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Some Remarks on a recent article by J. -P. Allouche

Shalosh B. EKHAD and Doron ZEILBERGER

In a recent article [A], the author tries very hard to “explain” a puzzling remark made by Otto G.

Ruehr in his solution [R] to American Mathematical Monthly elementary problem E2765 (proposed

in 1979 by Naoki Kimura).

Frankly, we don’t see the point of going to such great lengths to prove that routinely-provable

identity A implies routinely-provable identity B. It is much faster to prove them both from

scratch. As we will soon see, Ruehr’s remark was most probably a non-sequitur, and it is very

unlikely that it followed [A]’s exegesis.

The original problem was to prove that for every continuous function f the following identity holds

∫ 3

2

−

1

2

f(3x2
− 2x3) dx = 2

∫

1

0

f(3x2
− 2x3) dx .

After giving his change-of-variable proof, Ruehr makes the following remark.

“An interesting alternative approach would be to use the Weierstrass Approximation Theorem to

reduce that problem to that of a polynomial f , and in turn, by linearity to that of establishing the

given equation for f(z) = zn.”

In other words one had to prove, that for every non-negative integer n,

∫ 3

2

−

1

2

(3x2
− 2x3)n dx =

∫

1

0

2 (3x2
− 2x3)n dx . (Ruehr)

While this was non-trivial back in 1980, it is routinely provable today, using the Almkvist-Zeilberger

algorithm [AZ], implemented in the Maple package EKHAD.txt [Z]. Just type:

AZdI((3*x**2-2*x**3)**n,x,n,N,-1/2,3/2)[1]; AZdI(2*(3*x**2-2*x**3)**n,x,n,N,0,1)[1];

for the left and right sides, respectively, and in a split second you would get the same output:

[9 (n + 1) (2 n + 1) - 2 (3 n + 4) (3 n + 2) N, 2] ,

which means that both the left side and the right side satisfy the first-order inhomogeneous linear

recurrence equation with polynomial coefficients

9(n+ 1)(2n + 1)f(n) − 2(3n + 4)(3n + 2)f(n + 1) = 2 .

Since L(0) = R(0) = 2, this immediately implies (Ruehr), without any need for a clever change of

variable.
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If you take Ruehr’s suggestion literally, then you would get a certain binomial coefficients identity

that is easily provable by the Zeilberger algorithm, supplying yet another routine proof. This

summation identity, that the reader can easily derive by using the binomial theorem on (3− 2x)n

and integrating term-by-term (as suggested in [R]) has nothing whatsoever to do with the

following two binomial coefficients identities that Ruehr claims are ‘equivalent’. We would never

know what Ruehr had in mind (he probably got mixed up with another problem), and frankly we

don’t really care. At any rate, we are sure that it is not via Allouche’s extremely circuitous route.

These ‘equivalent’ (per Ruehr) identities are

2n
∑

j=0

(−4)j
(

3n+ 1

n+ j + 1

)

=
n
∑

j=0

2j
(

3n+ 1

n− j

)

,

2n
∑

j=0

(−3)j
(

3n− j

n

)

=
n
∑

j=0

3j
(

3n− j

2n

)

.

As already pointed out in [MTWZ] these two new identities (that, in spite of [A], are completely

unrelated to the original integral identity (Ruehr)) are also routinely provable with Maple. In

fact it is also strange that they are listed as two different identities. All four sums happen to be

identical.

Go into Maple, and type

Z:=SumTools[Hypergeometric][ZeilbergerRecurrence]; ,

then type

Z(3**j*binomial(3*n-j,2*n),n,j,f,0..n); Z((-3)**j*binomial(3*n-j,n),n,j,f,0..2*n);

Z(2**j*binomial(3*n+1,n-j),n,j,f,0..n); Z((-4)**j*binomial(3*n+1,n+j+1),n,j,f,0..2*n);

and find out, in one nano-second, that all four sums satisfy the same linear recurrence, namely

−27 f (n) + 4 f (n+ 1) = −3
(3n + 1)!

(2n+ 1)!(n + 1)!

As also pointed out in [MTWZ] these four sums are all equal to OEIS sequence A6256 [S] whose

definition is yet another binomial coefficient sum

n
∑

k=0

(

3k

k

)(

3n− 3k

n− k

)

.

Typing

Z(binomial(3*k,k)*binomial(3*n-3*k,n-k),n,k,f,0..n);
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gives that it satisfies a second-order homogeneous linear recurrence equation with polynomial

coefficients

−81 (3n + 2) (3n+ 4) f (n)+
(

216n2 + 594n + 420
)

f (n+ 1)−8 (2n + 3) (n+ 2) f (n+ 2) = 0 ,

that is routinely equivalent to the above first-order inhomogeneous recurrence for the Ruehr sums.

Conclusion

In the conclusion to [A], the author states

“The literature about sums involving binomial coefficients is huge.”

He should have added,

“... and mostly obsolete1 (thanks to the Wilf-Zeilberger [PWZ] algorithmic proof theory, imple-

mented in Maple, Mathematica and other systems)”.

Both the integral formula with f(z) = zn and the two binomial coefficients identities, are nowadays

routinely provable, and it has very little mathematical interest to do exegesis of what Ruehr had

in mind. Of course, it may be of some psychological or literary interest. After all literary scholars

often go to great lengths to try and understand ‘what the great poet had in mind’, and most often

get it wrong. Often the poet had nothing in mind, and if she did, it was something very mundane.

Parody

Let’s use an analogy. Suppose that in the American Mathematical Monthly analog of Egypt in

5000BC there was a papyrus that gives an elegant proof of the identity

123 · 321 = 39483 , (1)

and then it comments that it is equivalent to

111 · 449 = 49839 , (2)

but that the latter identity is no easier to prove than the former one. In a logical sense, that

ancient savant would have been right, since all correct statements are logically equivalent. But

some mathematical historian could have been tempted to ‘explain’ how Professor Ahmes may have

reasoned. Since 111 = (123 − 12) and 449 = 321 + 128 (proofs left to the reader), we have

111 · 449 = (123 − 12)(321 + 128) = 123 · 321 + 123 · 128 − 12 · 321 − 12 · 128

= 123 · 321 + 15744 − 3582 − 1536 .

1 There is still room for elegant and insightful combintorial proofs of such identities, of course, see [MTWZ] for two

such gorgeous proofs.

3



Using Eq. (1), the first product equals 39483, and it follows that indeed

111 · 449 = 39483 + 15744 − 3852 − 1536 = 49839 QED.

With all due respect, it is much easier to prove identities (1) and (2) separately, than to only prove

(1) and then to deduce (2) from it.
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