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Abstract. We prove a “Decomposition Lemma” that allows us to count preimages of certain
sets of permutations under West’s stack-sorting map s. As a first application, we give a new
proof of Zeilberger’s formula for the number W2(n) of 2-stack-sortable permutations in Sn. Our
proof generalizes, allowing us to find an algebraic equation satisfied by the generating function
that counts 2-stack-sortable permutations according to length, number of descents, and number
of peaks. This is also the first proof of this formula that generalizes to the setting of 3-stack-
sortable permutations. Indeed, the same method allows us to obtain a recurrence relation for
W3(n), the number of 3-stack-sortable permutations in Sn. Hence, we obtain the first polynomial-
time algorithm for computing these numbers. We compute W3(n) for 1 ≤ n ≤ 174, vastly extending
the 13 terms of this sequence that were known before. We also prove the first nontrivial lower bound
for lim

n→∞
W3(n)1/n, showing that it is at least 8.659702. Invoking a result of Kremer, we also prove

that lim
n→∞

Wt(n)1/n ≥ (
√
t+ 1)2 for all t ≥ 1, which we use to improve a result of Smith concerning

a variant of the stack-sorting procedure. Our computations allow us to disprove a conjecture of
Bóna, although we do not yet know for sure which one.

In fact, we can refine our methods to obtain a recurrence for W3(n, k, p), the number of 3-stack-
sortable permutations in Sn with k descents and p peaks. This allows us to gain a large amount of
evidence supporting a real-rootedness conjecture of Bóna. Using part of the theory of valid hook
configurations, we give a new proof of a γ-nonnegativity result of Brändén, which in turn implies an
older result of Bóna. We then answer a question of the current author by producing a set A ⊆ S11

such that
∑
σ∈s−1(A) x

des(σ) has nonreal roots. We interpret this as partial evidence against the

same real-rootedness conjecture of Bóna that we found evidence supporting. Examining the parities
of the numbers W3(n), we obtain strong evidence against yet another conjecture of Bóna. We end
with some conjectures of our own.

1. Introduction

1.1. The Stack-Sorting Map. We use the word “permutation” to refer to a permutation of a set
of positive integers written in one-line notation. Let Sn denote the set of permutations of the set
[n]. If π is a permutation of length n, then the normalization of π is the permutation in Sn obtained
by replacing the ith-smallest entry in π with i for all i ∈ [n]. We say a permutation is normalized
if it is equal to its normalization. A descent of a permutation π = π1 · · ·πn is an index i ∈ [n− 1]
such that πi > πi+1. A peak of π is an index i ∈ {2, . . . , n − 1} such that πi−1 < πi > πi+1. Let
des(π) and peak(π) denote the number of descents of π and the number of peaks of π, respectively.
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2 COUNTING 3-STACK-SORTABLE PERMUTATIONS

Definition 1.1. Given τ ∈ Sm, we say a permutation σ = σ1 · · ·σn contains the pattern τ if there
exist indices i1 < · · · < im in [n] such that the normalization of σi1 · · ·σim is τ . We say σ avoids

τ if it does not contain τ . Let Av(τ (1), . . . , τ (r)) denote the set of normalized permutations that

avoid the patterns τ (1), . . . , τ (r). Let Avn(τ (1), . . . , τ (r)) = Av(τ (1), . . . , τ (r)) ∩ Sn.

The study of permutation patterns is now a major area of research; it began with Knuth’s analysis
of a certain “stack-sorting algorithm” [35]. In his dissertation, West [41] defined a deterministic
variant of Knuth’s algorithm. This variant is a function, which we call the “stack-sorting map”
and denote by s, that sends permutations to permutations. The stack-sorting map has now been
studied extensively [2, 5–8, 10–14, 16–28, 30–32, 34, 39–41, 43]. The reader seeking further historical
background and motivation should see one of the references [2, 7, 18–28].

To define the function s, let us begin with an input permutation π = π1 · · ·πn. At any point in
time during this procedure, if the next entry in the input permutation is smaller than the entry at
the top of the stack or if the stack is empty, the next entry in the input permutation is placed at the
top of the stack. Otherwise, the entry at the top of the stack is annexed to the end of the growing
output permutation. This process terminates when the output permutation has length n, and s(π)
is defined to be this output permutation. The following illustration shows that s(4162) = 1426.

4162 162 62 62

4 4
1

1

4

6214 142

6

1426214

6
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6
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Definition 1.2. We say a permutation π is t-stack-sortable if st(π) is an increasing permutation,
where st denotes the t-fold iterate of s. Let Wt(n) be the set of t-stack-sortable permutations in
Sn, and let Wt(n, k) = {π ∈ Wt(n) : des(π) = k} and Wt(n, k, p) = {π ∈ Wt(n, k) : peak(π) = p}.
Let

Wt(n) = |Wt(n)|, Wt(n, k) = |Wt(n, k)|, and Wt(n, k, p) = |Wt(n, k, p)|.

Knuth simultaneously initiated the study of stack-sorting and the investigation of permutation
patterns with the following theorem.

Theorem 1.1 ([35]). A permutation is 1-stack-sortable if and only if it avoids the pattern 231.
Furthermore,

W1(n) = |Avn(231)| = Cn,

where Cn = 1
n+1

(
2n
n

)
is the nth Catalan number.

In his dissertation, West conjectured a formula for W2(n), which Zeilberger later proved.

Theorem 1.2 ([43]). We have

W2(n) =
2

(n+ 1)(2n+ 1)

(
3n

n

)
.

Combinatorial proofs of Zeilberger’s theorem emerged later in [17, 30, 31, 34]. Some authors
have investigated the enumeration of 2-stack-sortable permutations according to various statistics
[5, 10, 12, 30]. The articles [29] and [33] give different proofs that new combinatorial objects called
“fighting fish” are counted by the numbers W2(n). The authors of [1] studied what they called
“n-point dominoes,” and they have found that there are W2(n+ 1) such objects.
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There is very little known about t-stack-sortable permutations when t ≥ 3. Úlfarsson [40]
characterized 3-stack-sortable permutations in terms of new “decorated patterns,” but the char-
acterization is too unwieldy to yield any additional information. The best known general upper
bound for Wt(n), which follows from a theorem of Stankova and West [7, Theorem 3.4], is the
estimate

(1) Wt(n) ≤ (t+ 1)2n.

The current author [25] showed that

(2) lim
n→∞

W3(n)1/n < 12.53296 and lim
n→∞

W4(n)1/n < 21.97225.

The limits in (2) are known to exist (see Section 6). Recently, Bóna has obtained a new proof of
the first inequality in (2) using “stack words.” It also follows from Theorem 1.2 that

(3) lim
n→∞

Wt(n)1/n ≥ 6.75 for all t ≥ 2.

When t ≥ 3, we refer to (3) as a “trivial” lower bound for the growth rate of Wt(n), even though it
relies on the highly nontrivial enumeration of 2-stack-sortable permutations. Remarkably, (3) was

the best known lower bound for lim
n→∞

Wt(n)1/n for all t ≥ 2 until now.

Bóna [8] proved that the polynomial

n−1∑
k=0

Wt(n, k)xk =
∑

σ∈Wt(n)

xdes(σ) is symmetric and unimodal

(see Section 8 for the relevant definitions). In fact, his proof actually shows that
∑

σ∈s−1(A)

xdes(σ) is

symmetric and unimodal for every set A ⊆ Sn. Brändén strengthened this result with the following
theorem.

Theorem 1.3 ([13]). If A ⊆ Sn, then

∑
σ∈s−1(A)

xdes(σ) =

bn−1
2 c∑

m=0

|{σ ∈ s−1(A) : peak(σ) = m}|
2n−1−2m

xm(1 + x)n−1−2m.

In particular,
∑

σ∈s−1(A)

xdes(σ) is γ-nonnegative.

In the present article, we concern ourselves with the following four conjectures of Bóna. Recall
that a sequence (an)n≥1 of positive numbers is called log-convex if (an+1/an)n≥1 is nondecreasing.

Conjecture 1.1 ([2, 7]). For all n, t ≥ 1, we have

Wt(n) ≤
(

(t+ 1)n

n

)
.

Conjecture 1.2 ([4]). For every t ≥ 1, the sequence (Wt(n))n≥1 is log-convex.

Conjecture 1.3 ([32]). If t is even, then Wt(n) is frequently odd. If t is odd, then Wt(n) is rarely
odd.

Conjecture 1.4 ([8]). For all n, t ≥ 1, the polynomial
∑

σ∈Wt(n)

xdes(σ) has only real roots.

Remark 1.1. Bóna’s motivation for formulating Conjecture 1.1 came from the idea of encoding el-
ements ofWt(n) as n-uniform words over a (t+1)-element alphabet (see [6] and [7] for more details).
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His motivation behind Conjecture 1.2 came from an observation that the sequences (Wt(n))n≥1 ap-
pear to be similar to the sequences that enumerate principle permutation classes, which he has
also conjectured are log-convex. For example, Bóna has observed that his methods in [3] can be
used to show that for fixed n, t ≥ 1, the number of t-stack-sortable permutations of length n with
c components is monotonically decreasing as a function of c. Similarly, his methods allow one to
prove that the generating functions

∑
n≥1Wt(n)xn are not rational. Bóna formulated Conjecture

1.4 after observing that it holds when t = 1 and when t = n− 1 (it also holds when t ≥ n because
this is equivalent to the t = n− 1 case). Brändén [14] proved this conjecture in the cases t = 2 and
t = n− 2, but the remaining cases are still open.

Conjecture 1.3 requires some explanation. Using Bóna’s result that
∑

σ∈Wt(n)
xdes(σ) is sym-

metric, one can easily deduce that Wt(n) is even whenever n is even. Therefore, it is natural to
consider the parity of Wt(n) when n is odd. Let gt(m) be the number of integers n with 1 ≤ n ≤ m
such that Wt(n) is odd. Let Fr denote the rth Fibonacci number (with F1 = F2 = 1). Using
Theorems 1.1 and 1.2, one can show that g1(2

r) = r and g2(2
r) = Fr for all positive integers

r. Bóna [32] interpreted this as saying W1(n) is rarely odd while W2(n) is frequently odd, and
this led him to formulate Conjecture 1.3. One could formalize this by saying that Wt(n) is rarely

odd if lim sup
m→∞

log gt(m)
logm = 0 and is frequently odd lim inf

m→∞
log gt(m)
logm > 0 (although Bóna did not use

this formalism). Bóna’s motivation behind Conjecture 1.3 also came from the idea of encoding
t-stack-sortable permutations with words.

1.2. Summary of Main Results. In Section 2, we formulate a “Decomposition Lemma,” which
provides a new method for analyzing preimages of permutations under the stack-sorting map. We
actually prove a stronger lemma, which we call the Refined Decomposition Lemma, that allows
us to take the statistics des and peak into account. In Section 3, we briefly review some formulas
arising from the theory of new combinatorial objects called “valid hook configurations.” In Section
4, we use the Decomposition Lemma to give a new proof of Zeilberger’s formula for W2(n). We also
use the Refined Decomposition Lemma to find an algebraic equation satisfied by the generating
function of the numbers W2(n, k, p). This equation is new.

Our new proof of Zeilberger’s formula is the first one that generalizes to the setting of 3-stack-
sortable permutations. In Section 5, we use the Refined Decomposition Lemma to prove a recurrence
relation for the numbers W3(n, k, p). Specializing this theorem gives us a recurrence for W3(n, k),
and specializing further gives a recurrence for W3(n). This yields the first polynomial-time al-
gorithm for computing W3(n). According to Wilf [42], we have solved the problem of counting
3-stack-sortable permutations. More precisely, he would say that we have “p-solved” this problem.

Before now, the values of W3(n) were only known up to n = 13. Indeed, the only algorithm
that was used to compute these numbers before now relied on a brute-force approach. Using
our recurrence, we have generated the values of W3(n) for 1 ≤ n ≤ 174. We have added these
terms to sequence A134664 in the Online Encyclopedia of Integer Sequences [38]. There are two
significant theoretical implications of these computations. First, we will see in Section 6 that
Bóna’s Conjectures 1.1 and 1.2 cannot both be true. Thus, we have disproven a conjecture of
Bóna, although we do not yet know with absolute certainty which one. Let us remark, however,
that the data suggests very strongly that Conjecture 1.2 is true while Conjecture 1.1 is false.
Furthermore, it appears that our recurrence coupled with sufficient computing time (and clever
computing!) should allow one to completely disprove Conjecture 1.1. Second, we will prove that

lim
n→∞

W3(n)1/n ≥ 8.659702; this is the first nontrivial lower bound for lim
n→∞

W3(n)1/n. In Section
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7, we prove that lim
n→∞

Wt(n)1/n ≥ (
√
t + 1)2 for every t ≥ 1, yielding the first nontrivial lower

bounds for these growth rates for all t ≥ 4. As a corollary, we improve a result of Smith concerning
permutations that can be sorted by t stacks in series using the so-called “left-greedy algorithm” [39].
Although there are multiple ways one could rigorously interpret Bóna’s Conjecture 1.3, we will see
in Section 6 that every reasonable interpretation of the conjecture is likely to be false.

We have also computed the numbers W3(n, k) for 1 ≤ n ≤ 43, allowing us to verify Conjecture
1.4 when t = 3 and 1 ≤ n ≤ 43 (see OEIS sequence A324916 [38]). In Section 8, we show that
the formulas from Section 3 easily implies Brändén’s Theorem 1.3. We also provide a two-element
set A ⊆ S11 such that

∑
σ∈s−1(A) x

des(σ) is not real-rooted. This provides a negative answer to

the last part of Question 12.1 in [26], which we interpret as a small amount of evidence against

Bóna’s Conjecture 1.4. Section 9 concludes the paper with a new conjecture about lim
n→∞

W3(n)1/n,

several conjectures about the numbers g3(m) (defined in Remark 1.1), and two new conjectures
about unimodality and log-concavity.

Before we proceed, let us make one additional remark about the usefulness of the Decomposition
Lemma that we prove in Section 2. In a subsequent paper [20], we apply this lemma in order to
settle several conjectures of the current author from [26]. More precisely, we complete the project

of determining |s−1(Avn(τ (1), . . . , τ (r)))| for every subset {τ (1), . . . , τ (r)} ⊆ S3 with the exception of
the singleton set {321}. This allows us to enumerate a new permutation class, find a new example
of an unbalanced Wilf equivalence, and prove a conjecture of Hossain concerning the so-called
“Boolean-Catalan numbers.” Hence, one can even view the Decomposition Lemma as a bridge that
allows one to use the stack-sorting map s as a tool for proving results that were conjectured without
any reference to stack-sorting.

2. The Decomposition Lemma

West [41] defined the fertility of a permutation π to be |s−1(π)|, the number of preimages of π
under s. He then went to great lengths to compute the fertilities of the permutations of the forms

23 · · · k1(k + 1) · · ·n, 12 · · · (k − 2)k(k − 1)(k + 1) · · ·n, and k12 · · · (k − 1)(k + 1) · · ·n.

Bousquet-Mélou [11] found a method for determining whether or not a given permutation is sorted,
meaning that its fertility is positive. She then asked for a general method for computing the fertility
of any given permutation. The current author achieved this in even greater generality in [24–26,28]
using new combinatorial objects called “valid hook configurations” ([28] is joint with Kravitz). In
this section, we prove the Refined Decomposition Lemma and the Decomposition Lemma, which
provide a new method for analyzing fertilities of permutations.

The plot of a permutation π = π1 · · ·πn is the figure showing the points (i, πi) for all i ∈ [n].
For example, the image on the left in Figure 1 is the plot of 3142567. A hook of π is obtained by
starting at a point (i, πi) in the plot of π, drawing a vertical line segment moving upward, and then
drawing a horizontal line segment to the right that connects with a point (j, πj). In order for this
to make sense, we must have i < j and πi < πj . The point (i, πi) is called the southwest endpoint
of the hook, while (j, πj) is called the northeast endpoint. Let SWi(π) be the set of hooks of π with
southwest endpoint (i, πi). The right image in Figure 1 shows a hook of 3142567. This hook is in
SW3(3142567) because its southwest endpoint is (3, 4).

Define the tail length of a permutation π = π1 . . . πn ∈ Sn, denoted tl(π), to be the smallest
nonnegative integer ` such that πn−` 6= n − `. We make the convention that tl(1 · · ·n) = n. The
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1
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(b)

Figure 1. The left image is the plot of 3142567. The right image shows this plot
along with a single hook.

tail of π is the sequence of points (n − tl(π) + 1, n − tl(π) + 1), . . . , (n, n) in the plot of π. For
example, the tail length of the permutation 3142567 shown in Figure 1 is 3, and the tail of this
permutation is (5, 5), (6, 6), (7, 7). We say a descent d of π is tail-bound if every hook in SWd(π)
has its northeast endpoint in the tail of π. The only tail-bound descent of 3142567 is 3.

Suppose H is a hook of a permutation π = π1 · · ·πn with southwest endpoint (i, πi) and northeast
endpoint (j, πj). Let πHU = π1 · · ·πiπj+1 · · ·πn and πHS = πi+1 · · ·πj−1. The permutations πHU and
πHS are called the H-unsheltered subpermutation of π and the H-sheltered subpermutation of π,
respectively. For example, if π = 3142567 and H is the hook shown on the right in Figure 1, then
πHU = 3147 and πHS = 25. In all of the cases we consider in this paper, the plot of πHS lies completely
below the hook H in the plot of π (it is “sheltered” by the hook H).

Lemma 2.1 (Refined Decomposition Lemma). If d is a tail-bound descent of a permutation π ∈ Sn,
then ∑

σ∈s−1(π)

xdes(σ)+1ypeak(σ)+1

=
∑

H∈SWd(π)

 ∑
µ∈s−1(πHU )

xdes(µ)+1ypeak(µ)+1

 ∑
λ∈s−1(πHS )

xdes(λ)+1ypeak(λ)+1

 .

Proof. If the tail of π is empty, then both sides of the desired equation are 0 because s−1(π) and
SWd(π) are empty. Hence, we may assume tl(π) ≥ 1. Let a = πd. Given σ ∈ s−1(π), we let fσ be
the entry that forces a to leave the stack when we apply the stack-sorting procedure (described in
the introduction) to σ. More precisely, fσ is the leftmost entry that appears to the right of a in
σ and is larger than a. Note that fσ appears to the right of a in π. Because d is tail-bound, this
means that the point (fσ, fσ) is in the tail of π. Given a point (j, j) in the tail of π, let Ej be the
set of permutations σ ∈ s−1(π) such that fσ = j.

Now fix a point (j, j) in the tail of π, and let H be the hook in SWd(π) with northeast endpoint
(j, j). We will show that

∑
σ∈Ej

xdes(σ)+1ypeak(σ)+1 =

 ∑
µ∈s−1(πHU )

xdes(µ)+1ypeak(µ)+1

 ∑
λ∈s−1(πHS )

xdes(λ)+1ypeak(λ)+1

 ,

from which the lemma will follow. We can write π = LaπHS j R, where L = π1 · · ·πd−1 and
R = (j + 1) · · ·n. Suppose σ ∈ Ej . Let us write σ = τ j τ ′. Because j = fσ, it follows from the
stack-sorting procedure that every entry in τ that is smaller than a must appear to the left of a in
s(σ) = π. This implies that every entry in πHS that is smaller than a is in τ ′. In particular, πd+1
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is in τ ′ (we know that a > πd+1 because d is a descent of π). Now suppose b is an entry in πHS
that is larger than a. If b is in τ , then we can appeal to the stack-sorting procedure again to see
that b must appear to the left of πd+1 in π. This is impossible, so every entry in πHS is in τ ′. The
stack-sorting procedure forces every entry in L to be in τ , so every entry in τ ′ that is not in πHS
must be an entry in R. Furthermore, an entry in R that is also in τ ′ cannot appear to the left of
one of the entries from πHS in τ ′ (otherwise, j would appear to the right of one of the entries from
πHS in π). This proves that we can write τ ′ = λτ ′′, where λ is a permutation of the entries in πHS .
Moreover, every entry in τ ′′ is in R.

Now let µ = ττ ′′. One can verify that s(µ) = πHU and s(λ) = πHS . Let δ = 1 if 1 is a descent
of τ ′′, and let δ = 0 otherwise. Because j = fσ, the leftmost entry in τ ′′ is the leftmost entry
in µ that appears to the right of a in µ and is larger than a (if no such entry exists, then τ ′′ is
empty). Also, the rightmost entry in τ is less than j. Combining these observations, we find that
des(σ) + 1 = des(τ) + 1 + des(λ) + des(τ ′′) + 1 = des(µ) + 1 + des(λ) + 1 and peak(σ) + 1 =
peak(τ) + 1 + peak(λ) + peak(τ ′′) + δ + 1 = peak(µ) + 1 + peak(λ) + 1.

We have shown how to take a permutation σ ∈ Ej and decompose it into permutations µ ∈
s−1(πHU ) and λ ∈ s−1(πHS ) with des(σ) + 1 = des(µ) + 1 + des(λ) + 1 and peak(σ) + 1 = peak(µ) +
1 + peak(λ) + 1. We can easily reverse this procedure. Namely, if we are given µ and λ, we can
write µ = ττ ′′ so that the leftmost entry in τ ′′ is the leftmost entry in µ that appears to the right
of a in µ and is larger than a. We then recover σ by letting σ = τ j λ τ ′′. �

Corollary 2.1 (Decomposition Lemma). If d is a tail-bound descent of a permutation π ∈ Sn,
then

|s−1(π)| =
∑

H∈SWd(π)

|s−1(πHU )| · |s−1(πHS )|.

Proof. Set x = y = 1 in Lemma 2.1. �

3. Fertility Formulas

The purpose of this brief section is to establish some terminology and state some formulas
from [24] that we will use in Section 8. We will also use a very special consequence of Theorem 3.1
in Section 4 when we analyze the generating function of the numbers W2(n, k, p).

A composition of b into a parts is an a-tuple of positive integers that sum to b. For example,
(3, 4, 3, 1) is a composition of 11 into 4 parts. Let Compa(b) denote the set of compositions of b

into a parts. Let Cr = 1
r+1

(
2r
r

)
denote the rth Catalan number. Let

(4) N(r, i) =
1

r

(
r

i

)(
r

i− 1

)
and V (r, j) = 2r−2j+1

(
r − 1

2j − 2

)
Cj−1.

Let

(5) Nr(x) =
r∑
i=1

N(r, i)xi and Vr(y) =
r∑
j=1

V (r, j)yj .

The numbers N(r, i) are called Narayana numbers. They are given in the OEIS sequence A001263
and constitute the most common refinement of the Catalan numbers [38]. The polynomials Nr(x)
are called Narayana polynomials. Among many other things, the Narayana numbers N(r, i) count
binary plane trees with r vertices and i− 1 right edges. The numbers V (r, j), which count binary
plane trees with r vertices and j leaves, are given in the OEIS sequence A091894. Let L(r, i, j)
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be the number of binary plane trees with r vertices, i − 1 right edges, and j leaves. Letting
F (w, x, y) =

∑
r,i,j≥0 L(r, i, j)wrxiyj , we have

(6) F (w, x, y) = x+ wxy + w(F (w, x, y) + 1)(F (w, x, y)− x).

This yields

F (w, x, y) =
1− w + wx−

√
(1− w + wx)2 − 4wx(1− w + wy)

2w
,

from which one obtains

(7) L(r, i, j) =
1

r + 1− j

(
r − 1

r − j

)(
r + 1− j

j

)(
r + 1− 2j

i− j

)
.

Let

(8) Lr(x, y) =

r∑
i=1

r∑
j=1

L(r, i, j)xiyj

so that

Lr(x, 1) = Nr(x) and Lr(1, y) = Vr(y).

Theorem 3.1 ([24]1). If n ≥ 1 and π = π1 · · ·πn has exactly k descents, then there exists a set
V(π) ⊆ Compk+1(n− k) such that

(9)
∑

σ∈s−1(π)

xdes(σ)+1ypeak(σ)+1 =
∑

(q0,...,qk)∈V(π)

k∏
t=0

Lqt(x, y).

In particular,

(10)
∑

σ∈s−1(π)

xdes(σ)+1 =
∑

(q0,...,qk)∈V(π)

k∏
t=0

Nqt(x)

and

(11)
∑

σ∈s−1(π)

ypeak(σ)+1 =
∑

(q0,...,qk)∈V(π)

k∏
t=0

Vqt(y).

Thus,

(12) |s−1(π)| =
∑

(q0,...,qk)∈V(π)

k∏
t=0

Cqt .

Remark 3.1. If π = 123 · · ·n, then the above theorem, along with Theorem 1.1, tells us that∑
σ∈s−1(123···n)

xdes(σ)+1ypeak(σ)+1 =
∑

σ∈Avn(231)

xdes(σ)+1ypeak(σ)+1 = Ln(x, y).

1Strictly speaking, the first statement in Theorem 3.1 has not been stated explicitly before. However, the proofs of
Corollary 5.1 and Theorem 5.2 in [24] immediately generalize to yield that statement.
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4. A New Proof of the Formula for W2(n)

Recall from Section 2 the definition of the tail length tl(π) of a permutation π. Let B`(n)
(respectively, B≥`(n)) be the number of 2-stack-sortable permutations σ ∈ W2(n + `) such that
tl(s(σ)) = ` (respectively, tl(s(σ)) ≥ `). Let

D`(n) = {π ∈ Avn+`(231) : tl(π) = `} and D≥`(n) = {π ∈ Avn+`(231) : tl(π) ≥ `}.

Because W2(n) = s−1(W1(n)) = s−1(Avn(231)) by Theorem 1.1, we can write

B`(n) = |s−1(D`(n))| and B≥`(n) = |s−1(D≥`(n))|.

Suppose π ∈ D`(n+ 1) is such that πn+1−i = n+ 1 (where n ≥ 0). Then n+ 1− i is a tail-bound
descent of π. The Decomposition Lemma (Corollary 2.1) tells us that |s−1(π)| is equal to the number
of triples (H,µ, λ), where H ∈ SWn+1−i(π), µ ∈ s−1(πHU ), and λ ∈ s−1(πHS ). Choosing H amounts
to choosing the number j ∈ {1, . . . , `} such that the northeast endpoint of H is (n+1+j, n+1+j).
The permutation π and the choice of H determine the permutations πHU and πHS . On the other
hand, the choices of H and the permutations πHU and πHS uniquely determine π. It follows that
B`(n+ 1), which is the number of ways to choose an element of s−1(D`(n+ 1)), is also the number
of ways to choose j, the permutations πHU and πHS , and the permutations µ and λ. Let us fix a
choice of j.

Because π avoids 231, πHU must be a permutation of the set {1, . . . , n − i} ∪ {n + 1} ∪
{n + 2 + j, . . . , n + ` + 1}, while πHS must be a permutation of {n − i + 1, . . . , n + j} \ {n + 1}.
Therefore, choosing πHU and πHS is equivalent to choosing their normalizations. The normaliza-
tion of πHU is in D≥`−j+1(n − i), while the normalization of πHS is in D≥j−1(i) (see Figure 2).

Any element of D≥`−j+1(n − i) can be chosen as the normalization of πHU , and any element of

D≥j−1(i) can be chosen as the normalization of πHS . Also, πHU and πHS have the same fertilities as
their normalizations. Combining these facts, we find that the number of choices for πHU and µ is
|s−1(D≥`−j+1(n− i))| = B≥`−j+1(n− i). Similarly, the number of choices for πHS and λ is B≥j−1(i).
Hence,

(13) B`(n+ 1) =

n∑
i=1

∑̀
j=1

B≥`−j+1(n− i)B≥j−1(i).

Figure 2. The decomposition of π into πHU and πHS .
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Let
G`(w) =

∑
n≥0

B≥`(n)wn and I(w, z) =
∑
`≥0

G`(w)z`.

Note that
G`(0) = B≥`(0) = |s−1(D≥`(0))| = |s−1(123 · · · `)| = C`

by Theorem 1.1. Let C(z) =
∑

n≥0Cnz
n =

1−
√

1− 4z

2z
be the generating function of the Catalan

numbers. Because B≥0(n) = W2(n) is the total number of 2-stack-sortable permutations in Sn, our
goal is to understand the generating function

I(w, 0) = G0(w) =
∑
n≥0

B≥0(n)wn =
∑
n≥0

W2(n)wn.

By (13), we have∑
`≥0

∑
n≥0

B`(n+ 1)wnz` =
∑
`≥0

∑̀
j=1

∑
n≥0

n∑
i=1

B≥`−j+1(n− i)B≥j−1(i)wnz`

=
∑
`≥0

∑̀
j=1

G`−j+1(w)(Gj−1(w)−Gj−1(0))z` =
∑
`≥0

∑̀
j=1

G`−j+1(w)(Gj−1(w)− Cj−1)z`

(14) =

∑
r≥0

Gr+1(w)zr

∑
j≥1

(Gj−1(w)− Cj−1)zj
 = (I(w, z)− I(w, 0))(I(w, z)− C(z)).

On the other hand,
B`(n+ 1) = B≥`(n+ 1)−B≥`+1(n),

so ∑
`≥0

∑
n≥0

B`(n+ 1)wnz` =
∑
`≥0

∑
n≥0

B≥`(n+ 1)wnz` −
∑
`≥0

∑
n≥0

B≥`+1(n)wnz`

(15) =
1

w

∑
`≥0

(G`(w)− C`)z` −
1

z

∑
`≥0

G`+1(w)z`+1 =
I(w, z)− C(z)

w
− I(w, z)− I(w, 0)

z
.

Combining (14) and (15) yields the equation

(16) (I(w, z)− I(w, 0))(I(w, z)− C(z)) =
I(w, z)− C(z)

w
− I(w, z)− I(w, 0)

z
.

At this point, we employ the techniques described in [9]; the reader seeking additional details
can consult that article. There is a unique fractional power series (Puiseux series) Z = Z(w) such
that Z(w) = w +O(w2) and

(17) (I(w,Z)− I(w, 0))(I(w,Z)− C(Z)) =
I(w,Z)− C(Z)

w
− I(w,Z)− I(w, 0)

Z
.

Indeed, we can compute the coefficients of Z(w) one at a time from the equation (17) after we have
initially computed the first few terms of I(w, z) via its combinatorial definition. We can now solve
(17) for C(Z), use the standard Catalan functional equation ZC(Z)2 + 1 − C(Z) = 0, and clear
denominators to obtain a polynomial

Q(u, v, w, z) = − vw + z + 2vwz + v2w2z + (w − z − 2wz − 2vw2z + v2w2z)u

+ (w2z − 2vw2z + z2 + 2vwz2 + v2w2z2)u2 + (w2z − 2wz2 − 2vw2z2)u3 + w2z2u4
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such that Q(I(w,Z), I(w, 0), w, Z) = 0.

Let ∆uQ(v, w, z) be the discriminant of Q(u, v, w, z) with respect to the variable u. A computer

can explicitly compute this discriminant as ∆uQ(v, w, z) = w6(1− 4z)2z3Q̂(v, w, z), where

Q̂(v, w, z) = z3 + 2wz2(−3 + 2vz) + w4z(1 + v + v2z)2 + w2z(9 + (2− 10v)z + 6v2z2)

+ 2w3(−2 + (5− 3v)z − (−2 + v)vz2 + 2v3z3).

It follows from the method described in [9] that z = Z(w) is a repeated root of ∆uQ(I(w, 0), w, z).
Since Z(w) = w + O(w2), we know that w6(1 − 4Z)2Z3 6= 0. Therefore, z = Z(w) is a repeated

root of Q̂(I(w, 0), w, z). The discriminant of a polynomial with a repeated root must be 0. This

means that ∆zQ̂(I(w, 0), w) = 0, where ∆zQ̂(v, w) is the discriminant of Q̂(v, w, z) with respect to

z. Computing ∆zQ̂(v, w) explicitly and ignoring extraneous factors, we find that R(I(w, 0), w) = 0,
where

R(v, w) = −1 + 11w + w2 + v3w2 + v2w(2 + 3w) + v(1− 14w + 3w2).

To complete our new proof of Theorem 1.2, we follow the proof of Proposition 5.2 in [11].
Namely, we consider the power series U(w) defined by U(w) = w(1 + U(w))3. We then verify that
R(1+U(w)−U(w)2, w) = 0 and deduce that I(w, 0) = 1+U(w)−U(w)2. Lagrange inversion then
completes the proof that

I(w, 0) =
∑
n≥0

2

(n+ 1)(2n+ 1)

(
3n

n

)
wn.

The above argument generalizes as follows. Let

Ix,y(w, z) =
∑
`≥0

∑
n≥0

∑
σ∈s−1(D≥`(n))

xdes(σ)+1ypeak(σ)+1wnz`.

Note that Ix,y(w, 0) =
∑

n≥0
∑

σ∈W2(n)
wnxdes(σ)+1ypeak(σ)+1. We make the convention that the

empty permutation has 0 descents and −1 peaks so that Ix,y(0, 0) = x. Let F be the generating

function in (6). If we replace B`(n) with
∑

σ∈s−1(D`(n)) x
des(σ)+1ypeak(σ)+1, replace B≥`(n) with∑

σ∈s−1(D≥`(n)) x
des(σ)+1ypeak(σ)+1, use the Refined Decomposition Lemma instead of the Decom-

position Lemma, and use Remark 3.1 instead of Theorem 1.1, then the above argument produces
the equation

(Ix,y(w, z)− Ix,y(w, 0))(Ix,y(w, z)− F (z, x, y)) =
Ix,y(w, z)− F (z, x, y)

w
− Ix,y(w, z)− Ix,y(w, 0)

z

in place of (16). We then continue the argument, using the functional equation (6) instead of the
Catalan functional equation for C(Z), in order to arrive at the following theorem concerning the
generating function of the numbers W2(n, k, p).

Theorem 4.1. Let

R(v, w, x, y) = −x+(4x+8x2−xy)w+(−6x−16x2−16x3+3xy+36x2y)w2+(4x+8x2−3xy−36x2y

+27x2y2)w3+(−x+xy)w4+(1+(−4−12x)w+(6+20x+32x2−33xy)w2+(−4−4x+16x2+30xy

−36x2y)w3+(1−4x+3xy)w4)v+(4w+(−4−22x)w2+(−4−20x+8x2+33xy)w3+(4−6x+3xy)w4)v2

+(6w2 + (4− 12x)w3 + (6− 4x+ xy)w4)v3 + (4w3 + (4− x)w4)v4 + w4v5.

We have R(Ix,y(w, 0), w, x, y) = 0, where

Ix,y(w, 0) =
∑
n≥0

∑
σ∈W2(n)

wnxdes(σ)+1ypeak(σ)+1.
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5. 3-Stack-Sortable Permutations

In the previous section, we counted 2-stack-sortable permutations by viewing them as preimages
of 231-avoiding permutations under the stack-sorting map. In doing so, we had to keep track of
the tail lengths of the 231-avoiding permutations under consideration. In this section, we count
3-stack-sortable permutations by viewing them as preimages of 2-stack-sortable permutations. We
will again keep track of tail lengths, but we will also need an additional new statistic.

Definition 5.1. Given π = π1 · · ·πn ∈ Sn and a ∈ {0, . . . , n}, we say the open interval (a, a + 1)
is a legal space for π if there do not exist indices i1 < i2 < i3 such that πi3 ≤ a < πi1 < πi2 . Let
leg(π) be the number of legal spaces of π.

For example, if π ∈ Sn, then leg(π) = n+1 if and only if π avoids 231. The legal spaces of 145326
are (0, 1), (1, 2), (4, 5), (5, 6), (6, 7), so leg(145326) = 5. Imagine taking the plot of a permutation π
and adding a new point to the left of all other points. One can think of the legal spaces of π as the
vertical positions where the new point can be inserted so as to not form a new 2341 pattern. This
is relevant for us because of the following characterization of 2-stack-sortable permutations due to
West.

Theorem 5.1 ([41]). A permutation is 2-stack-sortable if and only if it avoids the pattern 2341
and also avoids any 3241 pattern that is not part of a 35241 pattern.

We are now in a position to state and prove the main theorems of this article. In what follows,

let B
(g)
≥` (n) be the number of 3-stack-sortable permutations σ ∈ W3(n + `) such that tl(s(σ)) ≥ `

and leg(s(σ)) = `+ g. Also, recall the definitions from Section 2.

Theorem 5.2. If n ≥ 1, then

W3(n) =
n+1∑
g=1

B
(g)
≥0(n).

We have B
(0)
≥` (n) = 0 and

B
(g)
≥` (1) =

{
0, if g 6= 2;

C`+1, if g = 2.

If n, g ≥ 1 and ` ≥ 0, then

B
(g)
≥` (n+1) =

∑̀
j=1

 n∑
a=2

g−1∑
b=max{2,g−a}

n−b+1∑
i=a−1

B
(a)
≥j−1(i)B

(b)
≥`−j+1(n− i) +B

(g−1)
≥j−1 (n)C`−j+1

+B
(g−1)
≥`+1 (n).

Proof. The first statement and the fact that B
(0)
≥` (n) = 0 are clear from the definitions we have

given. The permutations σ counted by B
(g)
≥` (1) are in S`+1 and satisfy tl(s(σ)) ≥ `, so they must

actually satisfy s(σ) = 123 · · · (` + 1). Since leg(123 · · · (` + 1)) = ` + 2, the formula for B
(g)
≥` (1)

follows from Theorem 1.1.

Now, let B
(g)
` (n) be the number of 3-stack-sortable permutations σ ∈ W3(n + `) such that

tl(s(σ)) = ` and leg(s(σ)) = `+ g. Let

(18) D(g)
` (n) = {π ∈ W2(n+ `) : tl(π) = `, leg(π) = `+ g}
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and

(19) D(g)
≥` (n) = {π ∈ W2(n+ `) : tl(π) ≥ `, leg(π) = `+ g}

so that
B

(g)
` (n) = |s−1(D(g)

` (n))| and B
(g)
≥` (n) = |s−1(D(g)

≥` (n))|.

We have B
(g)
≥` (n+ 1) = B

(g)
` (n+ 1) +B

(g−1)
≥`+1 (n), so we need to show that

(20) B
(g)
` (n+ 1) =

n∑
a=2

g−1∑
b=max{2,g−a}

n−b+1∑
i=a−1

∑̀
j=1

B
(a)
≥j−1(i)B

(b)
≥`−j+1(n− i) +

∑̀
j=1

B
(g−1)
≥j−1 (n)C`−j+1.

Suppose π ∈ D(g)
` (n + 1) is such that πn+1−i = n + 1 (where n ≥ 0). The Decomposition

Lemma (Corollary 2.1) tells us that |s−1(π)| is equal to the number of triples (H,µ, λ), where
H ∈ SWn+1−i(π), µ ∈ s−1(πHU ), and λ ∈ s−1(πHS ). Choosing H amounts to choosing the number
j ∈ {1, . . . , `} such that the northeast endpoint of H is (n+ 1 + j, n+ 1 + j). The permutation π
and the choice of H determine the permutations πHU and πHS . On the other hand, the choices of H

and the permutations πHU and πHS uniquely determine π. It follows that B
(g)
` (n + 1), which is the

number of ways to choose an element of s−1(D(g)
` (n+ 1)), is also the number of ways to choose j,

the permutations πHU and πHS , and the permutations µ and λ. Let us fix a choice of j.

Assume for the moment that i ≤ n − 1, and let r be the largest entry appearing to the left of
n+ 1 in π. Because π is 2-stack-sortable, we can use Theorem 5.1 to see that πHU is a permutation
of the set {1, . . . , n− i− 1} ∪ {r, n+ 1} ∪ {n+ 2 + j, . . . , n+ `+ 1} and that πHS is a permutation
of {n − i, . . . , n + j} \ {r, n + 1}. Therefore, choosing πHU and πHS is equivalent to choosing their

normalizations and the value of r. The normalization of πHS is inD(a)
≥j−1(i) for some a ∈ {2, . . . , i+1},

while the normalization of πHU is in D(b)
≥`−j+1(n− i) for some b ∈ {2, . . . , n− i+ 1}. Once we have

chosen a and b, the number of choices for πHU , µ, π
H
S , λ is B

(a)
≥j−1(i)B

(b)
≥`−j+1(n− i).

Suppose we have already chosen the value of a. The fact that π avoids 2341 and the definition of
a legal space tell us that there are a possible values of r, say κ1 < · · · < κa (see Example 5.1 for an
illustration of this part of the proof). If we choose r = κm, then π has a+b−m+1+` legal spaces. We
are assuming that leg(π) = `+g, so g = a+b−m+1. It follows that 2 ≤ a ≤ n and max{2, g−a} ≤
b ≤ g−1. Since a ∈ {2, . . . , i+1} and b ∈ {2, . . . , n− i+1}, we also have the constraint a−1 ≤ i ≤
n− b+ 1. This explains the expression

∑n
a=2

∑g−1
b=max{2,g−a}

∑n−b+1
i=a−1

∑`
j=1B

(a)
≥j−1(i)B

(b)
≥`−j+1(n− i)

in (20).

The expression
∑`

j=1B
(g−1)
≥j−1 (n)C`−j+1 in (20) comes from the case in which i = n. In this case,

πHS is in D(g−1)
≥j−1(n), and πHU = (n+1)(n+2+j)(n+3+j) · · · (n+`+1) is an increasing permutation

of length `− j + 1. The number of choices for πHS and λ is B
(g−1)
≥j−1 (n). The number of choices for µ

is |s−1(πHU )| = C`−j+1. �

Example 5.1. Consider the part of the proof of Theorem 5.2 in which we have already chosen
n, g, `, j, i and have assumed i ≤ n − 1. Suppose n = 8, ` = 5, j = 2, and i = 5. If we choose
the normalization of πHU to be 24315678 and choose the normalization of πHS to be 315246, then
a = leg(315246) − (j − 1) = 5 and b = leg(24315678) − (` − j + 1) = 4. The green dots in Figure
3 represent the possible choices for r, which are κ1 = 4, κ2 = 5, κ3 = 7, κ4 = 8, and κ5 = 9. If
r = κm, then we can refer to this figure to see that leg(π) = 15 −m = ` + a + b −m + 1. Hence,
the choice of r is determined by the value of g.
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Figure 3. The decomposition of π into πHU and πHS along with the possible choices for r.

The proof of Theorem 5.2 generalizes, allowing us to obtain a recurrence for W3(n, k, p), the
number of 3-stack-sortable permutations in Sn with k descents and p peaks. We actually state
the following theorem in terms of polynomials, but one can easily obtain the desired recurrence by
comparing coefficients. In what follows, let

E
(g)
≥` (n) =

∑
σ∈s−1(D(g)

≥` (n))

xdes(σ)+1ypeak(σ)+1,

where D(g)
≥` (n) is as in (19). We have suppressed the dependence on x and y in our notation for

readability. Let Lr(x, y) be as in (8).

Theorem 5.3. If n ≥ 1, then

∑
σ∈W3(n)

xdes(σ)+1ypeak(σ)+1 =
n+1∑
g=1

E
(g)
≥0(n).

We have E
(0)
≥` (n) = 0 and

E
(g)
≥` (1) =

{
0, if g 6= 2;

L`+1(x, y), if g = 2.

If n, g ≥ 1 and ` ≥ 0, then

E
(g)
≥` (n+ 1) =

∑̀
j=1

 n∑
a=2

g−1∑
b=max{2,g−a}

n−b+1∑
i=a−1

E
(a)
≥j−1(i)E

(b)
≥`−j+1(n− i) + E

(g−1)
≥j−1 (n)L`−j+1(x, y)


+E

(g−1)
≥`+1 (n).

Proof. To derive the formula for E
(g)
≥` (1), we follow the same argument used to find the formula for

B
(g)
≥` (1) in the proof of Theorem 5.2, except we use Remark 3.1 instead of Theorem 1.1. To derive

the last statement in this theorem, we follow the rest of the proof of Theorem 5.2, except we invoke
the Refined Decomposition Lemma instead of the Decomposition Lemma and again use Remark
3.1 instead of Theorem 1.1. �
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6. Data Analysis

The sum of two permutations µ and λ, denoted µ⊕λ, is the permutation whose plot is obtained
by placing the plot of λ above and to the right of the plot of µ. It is easy to check that the sum of
two t-stack-sortable permutations is t-stack-sortable. It follows that Wt(m+n) ≥Wt(m)Wt(n) for
all m,n ≥ 1. We express this by saying the sequence (Wt(n))n≥1 is supermultiplicative. It follows
from Fekete’s lemma that

(21) lim
n→∞

Wt(n+ 1)

Wt(n)
= lim

n→∞
Wt(n)1/n = sup

n≥1
Wt(n)1/n.

We have used Theorem 5.2 to compute the numbers W3(n) for 1 ≤ n ≤ 174. We have added
these terms to the OEIS sequence A134664. This allows us to prove the first nontrivial lower bound
for lim

n→∞
W3(n)1/n. Note that this is better than the lower bound of (

√
3 + 1)2 obtained in Section

7.

Theorem 6.1. We have
lim
n→∞

W3(n)1/n ≥ 8.659702.

Proof. The value of W3(174) is

1335109055832443343636882328903941541553316885478273864987091560565206631540380152

7870514001230180265889501841168312512206012823853129556966628901079194868270269904,

and the 174th root of this number is slightly more than 8.659702. The proof follows from (21). �

We can also show that Bóna’s Conjectures 1.1 and 1.2 contradict each other.

Theorem 6.2. If (W3(n))n≥1 is log-convex, then W3(n) >
(
4n
n

)
for all sufficiently large n.

Proof. It follows from Stirling’s formula that lim
n→∞

(
4n
n

)1/n
= 256/27 ≈ 9.4815. Also, W3(174)

W3(173)
≈

9.4907. If (W3(n))n≥1 is log-convex, then lim
n→∞

W3(n)1/n = lim
n→∞

W3(n+1)
W3(n)

≥ 9.4907 > 9.4815. �

We now turn our attention to the parity of W3(n) and Bóna’s Conjecture 1.3. Let εt(n) be the
number in {0, 1} with the same parity as Wt(n). As mentioned in the introduction, εt(n) = 0
whenever n is even. The values of ε3(2n+ 1) for 0 ≤ n ≤ 86 are

(22) 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0,

0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0.

Letting gt(m) =
∑m

n=1 εt(n), we can use this data to find that g1(m) < g2(m) ≤ g3(m) whenever
13 ≤ m ≤ 660. Therefore, it appears that W3(n) is odd more frequently than W2(n)! If this is true,
then Bóna’s Conjecture 1.3 is certainly false. We state some new conjectures and open problems
concerning the parities of the numbers W3(n) in Section 9.

Let us end this section by recording one final proposition, which verifies Bóna’s Conjecture 1.4
in several new cases. We have obtained this proposition by computing several values of W3(n, k)
via Theorem 5.3 (setting y = 1 in that theorem).

Proposition 6.1. If 1 ≤ n ≤ 43, then the polynomial
∑

σ∈W3(n)

xdes(σ) has only real roots.
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7. Lower Bounds for t-Stack-Sortable Permutations

Let Γt be the set of all κ = κ1 · · ·κt+2 ∈ St+2 such that κt+1 = t+ 2 and κt+2 = 1. Let Avn(Γt)
be the set of permutations in Sn that avoid all of the patterns in Γt. After applying a dihedral
symmetry to the permutations in Γt, we can use a result of Kremer [36,37] to see that

(23)
∑
n≥t
|Avn(Γt)|xn = (t− 1)!xt−2

1 + (t− 1)x−
√

1− 2(t+ 1)x+ (t− 1)2x2

2
.

Some basic singularity analysis now shows that lim
n→∞

|Avn(Γt)|1/n = (
√
t+ 1)2.

We will prove by induction that Avn(Γt) ⊆ Wt(n). Since Γ1 = {231}, this is certainly true
for t = 1 (by Theorem 1.1). Now suppose that t ≥ 2 and that Avn(Γt−1) ⊆ Wt−1(n). Choose a
permutation π ∈ Sn \ Wt(n). This means that s(π) 6∈ Wt−1(n), so s(π) contains a permutation
in Γt−1. In other words, there exist entries b1, . . . , bt−1, c, a that appear in this order in s(π) and
satisfy a < bj < c for all j ∈ {1, . . . , t − 1}. Because c appears to the left of a in s(π), there must
be an entry d > c that appears to the right of c and to the left of a in π. The entries b1, . . . , bt−1
must appear to the left of d in π since they would appear to the right of c in s(π) otherwise. The
subpermutation of π formed by the entries a, b1, . . . , bt−1, c, d has a normalization that is in Γt, so
π 6∈ Avn(Γt). This completes the induction and proves the following theorem.

Theorem 7.1. For every t ≥ 1, we have

lim
n→∞

Wt(n)1/n ≥ (
√
t+ 1)2.

In [39], Smith investigated a variant of the stack-sorting map known as the “left-greedy algo-

rithm.” Let Ŵt(n) be the set of permutations in Sn that can be sorted by t stacks in series using

the left-greedy algorithm (see her paper for definitions). Smith proved that Wt(n) ⊆ Ŵt(n) and

that |Ŵt(n)| ≥ t!

(t+ 1)t
(t + 1)n whenever n ≥ t ≥ 1. In terms of exponential growth rates, this

shows that lim
n→∞

|Ŵt(n)|1/n ≥ t+1 (using Fekete’s lemma, one can show that this limit exists). The

following corollary of Theorem 7.1 improves this estimate.

Corollary 7.1. For every t ≥ 1, we have lim
n→∞

|Ŵt(n)|1/n ≥ (
√
t+ 1)2.

8. Symmetry, Unimodality, γ-Nonnegativity, Log-Concavity, and Real-Rootedness

We devote this brief section to showing how Brändén’s theorem concerning γ-nonnegativity
(Theorem 1.3) follows easily from Theorem 3.1. We also show that the analogue of that theorem
with “γ-nonnegative” replaced by “real-rooted” is false. Let us begin by recalling some definitions.

A polynomial p(x) = a0 + a1x+ · · ·+ anx
n ∈ R≥0[x] is called

• symmetric if ai = an−i for all i ∈ {0, . . . , n}; in this case, n/2 is called the center of
symmetry of p(x);
• unimodal if there exists j ∈ {0, . . . , n} such that a0 ≤ a1 ≤ · · · ≤ aj ≥ aj+1 ≥ · · · ≥ an;
• log-concave if ai−1ai+1 ≤ a2i for all i ∈ {1, . . . , n− 1};
• real-rooted if all of the complex roots of p(x) are real.
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If p(x) is a symmetric polynomial with center of symmetry n/2, then it can be written in the form

p(x) =
∑bn/2c

m=0 γmx
m(1 + x)n−2m for some real numbers γm. We then say p(x) is γ-nonnegative if

the numbers γm are all nonnegative. We have the following implications among these properties
for polynomials in R≥0[x] [15]:

real-rooted =⇒ log-concave =⇒ unimodal;

symmetric and real-rooted =⇒ γ-nonnegative =⇒ symmetric and unimodal.

New Proof of Theorem 1.3.2 Note that it suffices to prove Theorem 1.3 in the specific case in which
A = {π} is a singleton set. Indeed, the result for a general set A ⊆ Sn then follows by summing
over all π ∈ A. Thus, let us fix a permutation π ∈ Sn with exactly k descents.

Recall the notation from (4) and (5). One can show that

Nq(x) =

q∑
m=0

V (q,m+ 1)

2q−1−2m
xm+1(1 + x)q−1−2m

for all q ≥ 1. Therefore, for (q0, . . . , qk) ∈ Compk+1(n− k), we have

k∏
t=0

Nqt(x) =
k∏
t=0

qt∑
mt=0

V (qt,mt + 1)

2qt−1−2mt
xmt+1(1 + x)qt−1−2mt

=
n∑

m=0

∑
m0+···+mk=m−k

m0,...,mk≥0

1

2n−1−2m

(
k∏
t=0

V (qt,mt + 1)

)
xm+1(1 + x)n−1−2m.

Let V(π) ⊆ Compk+1(n− k) be the set of compositions from Theorem 3.1. Invoking equation (10)
from that theorem, we obtain∑

σ∈s−1(π)

xdes(σ)+1 =
∑

(q0,...,qk)∈V(π)

k∏
t=0

Nqt(x)

=
∑

(q0,...,qk)∈V(π)

n∑
m=0

∑
m0+···+mk=m−k

m0,...,mk≥0

1

2n−1−2m

(
k∏
t=0

V (qt,mt + 1)

)
xm+1(1 + x)n−1−2m

=
n∑

m=0

1

2n−1−2m
xm+1(1 + x)n−1−2m

∑
(q0,...,qk)∈V(π)

∑
(m′0,...,m

′
k)∈Compk+1(m+1)

k∏
t=0

V (qt,m
′
t),

where we have made the substitution m′i = mi + 1. It turns out that∑
(q0,...,qk)∈V(π)

∑
(m′0,...,m

′
k)∈Compk+1(m+1)

k∏
t=0

V (qt,m
′
t)

is the coefficient of ym+1 in the polynomial on the right-hand side of (11), so it is equal to

|{σ ∈ s−1(π) : peak(σ) = m}|.

2To deduce Bóna’s symmetry and unimodality result from Theorem 3.1, one simply needs to observe that this theorem
tells us that

∑
σ∈Wt(n)

xdes(σ)+1 is a sum of products of Narayana polynomials with the same center of symmetry

and then use the well-known fact that Narayana polynomials are real-rooted.
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Note that this is 0 if m > n−1
2 . Hence,

∑
σ∈s−1(π)

xdes(σ) =

bn−1
2 c∑

m=0

|{σ ∈ s−1(π) : peak(σ) = m}|
2n−1−2m

xm(1 + x)n−1−2m. �

We now give an example to show that Theorem 1.3 is false if the term “γ-nonnegative” is replaced
by “real-rooted.” Let

µ = 6 7 8 4 5 9 10 1 2 3 11 and µ′ = 6 7 8 9 2 3 4 5 10 1 11.

We claim that
∑

σ∈s−1({µ,µ′}) x
des(σ) is not real rooted. To see this, we use the fact3 that V(µ) =

{(4, 2, 3), (3, 3, 3)} and V(µ′) = {(4, 4, 1)}. Using (10), we find that∑
σ∈s−1{µ,µ′}

xdes(σ) =
1

x

∑
σ∈s−1(µ)

xdes(σ)+1 +
1

x

∑
σ∈s−1(µ′)

xdes(σ)+1

=
1

x
(N4(x)N2(x)N3(x) +N3(x)N3(x)N3(x)) +

1

x
N4(x)N4(x)N1(x)

= 3x2 + 31x3 + 112x4 + 169x5 + 112x6 + 31x7 + 3x8,

and this polynomial is not real-rooted. This example yields a negative answer to the last part of
Question 12.1 in [26].

Remark 8.1. Theorem 1.3 diverges from Bóna’s point of view in Conjecture 1.4 by replacing
the sum over s−1(Wt−1(n)) with a sum over s−1(A) for an arbitrary set A ⊆ Sn. This different
viewpoint suggests that the sets of the form Wt(n) = s−1(Wt−1(n)) might not be too special when
compared with arbitrary sets of the form s−1(A) for A ⊆ Sn. If one believes Conjecture 1.4, then
the preceding example lends credence to the hypothesis that the sets Wt(n) are special. On the
other hand, if one does not believe there is anything special about the setsWt(n), then this example
hints that Conjecture 1.4 might be false.

9. Conjectures and Open Problems

We saw in Theorem 6.2 that Conjectures 1.1 and 1.2 cannot both be true. Our data suggests
that Conjecture 1.2 is true. Moreover, by plotting the points (1/n,W3(n)) for 1 ≤ n ≤ 174, we
have arrived at the following new conjecture.

Conjecture 9.1. We have

9.702 < lim
n→∞

W3(n)1/n < 9.704.

We also believe that the Decomposition Lemma could be used (possibly along with a significant

amount of work) to find a lower bound for lim
n→∞

W4(n)1/n that exceeds 9.704.

Turning back to the parities of the numbers W3(n), we have the following problem.

Problem 9.1. Characterize those positive integers n such that W3(n) is odd.

3The reader interested in seeing why this is the case can refer to [26] for the full definition of V(π) and a description of

how to compute it. However, the reader wishing to avoid this definition can still compute
∑
σ∈s−1({µ,µ′}) x

des(σ) using

a brute-force computer program that simply finds all of the permutations in s−1({µ, µ′}). A priori, a brute-force
computer program would not easily find this example since it would have to search over subsets of S11.
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Now that we have obtained a recurrence for the numbers W3(n) in Theorem 5.2, Problem 9.1
seems within reach. Indeed, it appears as though there could be some patterns in the sequence
whose initial terms are listed in (22). Solving this problem could require going through the proof
of Theorem 5.2 and seeing which terms in the various sums simplify when we reduce modulo 2.

Recall the definition of gt(m) from Section 6. We have the following conjectures. Conjectures
9.3, 9.4, and 9.5 each contradict Bóna’s Conjecture 1.3.

Conjecture 9.2. The limit lim
n→∞

log g3(m)

logm
exists.

Conjecture 9.3. We have lim inf
n→∞

log g3(m)

logm
> 0.

Conjecture 9.4. For every integer m ≥ 13, we have g2(m) ≤ g3(m).

Conjecture 9.5. We have lim
m→∞

(g3(m)− g2(m)) =∞.

In [26], the current author conjectured that for every π ∈ Sn, the polynomial
∑

σ∈s−1(π) x
des(σ)

is real-rooted. The example given in the previous section shows that this conjecture is false if we
replace the singleton set {π} by an arbitrary subset of Sn. Nevertheless, we can make the following
new conjecture.

Conjecture 9.6. If A ⊆ Sn, then the polynomial
∑

σ∈s−1(A)

xdes(σ) is log-concave.

In [26], the current author showed that |s−1(Avn(123 · · ·m))| = 0 when n ≥ 2m−1 and conjec-

tured that the sequence (|s−1(Avn(123 · · ·m))|)2m−1−1
n=1 is unimodal for every m ≥ 2. We wish to

generalize this conjecture as follows. One can define Av(τ (1), τ (2), . . .) for an infinite list of permu-

tation patterns τ (1), τ (2), . . . in the obvious way. There is also a natural definition of unimodality
for infinite sequences of nonnegative numbers. We make the convention that monotonic sequences
are unimodal.

Conjecture 9.7. If τ (1), τ (2), . . . is a (finite or infinite) list of permutation patterns, then the

sequence (|s−1(Avn(τ (1), τ (2), . . .))|)n≥1 is unimodal.

10. Acknowledgments

I would like to express my deepest gratitude to Niven Achenjang, Amanda Burcroff, and Eric
Winsor for writing computer programs that calculated the numbers W3(n) much faster than the
author’s original program. I would also like to thank Jay Pantone for running one of these programs
on his computer for several days and for analyzing the resulting data. The contributions that these
people made were paramount to the analysis discussed in Section 6. I thank Miklós Bóna and Doron
Zeilberger for helpful conversations. I also thank Caleb Ji, who wrote a poem that inexplicably
predicted I would make progress in the study of 3-stack-sortable permutations.

The author was supported by a Fannie and John Hertz Foundation Fellowship and an NSF
Graduate Research Fellowship.



20 COUNTING 3-STACK-SORTABLE PERMUTATIONS

References

[1] D. Bevan, R. Brignall, A. E. Price, and J. Pantone, Staircases, dominoes, and the growth rate of 1324-avoiders.
Electron. Notes Discrete Math., 61 (2017), 123–129.
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[7] M. Bóna, A survey of stack-sorting disciplines. Electron. J. Combin., 9.2 (2003): 16.
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(2000), 121–130.
[37] D. Kremer, Postscript: “Permutations with forbidden subsequences and a generalized Schröder number”. Discrete
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