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Abstract. The height H(n) of n, introduced by Pillai in 1929, is the smallest

positive integer i such that the ith iterate of Euler’s totient function at n is 1.
H. N. Shapiro (1943) studied the structure of the set of all numbers at a height.

We state a formula for the height function due to Shapiro and use it to list
steps to generate numbers at any height. This turns out to be a useful way

to think of this construct. In particular, we extend some results of Shapiro

regarding the largest odd numbers at a height. We present some theoretical
and computational evidence to show that H and its relatives are closely related

to the important functions of number theory, namely π(n) and the nth prime

pn. We conjecture formulas for π(n) and pn in terms of the height function.

1. Introduction

The principal object of our investigation is a number theoretic function H that
we call the height function. It is defined as follows. Let H(1) := 0, and

H(n) := H(ϕ(n)) + 1, (1.1)

for n = 2, 3, 4, . . . . Here ϕ(n) denotes Euler’s totient function, the number of
positive integers less than n which are co-prime to n. The first few values of H are:
0, 1, 2, 2, 3, 2. Let Ck be the set of numbers at height k, that is,

Ck := {n : H(n) = k}.
We call Ck the Shapiro classes in honor of Harold N. Shapiro [9] who studied
these classes first. In this paper, we examine the Shapiro class structure, and show
that the height function and its relatives are very closely related to the important
functions of number theory, namely π(n), the number of primes less than or equal
to n, and pn the nth prime number.

Shapiro arrived at these classes by considering iterates of Euler’s totient function.
For i ≥ 1, we denote by

ϕi(n) := ϕ(ϕ(· · · ))︸ ︷︷ ︸
i times

(n)

the ith iterate of ϕ. Then the height function can also be defined as follows. Let
H(1) := 0. For n > 1, let H(n) be the smallest number i such that ϕi(n) = 1. The
height function (with this definition) was studied first by Pillai [7]. The Shapiro
classes (by other names) have been studied earlier by Shapiro [9], Erdős, Granville,
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Pomerance and Spiro [3], and others [2, 4, 5, 6]. We have mildly modified Shapiro’s
formulation.

In Section 2 we find an alternative, inductive, approach to generate Shapiro
classes. To do so, we require a formula for H(n) due to Shapiro. In Section 3, we
apply our ideas to extend a theorem of Shapiro about the largest odd numbers at
a given height. This rests upon a property that is obvious from our construction,
but not observed earlier, regarding the largest possible prime number at a height.
This, and results of Erdős et.al. [3], led us to look for number theoretic information
from this structure.

Since H(n) is not an increasing function, we consider the sum of heights function,
defined as: S(0) := 0, and

S(n) :=

n∑
k=1

H(k). (1.2)

The structure consisting of Shapiro classes allows us to obtain number theoretic
information quite easily. It appears that elementary techniques, such as those
found in the textbooks of Apostol [1] and Shapiro [10], can be modified to express
classical theorems in terms of functions related to the height function. We illustrate
this idea in Section 4, by proving Chebyshev-type theorems, that is, inequalities for
π(n) and pn in terms of n and S(n).

Our results, and the results/conjectures in Erdős, Granville, Pomerance and
Spiro [3], motivate the experimental work presented in Section 5. As a sample,
consider Figure 1, a plot of S(n) and pn on the same set of axes. The remarkable
agreement of these graphs (upto n = 5000) suggests the importance of this function
to the theory of prime numbers. From numerical computations (see Tables 1 and
5), it appears that S(n) is a better approximation to pn than n log n, at-least until
n = 6× 107.

Figure 1. Comparison of the nth prime (top) with S(n) =
∑n
k=1H(k).
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n pn S(n) S(n)− pn bn log nc bn log nc − pn S(n)−pn
pn

10 29 22 −7 23 −6 −24.1%
102 541 486 −55 460 −81 −10.2%
103 7919 7640 −279 6907 −1012 −3.52%
104 104729 104488 −241 92103 −12626 −0.230%
105 1299709 1325890 26181 1151292 −148417 2.01%
106 15485863 16069024 583161 13815510 −1670353 3.77%
107 179424673 188786066 9361393 161180956 −18243717 5.22%

Table 1. S(n) against bn log nc

2. Listing Shapiro classes

We begin our study of the height function and Shapiro classes. The objective
of this section to build some useful intuition, by writing a set of rules to generate
Shapiro classes inductively. Towards this end, we first prove a formula due to
Shapiro for calculating the height of a function. As a corollary, we show the additive
nature of the height function. We illustrate the usefulness of these rules by obtaining
several elementary properties of the Shapiro classes.

It is instructive to compute the first few classes. Table 2 gives the first four
Shapiro classes. We begin with 1 in C0 and 2 in C1. Now since ϕ(3) = 2, we find
that H(3) = H(2) + 1 = 2. So 3 ∈ C2. Similarly, we see that 4 has height 2, 5
has height 3 and 6 has height 2. By computing the values of H(n) for a few more

k Ck
3 5, 7, 8, 9, 10, 12, 14, 18
2 3, 4, 6
1 2
0 1

Table 2. Ck for k = 0, 1, 2, 3.

values, a few rules for finding members of the Shapiro class become evident. For
example, consider the following rules for finding members of Ck from Ck−1. We
have

• If m is an odd number, then the height of 2m is the same as m.
• If m is an even number, then H(2m) = H(m) + 1.
• If m is an odd number, then H(3m) = H(m) + 1.
• If p is a prime number, then H(p) = H(p − 1) + 1. Thus p − 1 is an even

number at one height lower than p.

We can use these rules to generate the members of C4. If we multiply all the
even numbers of C3 by 2, we obtain 16, 20, 24, 28, 36. Now multiplying all the
odd numbers by 3, we find that 15, 21, 27 are in C4. Next, consider 8 + 1 = 9,
10 + 1 = 11, 12 + 1 = 13, 14 + 1 = 15, 18 + 1 = 19. Of these, 11, 13, and 19, are
primes, and are thus at height 4. Finally, the odd numbers already obtained are:
11, 13, 15, 19, 21, 27. Multiplying them by 2, we find that 22, 26, 30, 38, 42, and 54
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are also in C4. The reader may verify that we have obtained all the numbers at
height 4.

The rules work to generate all the elements of C4 from C3, but they are not
comprehensive. The complete set of rules will appear shortly, as an application of
a formula for H(n).

Theorem 2.1 (Shapiro [9]). Let n > 1 with prime factorization n = 2αpα1
1 pα2

2 . . . pαr
r ,

where p1, p2, p3, . . . , pr are distinct odd primes, and α, α1, α2, . . . , αr ≥ 0. Then,

H(n) =


α+

r∑
i=1

αi(H(pi)− 1) if α > 0

r∑
i=1

αi(H(pi)− 1) + 1 if α = 0.
(2.1)

Before giving a proof of this theorem, we obtain a corollary which indicates the
additive nature of the height function.

Corollary 2.2 (Shapiro [9]). Let n and m be natural numbers with prime factoriza-

tions m = 2αpα1
1 pα2

2 . . . pαr
r and n = 2βpβ1

1 pβ2

2 . . . pβr
r , where α, β, αi, βi ≥ 0. Then

we have

H(nm) =

{
H(m) +H(n), if α, β > 0;

H(m) +H(n)− 1, if α = 0 or β = 0.
(2.2)

Remark. Shapiro [9] considered Corollary 2.2 as his fundamental theorem. The
formula (2.1) follows immediately. The proof presented below is closely related to
Shapiro’s proof of Corollary 2.2.

Proof. Note that if both α and β are strictly positive, then

H(mn) = α+ β +

r∑
i=1

(αi + βi) (H(pi)− 1)

= H(n) +H(m),

as required. Similarly, the second part of the formula follows by considering the
cases where only one of α and β is 0, and where both α and β are 0. �

Proof of Theorem 2.1. We prove this formula by induction on the number of primes
in the prime factorization of n. Remarkably, we will require the computation in the
corollary to prove the theorem.

First we prove the formula for numbers n of the form n = 2α, by induction.
Clearly, the formula holds for α = 1. Suppose it holds for α = k. Then

H(2k+1) = H
(
ϕ(2k+1)

)
+ 1 = H(2k) + 1 = k + 1

by the induction hypothesis. This proves the formula for powers of 2.
Next, we consider numbers n of the form n = 2α · 3α1 . Consider first the case

α > 0. Again we will prove this formula by induction, this time on α1. It is easy
to verify the formula for α1 = 1. Next suppose the formula is true for α1 = k. For
n = 2α · 3k+1, we have

H(2α · 3k+1) = H
(
ϕ(2α · 3k+1)

)
+ 1 = H(2α · 3k) + 1 = α+ (k + 1) · (H(3)− 1)

as required.
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Next we consider the case α = 0. In this case, we can obtain the formula from
the previous case. Since α1 ≥ 1, We have

H(n) = H
(
ϕ(n)

)
+ 1 = H

(
2 · 3α1−1

)
+ (H(3)− 1) = 1 + α1(H(3)− 1)

which is the required formula.
Next, as the induction hypothesis, we assume that the formula is valid for num-

bers of the form

2αpα1
1 · · · pαr

r ,

where p1 < p2 < · · · < pr are the first r odd primes. We will show the formula for

n = 2αpα1
1 · · · pαr

r p
αr+1

r+1 .

We first consider the case α > 0. Again we will prove this by induction on αr+1.
Let

n′ = ϕ(pr+1) = 2βpβ1

1 · · · pβr
r

m′ = ϕ(n/p
αr+1

r+1 ) = 2γpγ11 · · · pγrr .
We will first prove the formula for αr+1 = 1. Then,

ϕ(n) = ϕ(pr+1)ϕ(n/pr+1),

so

H(n) = H(ϕ(n)) + 1

= H(m′n′) + 1

= H(m′) +H(n′) + 1.

The last equality follows by the argument in Corollary 2.2 applied to even numbers
that have only 2, p1, . . . , pr in their prime factorization. (By the induction hypoth-
esis, we have assumed that (2.1) holds for such numbers, and so this argument can
be used in our proof.) Thus we find that

H(n) = H(m′) +H(n′) + 1

= H
(
2αpα1

1 · · · pαr
r

)
− 1 +H(pr+1)− 1 + 1

= α+

r∑
i=1

αi
(
H(pi)− 1

)
+H(pr+1)− 1,

as required.
Next, we suppose the formula is true for αr+1 = k. We will prove it for

n = 2αpα1
1 · · · pαr

r pk+1
r+1 .

Again, let m′, n′, βi, γi be as before. Then we have

H(n) = H(ϕ(n)) + 1

= H
(
2β+γpβ1+γ1

1 · · · pβr+γr
r pkr+1

)
+ 1

= β + γ +

r∑
i=1

(βi + γi)
(
H(pi)− 1

)
+ k(H(pr+1 − 1)) + 1

= H(ϕ(pr+1)) +H
(
ϕ(2αpα1

1 · · · pαr
r )
)

+ k(H(pr+1)− 1) + 1

= H
(
2αpα1

1 · · · pαr
r

)
+ (k + 1)(H(pr+1)− 1),

which proves the formula for α > 0.
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Finally, we prove the formula for α = 0 and αr+1 ≥ 1. Let

n = pα1
1 · · · pαr

r p
αr+1

r+1 .

Now

H(n) = H(ϕ(n)) + 1

= H
(
2β+γpβ1+γ1

1 · · · pβr+γr
r p

αr+1−1
r+1

)
+ 1

= H(pα1
1 · · · pαr

r ) + αr+1(H(pr+1)− 1) + 1,

where the last step is obtained as in the α > 0 case. From here we obtain the
formula by applying the induction hypothesis. �

We return to our set of rules to generate the numbers at a given height from the
previous ones. Corollary 2.2 tells us what happens if we multiply a number by 5.
Recall that the height of 5 is 3. So if m is any number, then H(5m) = H(m) + 2.
Thus to obtain numbers at height k we have to multiply numbers at height k−2 by
5 and the other prime at height 3, namely 7. In general, to obtain all the numbers
at a height, we have to consider all the primes at lower heights. We are now in a
position to create a comprehensive list of rules to generate Ck.

Let Qk denote the set of primes at height k. That is, for k = 1, 2, 3, . . . , define

Qk := {p : p a prime and H(p) = k}.
For example:

Q1 = {2}, Q2 = {3}, Q3 = {5, 7}, Q4 = {11, 13, 19}, Q5 = {17, 23, 29, 31, 37, 43}.

Theorem 2.3. Suppose C1, C2, . . . , Ck−1 are known. The steps for obtaining Ck,
that is, the elements at height k are as follows

(1) Multiply each even element of Ck−1 by 2.
(2) Multiply each odd element of Ck−1 by 3.
(3) Multiply each element of Ck−k1 by elements of Qk1+1, where k1 = 2, 3, . . . .
(4) If m+ 1 is a prime where m is an even number in Ck−1, then m+ 1 ∈ Ck.
(5) Multiply each odd number obtained already in Ck by 2.

Remark. Shapiro considered a slightly different function C(n), where C(1) = 0
and C(n) = H(n) − 1, for n > 1. So C(2) = 0 whereas H(2) = 1. Theorem 2.3 is
the primary reason why we have deviated from Shapiro’s formulation.

Proof. The proof is a formalization of our earlier discussion. Consider the following
statements.

(1) If x ∈ Ck−1 is even, then H(2x) = k.
(2) if x ∈ Ck−1, then H(3x) = k.
(3) if x ∈ Ck−k1 and p ∈ Qk1+1 then H(px) = k.

All these statements follow from Corollary 2.2.
Step 1 generates all even numbers of the form 2am where a > 1, and m is odd,

i.e., numbers divisible by 4. The steps (2) and (3) will generate all composite, odd,
numbers in Ck.

Since φ(p) = p− 1, and for all odd primes p− 1 is even, thus all prime numbers
are obtained by adding 1 to even numbers in Ck−1. This explains (4).

It remains to generate numbers of the form 2m where m is odd. Since H(2n) =
H(n) when n is odd, we must multiply each odd number obtained by steps (1)-(4)
by 2. This will generate all the elements of Ck. �
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Remark. In Step (3), we need to multiply only those elements of Ck−k1 that are
odd and not divisible by 3.

Now it is easy to generate some more sets Ck. The elements of the first few sets
Ck are given in Table 3. The prime numbers are given in bold.

k Ck
6 41,47, 51,53, 55,59,61, 64, 65,67, 68, 69,71,73, 75, 77,

79, 80, 82, 87, 88, 91, 92, 93, 94, 95, 96, 99, 100, 102, 104,
105, 106,109, 110, 111, 112, 116, 117, 118, 120, 122, 124,
127, 129, 130, 132, 133, 134, 135, 138, 140, 142, 144, 146,
147, 148, 150, 152, 154, 156, 158,163, 168, 171, 172, 174,
180, 182, 186, 189, 190, 196, 198, 210, 216, 218, 222, 228,
234, 243, 252, 254, 258, 266, 270, 294, 324, 326, 342, 378,
486

5 17,23, 25,29,31, 32, 33, 34, 35,37, 39, 40,43, 44, 45, 46,
48, 49, 50, 52, 56, 57, 58, 60, 62, 63, 66, 70, 72, 74, 76, 78,
81, 84, 86, 90, 98, 108, 114, 126, 162

4 11,13, 15, 16,19, 20, 21, 22, 24, 26, 27, 28, 30, 36, 38, 42, 54
3 5,7, 8, 9, 10, 12, 14, 18
2 3, 4, 6
1 2
0 1
Table 3. Numbers with height ≤ 6. The primes are in bold.

Theorems 2.1 and 2.3 are very useful to think about the Ck. We illustrate this
in the following observations. These have been found previously by other authors.

Observations.

(1) The number 2k comes at height k.
(2) The smallest even number at height k is 2k. To see this, consider the

following argument.
An even number in Ck can arise in two ways. If it is obtained by multi-

plying an element of Ck−1 by 2, it is bigger than or equal to 2k by induction.
The other possibility is that it is of the form 2m, where m is an odd number
at height k.

If m is a prime number, then it is obtained by adding 1 to an even
number at height k−1, so it is bigger than 2k−1 by induction. This implies
2m > 2k.

Suppose m is an odd, composite number with prime factorization m =
pα1

1 . . . pα2
r , with H(pi) = ki + 1. Then by Theorem 2.1, H(m) = k implies

that

k − 1 =

r∑
i=1

αikr.

But by induction, as above, we must have pi > 2ki for i = 1, 2, . . . , r. Thus

m =
∏
i

pαi
i > 2

∑
i αiki = 2k−1.
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Again, this implies that 2m > 2k.
(3) Any odd number in Ck is bigger than 2k−1. This follows from the above

argument.
(4) If n ≤ 2k, then H(n) ≤ k. This is what the two items above amount to;

this was implicit in Pillai [7], and stated by Shapiro [9].
(5) (Shapiro [9]) The numbers at height h that are less than 2h are all odd.
(6) (Shapiro [9]) The largest odd number at height h is 3h−1. This follows from

induction and Theorem 2.3.
(7) (Pillai [7]) The largest even number at height h is 2 · 3h−1.
(8) (Pillai [7]) Since any number at height h is between 2h−1 and 2 · 3h−1, we

have the inequalities:

log n/2

log 3
+ 1 ≤ H(n) ≤ log n

log 2
+ 1. (2.3)

All the observations above were noted by previous authors. One can ask whether
Theorem 2.3 gives any new information. Indeed, there is one very important ob-
servation missed by previous authors.

The largest prime at a level k is less than or equal to 2 ·3k−2 +1. This is obvious
from Step (4) and Pillai’s observation that the largest even number at each height
is 2 · 3k−2.

In the next section, we show how this observation can be used to obtain infor-
mation about the numbers appearing at the end of each class, thus extending some
of Shapiro’s results.

3. On the Shapiro Class structure

The objective of this section is to illustrate the application of Theorems 2.1 and
2.3, by extending some results of Shapiro [9]. Our theorem in this section is a
characterization of the last few numbers at each height.

As noted above, the largest prime at a level k is less than or equal to 2 ·3k−2 +1.
This upper bound is met for many k. The smallest such examples are obtained
when k = 2, 3, 4, 6, 7, 8, 11, 18, 19. The first few examples, corresponding to
these values of k, are 3, 7, 19, 163, 487, 1458, 39367, 86093443, 258280327. Primes of

this kind (cf. OEIS [11, A003306] ) play an important role in our theorem. Let P̂
denote the set of primes of this form, that is,

P̂ := {p : p a prime, p = 2 · 3k−2 + 1 for some k ≥ 2}.

To prove our main result, we require a useful proposition.

Proposition 3.1. Let k > 2. Let m be an odd, composite number not divisible by
3 at height k. Then,

m < 2 · 3k−2 + 1.

Before proving the proposition, we prove a special case, where m is of the form
pq or p2.

Lemma 3.2. Let k > 2. Let p and q be (possibly the same) primes. Suppose
p, q 6= 2, 3, and H(pq) = k. Then

pq < 2 · 3k−2 + 1.
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Proof. Let H(p) = a and H(q) = b. Since p and q are not 2, 3, we must have
a, b > 2. Since p ≤ 2 · 3a−2 + 1 and q ≤ 2 · 3b−2 + 1, we must have

pq ≤ 4 · 3a+b−4 + 2 · 3a−2 + 2 · 3b−2 + 1.

Now from Corollary 2.2, we see that k = H(pq) = a+ b− 1. Now consider

2 · 3a+b−3 + 1 = 6 · 3a+b−4 + 1

= 4 · 3a+b−4 + 3b−2 · 3a−2 + 3a−2 · 3b−2 + 1

> 4 · 3a+b−4 + 2 · 3a−2 + 2 · 3b−2 + 1,

since a > 2 implies that 3a−2 > 2. This completes the proof of the lemma. �

Proof of Proposition 3.1. We use induction on k. For k = 3, 4, the statement is
vacuously true. Let k > 5. Let p|m, H(p) = a and H(m/p) = b. Then a, b > 2,
otherwise m has to be divisible by 3. Further b < k since a + b − 1 = k. Thus by
the induction hypothesis, we must have

m/p < 2 · 3b−2 + 1.

Of course, since p is a prime, p < 2 · 3a−2 + 1. Now by using the same argument as
in Lemma 3.2, we see that

m < 2 · 3a+b−3 + 1 = 2 · 3k−2 + 1,

as required. �

Next, we determine all the numbers in the set

Rk := {n ∈ Ck : 223k−2 < n ≤ 2 · 3k−1}.
These numbers are the largest elements at height k.

Theorem 3.3. Let k > 2. The set Rk comprises all the numbers of the form m,
where

m = 2 · 3k−ap,
where p ∈ P̂ , with H(p) = a and a ≤ k.

Proof. We let Sk denote the set

Sk := {m : m = 2 · 3k−ap for some p ∈ P̂ , with H(p) = a and a ≤ k}.
We want to show that Rk = Sk.

First observe from (2.1) that if m ∈ Sk, then H(m) = k. Further, if m ∈ Sk,
then

223k−2 < m ≤ 2 · 3k−1.

This follows from

2 · 3k−ap = 2 · 3k−1
(2

3
+

1

3a−1

)
. (3.1)

Thus Sk ⊂ Rk.
To show the converse, we apply an inductive argument using Theorem 2.3.
For k = 3, R3 = {14, 18} = S3. So let k > 3.
Observe that Rk has only even numbers. This is because all odd numbers at

height k are less than or equal to 3k−1, and 3k−1 < 4 · 3k−2.
Even numbers are obtained from Step 1 or Step 5 in Theorem 2.3. However, since

there are no numbers in Ck−1 that are bigger than 2 · 3k−2, none of the numbers
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in Rk are obtained from Step 1. Thus all the numbers in Rk are of the form 2r,
where r is an odd number at height k, and

2 · 3k−2 < r ≤ 3k−1.

By Proposition 3.1, all odd composite numbers not divisible by 3 are less than
2 · 3k−2 + 1. Thus there are only two possibilities for r.

(1) r is a prime of the form 2 ·3k−2 +1 with H(r) = k, i.e., 2r ∈ Sk as required.
(2) r is divisible by 3.

In case r is divisible by 3, it is obtained from Step 2, and there is an s such that
2 · 3k−3 < s ≤ 3k−2, with r = 3s. So 2s ∈ Rk−1. By the induction hypothesis,

2s = 2 · 3k−1−ap, for some p ∈ P̂ with H(p) = a ≤ k − 1. So

2r = 2 · 3k−ap,
and 2r ∈ Sk. This completes the proof of Sk ⊂ Rk. �

To state our next result, we require some notation. Let p1, p2, p3, . . . be the

elements of P̂ listed in increasing order, where H(pi) = ai, and a1 < a2 < a3 < · · · .
For example, the first few pairs (pi, ai) are (3, 2), (7, 3), (19, 4), and (163, 6).

Corollary 3.4. Let k > 2. Let pi ∈ P̂ , i = 1, 2, . . . , r, be as above, with r the
largest such that ar ≤ k. At height k, the largest numbers, in decreasing order, are:

2 · 3k−1, 2 · 3k−3 · 7, 2 · 3k−4 · 19, 2 · 3k−6 · 163, . . . , 2 · 3k−ar · pr, 22 · 3k−2.

Proof. Let mi = 2 · 3k−arpi. Note that from (3.1), it follows that if ai > aj , then
mi < mj . Thus 2 · 3k−aipi, i = 1, 2, . . . , r, are in decreasing order. �

This immediately implies a similar result for the largest odd numbers at a height.

Corollary 3.5. Let k > 2. Let pi ∈ P̂ , i = 1, 2, . . . , r, be as above, with r the
largest such that ar ≤ k. At height k, the largest odd numbers, in decreasing order,
are:

3k−1, 3k−3 · 7, 3k−4 · 19, 3k−6 · 163, 3k−a5 · p5, . . . , 3
k−ar · pr.

Remark. Corollary 3.5 extends Theorems 10, 11 and their corollary from Shapiro

[9, §5]. Shapiro considers only two primes in P̂ , namely 7 and 19.

To summarize our work so far, we have found in Theorem 2.3 an alternative
way of thinking about the Shapiro classes. We saw above how a rather obvious
observation, about the largest possible prime in a class, can be used to obtain more
information about the numbers that appear at a height.

At this point, we would like to venture a comment of a philosophical nature,
motivated by another innocuous observation about primes in Shapiro classes.

Theorem 2.1 suggests that H(n) is a “measure of complexity” of a number. The
prime numbers can be considered the “atoms” of numbers. A number is built from
1 by successive multiplication by prime numbers, so the number of prime powers
dividing a number says something about how complicated a number is. However,
this construction does not distinguish between two primes. On the other hand, the
Shapiro class structure naturally distinguishes between the primes. On looking at
Table 3, we see that primes don’t come in order. For example, 19 appears at height
4 and 17 at height 5. Thus, the height function gives a “measure of complexity” to
each prime, and indeed, to each number. That is why we expect this construct will
say something about prime numbers.
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4. Chebyshev-type theorems

In this section, we explore one strategy to discover what Shapiro classes imply for
prime numbers. The strategy is to study elementary methods explained in Shapiro
[10, Chapter 9] and Apostol [1, Chapter 4], and express classical results using H(n)
and S(n). The objective of this preliminary investigation is to arrive at suitable
functions that are related to the prime number functions π(n) and pn.

We derive results analogous to Chebyshev’s theorem, which states that there are
constants 0 < a < A such that, for n > 1,

a
n

log n
< π(n) < A

n

log n
. (4.1)

According to Apostol [1, Theorem 4.6, (14) and (18)], we can take a = 1/4 and
A = 6, when n is an even number.

We will use this result to provide an alternate formulation of Chebyshev’s the-
orem in terms of S(n). In addition, we find inequalities for pn by modifying the
proof of Apostol [1, Theorem 4.7] appropriately.

We begin with two preliminary lemmas.

Lemma 4.1. For n > 1, we have

S(n)

n
≥ log n/2

log 3
.

Proof. We use the following refinement of Stirling’s formula due to Robbins [8, (1)
and (2)].

√
2πn

(n
e

)n
e

1
12n+1 < n! <

√
2πn

(n
e

)n
e

1
12n . (4.2)

From (2.3) it is immediate that

S(n) =

n∑
k=2

H(k) ≥ 1

log 3
(log n!− (n− 1) log 2) + n− 1.

Thus, using (4.2), we obtain, for n > 1,

S(n)

n
≥ log n

log 3
− log 2

log 3
+

1

n
·
( log(2πn)

2 log 3
+

log 2

log 3
− 1
)

+
1

(log 3)n(12n+ 1)
+
(

1− 1

log 3

)
≥ log n

log 3
− log 2

log 3

as required. �

We require one more lemma.

Lemma 4.2. Let n be such that 2k−1 < n ≤ 2k. Let β = log 2/2 log 3 ≈ 0.31546 . . . .
Then

β(k − 2) ≤ S(n)

n
≤ k. (4.3)

Proof. Since n > 2k−1, we have

S(n)

n
≥ S(2k−1)

n
≥ S(2k−1)

2k
≥ 1

2

( log 2k−2

log 3

)
,
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where we have used Lemma 4.1. In this manner, we obtain:

S(n)

n
≥ β(k − 2),

where β = log 2/2 log 3. This proves the first inequality.
Since n is such that n ≤ 2k, then in view of Observation (4) in §2, we must have

H(m) ≤ k for all m ≤ n.
The second inequality follows immediately from this. �

Theorem 4.3 (A Chebyshev-type Theorem). For n > 2, there are constants a and
A such that

a
n2

S(n)
≤ π(n) ≤ A n2

S(n)
.

Proof. Let n > 2, and k be such that 2k−1 < n ≤ 2k. The inequalities (4.1) imply
that there are constants a′ and A′ such that:

a′
2k−1

k − 1
≤ π(2k−1) ≤ π(n) ≤ π(2k) ≤ A′ 2

k

k
. (4.4)

Now using (4.3), we obtain

π(n) ≥ a′
(k − 2

k − 1

) 2k−1

k − 2
≥ a′β

4
· n2

S(n)

and,

π(n) ≤ 2A′
n2

S(n)
.

This completes the proof of the theorem. �

Remarks.

(1) By following the proof of (4.1) in Shapiro [10, Chapter 9] or Apostol [1,
Chapter 4], we can obtain (4.1) in the special case when n is a power of 2;
and from there, for all values of n.

(2) We can obtain values for a and A in the statement of Theorem 4.3 by taking
a′ = 1/4 and A′ = 6 (or perhaps even better values, closer to 1). However,
the purpose here is to find a suitable function that can be related to π(n).
The function is evidently F (n) = n2/S(n).

Theorem 4.4. For n > 2, there are constants a, A1 and A2, such that

aS(n) ≤ pn ≤ A1S(n) +A2n.

Proof. The proof is analogous to the proof of the inequalities

1

6
n log n < pn < 12

(
n log n+ n log(12/e)

)
,

given by Apostol [1, Theorem 4.7].
Let m = pn, so π(pn) = n. Let K be such that 2K−1 < pn = m ≤ 2K , and k

such that 2k−1 < n ≤ 2k. Clearly, k ≤ K (since n < pn).
We begin with the first inequality. The inequalities (4.4) imply that there is a

constant A′ such that

n = π(pn) ≤ A′ 2
K

K
≤ 2A′

m

K
,
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or

pn = m ≥ Kn

2A′
≥ kn

2A′
.

But k ≥ S(n)/n by (4.3), so we obtain

pn ≥ aS(n),

where a = 1/2A′.
For the second inequality, (4.4) implies that for some a′,

pn = m ≤ 2n(K − 1)

a′
.

Next, using K − 1 ≤ logm/ log 2, we obtain

K − 1 ≤ logm

log 2
≤ 2
√
m

e log 2
,

so

m ≤ 4n
√
m

a′e log 2
,

which yields,
√
m ≤ 4n

a′e log 2
.

Taking logs, we find that

logm ≤ 2 log n+ 2 log(4/a′e log 2) ≤ 2k log 2 + 2 log(4/a′e log 2).

Finally, we put all the above together, to find that

pn(= m) ≤ 2n(K − 1)

a′

≤ 2n logm

a′ log 2

≤ 4nk

a′
+

4 log(4/a′e log 2)

a′ log 2
n

≤ 4n

a′

(
S(n)

βn
+ 1

)
+

4 log(4/a′e log 2)

a′ log 2
n

= A1S(n) +A2n,

for some constants A1 and A2. This completes the proof. �

To summarize, we obtained two Chebyshev-type theorems, one for π(n) and
the other for pn. Of course, the first such theorem came up in response to Gauss’
conjecture which said the constants a and A in (4.1) are both 1. The question arises:
How good are these functions in approximating π(n) and pn? These questions are
considered in the next section.

5. (Conjectural) formulas for prime numbers

In this section we note some conjectural formulas that are motivated by Theo-
rems 4.3 and 4.4 and present some computational evidence. We note here a partic-
ular constant B that appears in our study:

B :=
γ

log 2
≈ 0.832746 . . . , (5.1)

where γ is the Euler-Mascheroni constant.
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A formula for π(n). In view of Theorem 4.3, the first question we investigate
is: If π(n) is approximately a constant multiple of F (n) = n2/S(n), then what
should that constant be? However, initial experiments on Sage [12] with various
numerical guesses did not match the data as n became large. However, on graphing
the difference of π(n) with F (n), the error term appears to be of the same type as
F (n) itself. This leads to the following conjecture:

Conjecture 1. Let G(n) be defined as

G(n) =
n2

S(n)
+

(bn)2

S(bbnc)
. (5.2)

Then G(n) ∼ π(n), for a constant b, where b is (approximately)

b ≈ eB/10 ≈ 0.22996 . . . .

Figure 2. Graph of G(n) (top) against π(n)

Notes.

(1) Figure 2 shows the graphs of π(n) and G(n) on the same set of axes for
n ≤ 1000. The agreement is quite striking.

(2) Figure 3 shows two curves π(n)/G(n) (top) and π(n)/Li(n) (bottom) for
n = 20 to n = 90000. It appears that G(n) is a better estimate than Li(n)
for “small” values of n.

(3) Table 4 compares the performance of G(n) with that of Li(n) for some
values of n.
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Figure 3. Graphs of π(n)/G(n) (top) and π(n)/Li(n)

n π(n) bG(n)c π(n)− bG(n)c bLi(n)c π(n)− bLi(n)c π(n)−G(n)
π(n)

10 4 8 −4 6 −2 −113.64%
102 25 27 −2 30 −5 −10.78%
103 168 170 −2 177 −9 −1.22%
104 1229 1222 7 1246 −17 0.50%
105 9592 9547 45 9629 −37 0.46%
106 78498 78340 158 78627 −129 0.20%
107 664579 664297 282 664918 −339 0.04%

Table 4. G(n) against Li(n)

A formula for the nth prime. Given Theorem 4.4, one can ask how well is pn
approximated by a constant times S(n). It turns out that even with the constant
equal to 1, the approximation is quite good. Indeed, it appears that

pn ≈ S(n). (5.3)

Here the values of n we have computed are until n ≈ 6× 107.

Notes.

(1) See Figure 1 mentioned in the introduction for a graph of S(n) and pn, for
n ≤ 5000.

(2) Table 1 indicates that S(n) is a better approximation to pn than n log n.
(3) Table 5 contains the values of S(n) and pn at some large random values of

n, and the relative error of the approximation. It appears that the relative
error is increasing.
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n pn S(n) S(n)− pn S(n)
n logn

S(n)−pn
pn

3874958 65619413 68671533 3052120 1.168215 4.65%
17594789 326260271 344294853 18034582 1.172923 5.53%
29742315 568063631 601049024 32985393 1.174364 5.81%
32970915 633319879 670440504 37120625 1.174637 5.86%
46262236 905219069 959827638 54608569 1.175509 6.03%
54074749 1066983163 1132214258 65231095 1.175901 6.11%

Table 5. Comparison of S(n) with pn: Random values

From the above, it seems that the approximation is slightly off. In view of
Conjecture 1, we expect the following.

Conjecture 2. Let pn denote the nth prime. Then

pn ∼
1

(1 + b)
S(n),

for a constant b, where b ≈ eB/10 ≈ 0.22996 . . . .

Remark. Erdos et.al. [3] conjectured that there is a constant δ such that S(n) ∼
δn log n. These authors showed that a certain form of the Elliot–Halberstam con-
jecture implies their conjecture. Conjecture 2 implies that δ ≈ 1 + b ≈ 1.22996 . . . .
Note that 1/(1 + b) ≈ 0.813 . . . .

Professor Pomerance pointed out that (5.3) is inconsistent with Conjecture 1,
and commented that it would be interesting to perform numerical computations to
conjecture the value of δ. From Table 5, it appears that the number is bigger than
1.175. But we were only able to compute upto n = 6× 107. We expect the limit to
be larger.

Below, we briefly outline the steps to obtain the value of δ that follows from
Conjecture 1. This motivates our statement of Conjecture 2.

Define S(x) now as
∑
k≤xH(k). Take G(x) = 0 when x < 2. Then (5.2) can be

written as

G(n) =
n2

S(n)
+

(bn)2

S(bn)

On inverting this, we obtain the approximation

n2

S(n)
≈
∑
k≥0

(−1)kG(bkn).

Note that for any fixed n this is a finite sum. Upon replacing G(x) by π(x), we see
that from Conjecture 1, we have

n2

S(n)
≈
∑
k≥0

(−1)kπ(bkn). (5.4)

Let Ŝ(n) denote the approximation to S(n) obtained from (5.4), that is,

Ŝ(n) :=
n2∑

k≥0(−1)kπ(bkn)
.
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The computations (with b = 0.229962525551838), in Table 6 indicate that Ŝ(n)
is quite an accurate way to estimate the value of S(n). This further supports
Conjecture 1. Note that we may replace π(x) by Li(x) to estimate S(n).

n S(n) Ŝ(n) S(n)− bŜ(n)c S(n)−bŜ(n)c
S(n)

992 7569 7628 −59 −0.77949%
7524 76008 76089 −81 −0.10656%
56762 713411 710300 3111 0.43607%
596319 9206082 9181418 24664 0.2679%

17594789 344294853 344263181 31672 0.009199%
32970915 670440504 670698724 −258220 −0.03851%
54074749 1132214258 1133070822 −856564 −0.07565%

Table 6. Comparison of S(n) with Ŝ(n): Random values

Multiplying both sides of (5.4) by log(n)/n, and taking (formal) limits, one can
obtain

lim
n→∞

n log n

S(n)
≈ 1

1 + b
≈ 0.813 . . . ,

which suggests that δ ≈ 1 + b ≈ 1.22996 . . . .
From the above we see that Conjecture 2 is consistent with Conjecture 1.

Prime gaps. We end this section with a few remarks about the prime gap. Let gn
denote the prime gap, that is, gn = pn+1 − pn. Given that S(n) approximates pn,
it is natural to ask whether gn is approximated by H(n + 1). On the other hand,
the prime gap is notorious for its irregularity, and one cannot expect much in this
regard. Nevertheless, it seems that on average, H(n + 1) does quite a good job of
approximating gn. Indeed, Table 7 gives a few values of the following function:

S∆(k) =
1

2k

∑
2k<m≤2k+1

gm
H(m+ 1)

. (5.5)

In view of Conjecture 2, we expect the limit to be 1/(1 + b) ≈ 0.813 . . . .

k S∆(k) k S∆(k)
1 1.16666666666667 10 1.02073447927940
2 1.08333333333333 11 1.01134933317550
3 1.23333333333333 12 1.00132388905581
4 1.11041666666667 13 0.994501291351865
5 1.08541666666667 14 0.988054230925281
6 1.08377976190476 15 0.982638771673053
7 1.03947792658730 16 0.976617044103504
8 1.05543154761905 17 0.971171169038482
9 1.04229290674603 18 0.966205359427567

Table 7. S∆(k) for k = 1, . . . , 18
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