F_{0}=0$ and $F_{1}=1$. The Fibonacci sequence has been generalized in many ways, some by preserving the initial conditions, and others by studying high order recurrences with similar initial conditions $[6,3]$.

Our interest relies in a generalization that uses a recurrence for two indices (called a double-recurrence), such as the one studied by Hosoya [2], who defined a set of integers $\left\{f_{m, n}\right\}$ satisfying:

$$
f_{m, n}=f_{m-1, n}+f_{m-2, n}
$$

$$
f_{m, n}=f_{m-1, n-1}+f_{m-2, n-2},
$$

for all $m \geq 2, m \geq n \geq 0$, where

$$
f_{0,0}=f_{1,0}=f_{1,1}=f_{2,1}=1 .
$$

Those numbers, when arranged triangularly, provide the famous Fibonacci Triangle (also known as Hosoya's Triangle). One of our goals is to construct an analogue of the Fibonacci Triangle, studying a similar double-recurrence. The set of numbers $\{F(m, n)\}$, will be required to satisfy the following,

$$
\begin{equation*}
F(m, n)=F(m-1, n-1)+F(m-2, n-2), \text { for } m, n \geq 2 \text {, } \tag{1}
\end{equation*}
$$

with initial values

$$
\begin{array}{ll}
F(m, 0)=F_{m}, & F(1, n)=F_{n+1}, \\
F(m, 1)=F_{m+1}, & F(0, n)=F_{n} .
\end{array}
$$

The initial conditions above, along with (1), are sufficient to calculate the value of $F(m, n)$ at each $(m, n) \in \mathbb{N}^{2}$. We call the values of the set $\{F(m, n)\}$, double-recurrence Fibonacci numbers. Note that $F(m, n)$ is a symmetric function, since the initial conditions above and below the main diagonal are the same, and that $F(k, i)=F(k, k-i)$ for all $0 \leq i \leq\lfloor k / 2\rfloor$. Figure 1, displays a few values for $F(m, n)$, considering the bottom left corner as the origin $(0,0)$, and the (m, n) coordinate having the value for $F(m, n)$.

Consider the value of the coordinate $(7,4)$, given by $F(7,4)=19$, and then draw a parallel to the antidiagonal from this point towards the axis, where the interactions begin with initial values $F(3,0)=F_{3}$ and $F(4,1)=F_{5}$. This means that, in order to determine $F(7,4)$, we only needed the pair F_{3} and F_{5}, in other words, only Fibonacci numbers. The following proposition, asserts that this property is true for all $F(m, n)$, meaning that these values can be obtained using only Fibonacci numbers.

Figure 1: Double-Fibonacci Numbers
Proposition 1. Let $m, n \in \mathbb{N}$, and $F(m, n)$ be a double-recurrence Fibonacci number, with $k:=\min \{m, n\}$. Then,

$$
\begin{equation*}
F(m, n)=F_{k} F_{|m-n|+2}+F_{k-1} F_{|m-n|} . \tag{2}
\end{equation*}
$$

Proof. We proceed by the induction principle for two variables. It Is straightforward that $F(0,0)=F_{0}=F_{0} F_{2}+F_{-1} F_{0}$. So, supposing that (2) holds for all $i \leq m$ and $j \leq n$, we have

$$
\begin{aligned}
F(m+1, n) & =F(m, n-1)+F(m-1, n-2) \\
& =F_{k^{\prime}} F_{|m-n+1|+2}+F_{k^{\prime}-1} F_{|m-n+1|}+F_{k^{\prime}-1} F_{|m-n+1|+2}+F_{k^{\prime}-2} F_{|m-n+1|},
\end{aligned}
$$

where $k^{\prime}=\min \{m, n-1\} \Rightarrow k^{\prime}-1=\min \{m-1, n-2\}$. Therefore,

$$
F(m+1, n)=F_{k^{\prime}+1} F_{|(m+1)-n|+2}+F_{k^{\prime}} F_{|(m+1)-n|},
$$

and since $k^{\prime}+1=\min \{m+1, n\}$, the identity holds in this case. Analogously, following the same steps, the identity also holds for $F(m, n+1)$, which completes the proof.

In the homogeneous double-recurrence (1), one could replace the initial conditions by a general linear recurrence sequence of order two, or even arithmetic functions. In other words, we have the following:
Definition 2. Let $m, n \in \mathbb{N}$. The function $H(m, n)$ satisfying

$$
\begin{equation*}
H(m, n)=H(m-1, n-1)+H(m-2, n-2) \tag{3}
\end{equation*}
$$

for all $m, n \geq 2$, where the following initial conditions are given

$$
\begin{array}{ll}
H(m, 0)=H_{1}(m), & H(0, n)=H_{2}(n), \\
H(m, 1)=H_{1}^{2}(m), & H(1, n)=H_{2}^{1}(n),
\end{array}
$$

with H_{1}, H_{2}, H_{1}^{2} and H_{2}^{1} arithmetic functions, is called a double-recurrence function. If H_{1}, H_{2}, H_{1}^{2} and H_{2}^{1} are linear recurrence sequences of order two, the function satisfying (3) is called a spin Function.

In this way, double-recurrence Fibonacci numbers are values of a spin Function, such as every Fibonacci and Lucas numbers. Now, let $H(m, n)$ be a spin Function, where

$$
\begin{array}{rll}
H(m, 0)=H_{1}(m) & \text { with } & H_{1}(0)=a \quad \text { and } \quad H_{1}(1)=b \\
H(m, 1)=H_{1}^{2}(m) & \text { with } & H_{1}^{2}(0)=d \text { and } H_{1}^{2}(1)=c \\
H(0, n)=H_{2}(n) & \text { with } & H_{2}(0)=a \text { and } H_{2}(1)=b \tag{4}\\
H(1, n)=H_{2}^{1}(n) & \text { with } & H_{2}^{1}(0)=d \quad \text { and } \quad H_{2}^{1}(1)=c
\end{array}
$$

and if $m=n$, we have a linear recurrence sequence of order two, given by:

$$
\begin{equation*}
H(m, m)=H_{1}^{1}(m), \text { with } H_{1}^{1}(0)=a \text { and } H_{1}^{1}(1)=c . \tag{5}
\end{equation*}
$$

The motivation for the term spin function, relies on the way that we can reach, from the initial terms, all pairs of $(m, n) \in \mathbb{N}^{2}$, where the function is evaluated, using every secondary diagonal on it, that we refer as strings. A graphical representation of it, can be seen next.

Figure 2: A spin Function and its strings

Figure 3: Double-recurrence Fibonacci function

2 Properties and Identities

Among several generalizations for Fibonacci numbers, we now consider the ones that satisfies the Fibonacci recurrence relation, but with arbitrary initial conditions.

Definition 3. Let $\left(G_{n}\right)_{n}$ a linear recurrence sequence of order two, where $G_{1}=a, G_{2}=b$ and $G_{n+2}=G_{n+1}+G_{n}, n \geq 1$. The ensuing sequence is called a generalized Fibonacci sequence (GFS).

The following, is a classical result, that can be easily proved by induction, which states that every term on a GFS, can be written only in terms of Fibonacci numbers and their initial conditions.
Theorem 4. Let G_{n} denote the n th term of the GFS. Then $G_{n+2}=b F_{n+1}+a F_{n}, n \geq 1$. Proof. See [5, Th. 7.1].

Note that, Proposition 1 can be seen as a generalization of Theorem 4 for doublerecurrence Fibonacci numbers. Our immediate purpose is to show that an analogous result also holds for spin functions. In order to do so, we introduce a double-recurrence function that will play the same role as Fibonacci numbers on Theorem 4. Let $m, n, a, b \in \mathbb{N}$. Then, define

$$
\begin{equation*}
F_{a}^{b}(m, n):=b F_{n} F_{|m-n|+2}+a F_{n-1} F_{|m-n|} . \tag{6}
\end{equation*}
$$

It is easy to see that $F_{a}^{b}(m, n)$ is a double-recurrence function, but not necessarily a spin Function, i.e.,

$$
F_{a}^{b}(m+2, n+2)=F_{a}^{b}(m+1, n+1)+F_{a}^{b}(m, n)
$$

but the functions on the initial conditions are not necessarily linear recurrence sequences of order two. For that, we have the following result.
Proposition 5. Let $m, n \in \mathbb{N}$ and the spin function $H(m, n)$, such as on Definition 2. Then,
i. If $n \leq m-1$, then $H(m, n)=F_{a+b}^{c}(m-1, n)+F_{b}^{d}(m-2, n)$.
ii. If $m-1<n$, then $H(m, n)=F_{a+d}^{c}(n-1, m)+F_{d}^{b}(n-2, m)$.

Proof. Let $H(m, n)$ be a spin function for $n \leq m-1$, with functions H_{1}^{2} and H_{1} given by the initial conditions described previously. Similarly to the Proposition 1, we have

$$
H(m, n)=F_{n} H_{1}^{2}(m-n+1)+F_{n-1} H_{1}(m-n),
$$

and since H_{1}^{2} and H_{1} are linear recurrence sequences, using Theorem 4, we get

$$
\begin{aligned}
H(m, n) & =F_{n}\left(c F_{m-n+1}+d F_{m-n}\right)+F_{n-1}\left(b F_{m-n}+a F_{m-n-1}\right) \\
& =c F_{n} F_{m-n+1}+a F_{n-1} F_{m-n-1}+d F_{n} F_{m-n}+b F_{n-1} F_{m-n} .
\end{aligned}
$$

Using that $b F_{n-1} F_{m-n}=b \cdot\left(F_{n-1} F_{m-n-2}+F_{n-1} F_{m-n-1}\right)$, we obtain

$$
\begin{aligned}
H(m, n) & =c F_{n} F_{m-n+1}+(a+b) \cdot F_{n-1} F_{m-n-1}+d F_{n} F_{m-n}+b F_{n-1} F_{m-n-2} \\
& =F_{a+b}^{c}(m-1, n)+F_{b}^{d}(m-2, n)
\end{aligned}
$$

Analogously, for $m-1<n$, considering H_{2}^{1} and H_{2}, we get

$$
H(m, n)=F_{a+d}^{c}(n-1, m)+F_{b}^{d}(n-2, m),
$$

which completes the proof.

Figure 4: Graphical representation of Proposition 5

Figure 5: Combination of Proposition 5 and Definition 2

Now, we return our attention to sums of double-recurrence Fibonacci numbers. But first, we recall an interesting identity for Generalized Fibonacci Numbers [9], giving an alternative proof for it.

Proposition 6. Let $\left(G_{n}\right)_{n}$ be a GFS, where $G_{n}=G_{n-1}+G_{n-2}$ with initial conditions $G_{0}=g_{0}$ and $G_{1}=g_{1}$. Then

$$
\begin{equation*}
\sum_{i=1}^{n} i G_{i}=n G_{n+2}-G_{n+3}+G_{3} \tag{7}
\end{equation*}
$$

Proof. Straightforward from Theorem 4, we have $G_{n}=g_{0} F_{n-1}+g_{1} F_{n}$. Thus,

$$
\begin{align*}
\sum_{i=1}^{n} i G_{i} & =g_{0} \sum_{i=1}^{n} i F_{i-1}+g_{1} \sum_{i=1}^{n} i F_{i} \\
& =g_{0} \sum_{i=0}^{n-1}(i+1) F_{i}+g_{1} \sum_{i=1}^{n} i F_{i} \tag{8}\\
& =g_{0}\left((n-1) F_{n+1}-F_{n+2}+2+F_{n+1}-1\right)+g_{1}\left(n F_{n+2}-F_{n+3}+2\right) \tag{9}\\
& =n\left(g_{0} F_{n+1}+g_{1} F_{n+2}\right)-\left(g_{0} F_{n+2}+g_{1} F_{n+3}\right)+2 g_{0}+g_{1} \\
& =n G_{n+2}-G_{n+3}+G_{3}
\end{align*}
$$

Where, from (8) to (9), the identity $\sum_{i=1}^{n} i F_{i}=n F_{n+2}-F_{n+3}+2$, [8, p.16, Ex.10], is used.
The following proposition, consists of a closed form to calculate the sums of DoubleFibonacci numbers, where the indices are in $\{1, \ldots, m\}^{2}$.

Proposition 7. Let $F(i, j)$ be Double-Fibonacci Numbers, where $i, j \in\{0,1, \ldots, m\}$. Then,
i. The sum of all Double-Fibonacci Numbers with indices below the main diagonal, including it, is given by

$$
\begin{equation*}
\sum_{\substack{i, j=0 \\ j \leq i}}^{m} F(i, j)=\frac{2}{5}\left(m L_{m+3}-L_{m+4}+2 F_{m+2}\right)+2 \tag{10}
\end{equation*}
$$

ii. The sum of all Double-Fibonacci Numbers, with indices on the square $m \times m$, is

$$
\sum_{i, j=0}^{m} F(i, j)=\frac{4}{5}\left(m L_{m+3}-L_{m+4}+2 F_{m+2}\right)-F_{m+2}+5
$$

Proof. First, we proceed to prove (i), and use it to prove (ii). Rewriting (10), and using the closed form on Proposition 1, we have

$$
\begin{aligned}
\sum_{\substack{i, j=0 \\
i \geq j}}^{m} F(i, j) & =\sum_{i=0}^{m} \sum_{j=0}^{i} F_{j} F_{i-j+2}+F_{j-1} F_{i-j} \\
& =\sum_{i=0}^{m} \sum_{j=0}^{i} F_{j} F_{i-j+1}+F_{j-1} F_{i-j}+F_{j} F_{i-j}
\end{aligned}
$$

and since $F_{i}=F_{j} F_{i-j+1}+F_{j-1} F_{i-j}$, it follows,

$$
\begin{aligned}
& =\sum_{i=0}^{m} \sum_{j=0}^{i} F_{i}+F_{j} F_{i-j} \\
& =\sum_{i=0}^{m}\left((i+1) F_{i}+\sum_{j=0}^{i} F_{i-j} F_{j}\right) .
\end{aligned}
$$

Now, we observe that the sum $\sum_{j=0}^{i} F_{i-j} F_{j}$, is referenced as sequence A001629 on [1], where is established that it is equal to $\left((i-1) F_{i}+2 i F_{i-1}\right) / 5=\left(i L_{i}-F_{i}\right) / 5,\left(L_{n}\right)_{n \geq 0}$ being the Lucas Sequence, and the last equality follows from [5, Eq. 32.13, p. 375]. Thus,

$$
\sum_{\substack{i, j=0 \\ i \geq j}}^{m} F(i, j)=\sum_{i=0}^{m}(i+1) F_{i}+\sum_{i=0}^{m} \frac{i L_{i}-F_{i}}{5} .
$$

From Proposition 6 and $\sum_{i=1}^{n} F_{i}=F_{n+2}-1$, we have,

$$
=m\left(\frac{L_{m+2}}{5}+F_{m+2}\right)-\left(\frac{L_{m+3}}{5}+F_{m+3}\right)+\frac{4}{5} F_{m+2}+2,
$$

then, finally by $L_{n-1}+L_{n+1}=5 F_{n}$ (see [5, Cor. 5.5, p. 80]), it follows that

$$
\begin{aligned}
= & \frac{m\left(L_{m+2}+L_{m+1}+L_{m+3}\right)}{5}-\frac{\left(L_{m+4}+L_{m+2}+L_{m+3}\right)}{5} \\
& +\frac{4}{5} F_{m+2}+2 \\
\therefore \sum_{\substack{i, j=0 \\
i \geq j}}^{m} F(i, j)= & \frac{2}{5}\left(m L_{m+3}-L_{m+4}+2 F_{m+2}\right)+2,
\end{aligned}
$$

completing the proof for (i). For (ii), we use the symmetry satisfied by double-recurrence Fibonacci Numbers, $F(m, n)=F(n, m)$, giving us that the sum on (ii) is two times the sum on (i), minus the sum for indices on the main diagonal:

$$
\begin{aligned}
\sum_{i, j=0}^{m} F(i, j) & =2 \sum_{\substack{i, j=0 \\
i \leq j}}^{m} F(i, j)-\sum_{i=0}^{m} F(i, i) \\
& =\frac{4}{5}\left(m L_{m+3}-L_{m+4}+2 F_{m+2}\right)+4-\sum_{i=0}^{m} F_{i} \\
& =\frac{4}{5}\left(m L_{m+3}-L_{m+4}+2 F_{m+2}\right)-F_{m+2}+5
\end{aligned}
$$

Out of curiosity, equation (10) happens to be the same formula for the path length of the Fibonacci tree of order n. (A178523 of [1])

3 Acknowledgements

During the preparation of this paper, Ana Paula Chaves was supported in part by CNPq Universal 01/2016-427722/2016-0 grant, and Carlos Alirio Rico Acevedo was fully supported by a Masters Scholarship from CNPq.

References

[1] The On-Line Encyclopedia of Integer Sequences, https://oeis.org/.
[2] H. Hosoya, Fibonacci triangle, Fibonacci Quart. 14 (1976), no. 2, 173-179.
[3] E. P. Miles Jr., Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly 67 (1960), 745-752. MR 0123521
[4] D. Kalman and R. Mena, The Fibonacci numbers-exposed, Math. Mag. 76 (2003), no. 3, 167-181.
[5] T. Koshy, Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001.
[6] M. D. Miller, Mathematical Notes: On Generalized Fibonacci Numbers, Amer. Math. Monthly 78 (1971), no. 10, 1108-1109. MR 1536552
[7] A. S. Posamentier and I. Lehmann, The (fabulous) Fibonacci numbers, Prometheus Books, Amherst, NY, 2007, With an afterword by Herbert A. Hauptman.
[8] N. N. Vorobiev, Fibonacci numbers, Birkhäuser Verlag, Basel, 2002, Translated from the 6th (1992) Russian edition by Mircea Martin.
[9] C. R. Wall, Problem b-40, Fibonacci Quart. 2. (4) (1964), 327-328.

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11J86.
Keywords: Fibonacci numbers, double-recurrence sequence, closed form.
(Concerned with sequences A001629, $\underline{\text { A002940, }} \underline{\underline{A 006478}}, \underline{\text { A010049, A014286, }} \underline{\underline{A 122491}}, \underline{\text { A1785233, }}$ A190062,)

Appendix

The following table explicit some interesting sequences founded on [1], that can be obtained from the sum of the terms of $H(i, j)$, with initial conditions a, b, c and d, considering $0 \leq j<i \leq n, 0 \leq i \leq j \leq n$, and all $i, j \in\{0,1, \ldots, n\}^{2}$.

Initial Condition $[a, b, c, d]$	$\sum_{i=1}^{n} \sum_{j=0}^{i-1} H(i, j)$	$\sum_{j=0}^{n} \sum_{i=0}^{j} H(i, j)$	$\sum_{i, j=0}^{m} H(i, j)$
[0, 0, 0, 1]	A006478(n)	$\underline{\text { A001629 }}(n+1)$	$\underline{\text { A006478 }}$ ($n+1$)
[0, 0, 1, 0]	$\underline{\text { A002940 }}(n-2)$	$\underline{\text { A006478 }}(n+1)$	-
[0, 0, 1, 1]	-	$\underline{\text { A122491 }}(n+2)$	-
[0, 1, 0, 0]	$\underline{\text { A001629 }}(n+1)$	A006478(n)	$\underline{\text { A006478 }}(n+1)$
[0, 1, 0, 1]	$\underline{\text { A006478 }}(n+1)$	$\underline{\text { A006478 }}(n+1)$	$\underline{\text { A178523 }}(n+1)$
[0, 1, 1, 0]	A014286(n)	$\underline{\text { A002940 }}(n-1)$	-
[0, 1, 1, 1]	-	A178523 $(n+1)$	-
[1,0,0,0]	A001629(n)	$\underline{\text { A010049 }}(n+1)$	-
[1,0,0,1]	$\underline{\text { A122491 }}(n+1)$	$\underline{\underline{\text { A001629 }}(n+2)}$	-
[1,0, 1, 0]	$\underline{\text { A178523 }}(n)$	-	-
[1,0, 1, 1]	-	$\underline{\text { A006478 }(n+2)}$	-
[1,1,0,0]	$\underline{\text { A006478 }}(n+1)$	$\underline{\text { A190062 }(n+1)}$	-
[1,1,1,0]	$\underline{\text { A002940 }}(n-1)$	-	-
[1, 1, 1, 1]	-	$\underline{\text { A014286 }}(n+11)$	-

Table 1: Related sequences.

